• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermophoresis effects on gas-particle phases flow behaviors in entrained flow coal gasifier using Eulerian model

    2017-06-01 03:19:54ChaoDaiFanGu

    Chao Dai,Fan Gu*

    School of Energy and Environment,Southeast University,Nanjing 210096,China

    1.Introduction

    The Study on the pulverized coal gasification has attracted interests of researchers.Improvements of experimental studies have laid a firm foundation for coal gasification study.Ahnet al.[1]studied the effects of gasification temperature pressure on gasification kinetics of coalchar with CO2atelevated pressure with a pressurized drop tube furnace reactor.Kajitaniet al.[2,3]concluded the gasification rate of four different coal chars gasified with CO2using a PDT or TGA athigh temperature and pressure.

    In addition,establishing a coal gasification simulation model is also important for the investigation of coal gasification.Irfanet al.[4]reviewed the kinetics and the reaction rate equations for char-CO2gasification both in the reaction kinetic control region(low temperature)and the diffusion control region(high temperature)and at both low and high pressures.Their work facilitates the further improvement of the coal gasification model.As is known,coal gasification system is one of gas-particle phases flow reaction systems.Both Lagrangian and Eulerian models have been applied to simulating gas-particle phase flow system.Compared to the Lagrangian model,the Eulerian model treats all different phases mathematically as continuous and fully inter penetrating and reducing number of governing equations.Vicenteet al.[5]developed a coal gasification simulation model in entrained flow coal gasifier using Eulerian methods,considering gravity and drag in the model.Their results show good agreement for both the main and minor species,and temperature with experimental data.In this paper,a new Eulerian model based their work was established,considering particle thermophoretic force besides gravity and drag.

    The particles suspended in a gas with a temperature gradient are subject to a force called thermophoretic force,directed in the opposite direction to the temperature gradient.Todaet al.[6]examined the relation between the diameter of particles and thermophoretic effect accurately by getting rid of the particle movement induced by the effects of natural convection and gravity.They found that smaller particles receive more remarkably the thermophoretic effect than larger ones and the effects are sensitive with the diameter especially for particles of small diameter and/or low thermal conductivity.Epstein[7]proposed a theoretical model for calculating thermophoretic force for small Knudsen numbers but their results show poor agreement between the experimental results obtained by Schadt and Cadled[8].Brock[9]extended Epstein's analysis and obtained better agreement.Talbotet al.[10]studied velocity pro files of seed particles driven by thermophoretic force in the laminar boundary layer adjacent to a heated flat plate.They found that the theory of Brock,with an improved value for the thermal slip coefficient,gave the best agreement with experiment for low Knudsen numbers.

    Char gasification could cause certain gas temperature gradients along both axial and radial two directions in the gasifier.So thermophoretic force may have some effects on migration of coal-char particles,especially sufficiently small ones.However,considering the effects of particle thermophoresis in coal gasification has not appeared in previous studies and this study is essential for coal gasification simulation.

    This paper studied the temperature gradient and thermophoretic forces along both gasifier axial and radial two directions at wall temperatures of 1100 °C,1200 °C,1300 °C and 1400 °C.It also presented compared calculated results of particle volume fraction,velocity,and gasification reaction rate whether particle thermophoresis is considered in the gasification model.Talbot's theoretical model for particle thermophoresis is adopted in this paper,owing to its similar conditions with ours.

    2.Char-CO2 Entrained Flow gasifier

    The geometric model in this study is based on the experimental furnace adopted in Ref.[1]and its diameter is 52 mm.The geometry of the reactor is cylindrical.For a coal gasified in a gasifier,it is in a reducing environment and the temperature is not as high as that of fuel combustion.For these reasons,the following assumptions are adopted to simplify the physical problem.(1)The flow field is steady,axisymmetric,incompressible.(2)The wall temperature of the gasifier is uniform which has been adopted in other studies[11-13].(3)The inlet temperature is heated to the size of corresponding wall temperature.Because of the assumption of axisymmetric flow,the three dimensional gasifier can be reduced to a two-dimensional reactor in the simulation[14].The geometric model is shown as Fig.1 and the length is set as 500 mm

    The mapped mesh method is adopted in this model which is helpful to reduce the calculating error.To validate the grid dependence,four grid sizes are adopted in this geometry to simulate a simply coupling problem of flow and heat transfer.The wall temperature is 1100°C and the inlet temperature 25 °C.The inlet velocity is 0.1 m·s-1and CO2as the flow medium.As Fig.2 shows,the grid size of 600×20 can meet the requirements of grid independence.

    The conditions of char gasification are determined as Table 1.A mixture of reactant gas including CO2and N2gases is admitted into the gasifier at a flow rate of 0.5 m·s-1.So the flow in the gasifier is streamline and the problems of turbulent flow are not considered through the course of this study.The ultimate analysis of coal and coal char used in the simulation is summarized in Tables 2 and 3.This paper needs to assume that only char density changes in the gasification reaction and the volume will keep constant.The way of the change of char density is given:

    Fig.1.The physical model of entrained flow coal gasifier.

    Fig.2.The temperature distribution along the gasifier central axis with difference grid sizes.

    whereRis the value of the reaction rate expressed by carbon mass concentration,kg·m-3·s-1.Moreover,the carbon conversion(X)in the gasification reaction is defined as Eq.(1):

    whereAis the mass fraction of ash andCis the mass fraction of carbon in the coal char at any time.The subscripts of “o”and “x”are the un-reacted coal char and the reacted coal char,respectively.

    Table 1Conditions of char-gasification[1]

    Table 2Properties of Indonesian Rotor coal[1]

    Table 3Ultimate analysis of Rotor coal char and chemical analysis of ash[1]

    In addition,the gasifieris heated up by the fixed wall temperature.it is assumed that the initial and inlet gas temperatures remain consistent with wall temperature.At the entrance of the gasifier,the difference between gas and particle temperature has been ignored,too.

    3.Numerical Method

    A Eulerian model was establishing in this paper based on the experimental equipment adopted in Ref.[1].The particle thermophoresis model would be added to this model and the effects of particle thermophoresis on coal-char gasification was considered in the simulation in this study.The main governing equations include continuity equations,momentum equations along the gasifier axial and radial directions,and energy equations of gas and particle phases.gasification chemical kinetic of coal char and the Eq.(1)also need to be coupled to this model.The numerical model is solved using COMSOL Multiphysics 5.0.

    3.1.Continuity equations

    In Eulerian model,both the particle and gas phases are solved using an Eulerian approach and an additional equation is solved the volume fraction of the particle phase locally.The two Continuity equations can be simplified for the incompressible flow,as follows[15]:

    3.2.Momentum equations

    The momentum equations for the continuous and dispersed phases,using the non-conservative forms of Ishii are as follows:

    For fluid-solid mixtures,Eq.(7)is modified in the manner of Enwald[16]:

    For the low particulate concentration in this model,the solid pressure could be ignored in this model[16].So the Eq.(8)can be modified:

    Fmis the drag term of drag force between two phases,where Fm,g=-Fm,p= βuslip,β is the drag force coefficient,where uslip=up-ug.Fi(i=g,p)is the momentum transfer term which only includes particle thermophoretic force in this paper.

    The drag force coefficient β in this study can be modeled for dilute flows as follows:

    In this model,the drag coefficientCdcan be computed from the Schiller-Neumann model,which is one of the most employed drag correlations in the last decades[17,18].

    The viscous stress tensors are also needed to be defined in this paper.The dynamic viscosity of the respective phase can be expressed as a simple mixture viscosity,which is defined by Krieger[16]and given in Eq.(13).The Krieger type model can cover the entire range of particle concentrations and Φp,maxis 0.62 in Eq.(11).

    In the end,Talbot's model[10]for particle thermophoresis is adopted for its similar conditions with that in this simulation.

    whereKnis Knudsen number,Cs,CmandCtare all numerical factors of order unity which must be obtained from kinetic theory,Cs=1.147,Cm=1.146,Ct=2.20,cis the mean niolecular speed,Λ is the gasparticle thermal conductivity ratio,Λ = λg/λp[10,19,20].

    3.3.Energy equations

    There are convective,conductive and radiative heat transfers between the gases,particles and reactor walls in the gasifier.Two basic energy equations,for gas and particle phases are as follows.

    In this model,the gas phase is assumed to be transparent and radiative heat transfer to particles assumed to be isotropic.P1 model is used to solve the radiative heat transfers to particles.The basic parameters of radiative heat transfers to particles are summarized in Table 4[11].

    Table 4Parameters of radiative heat transfer[11]

    3.4.Chemical reaction

    In this paper,only one Reaction(16)is coupled to the Eulerian model.

    Q,heat of the reaction,is defined by enthalpy of reactants and resultants.

    whereRmolis the reaction rate,mol·m-3·s-1,His the reaction enthalpy,J·mol-1,andhco,hco2are formation enthalpies,J·mol-1.

    The gasification reaction rate is obtained by fitting the experimental data[1].

    whereA=174.1 s-1,E=71.5 kJ·mol-1[1],PCO2is the size of the partial pressure of CO2andPis the size of the total pressure in the gasifier,based on the unit for MPa.The sign “k”,reaction rate constant,is defined by Arrhenius formula.

    4.Results and Discussions

    4.1.Validation of gasification reaction rate

    To validate the developed chemical reaction rate equation,the predicted results of Eq.(19)are compared with the experimental data of Ahn[1].As Fig.3 shows,the gasification reaction rate equation is able to predict coal char gasification process accurately at wall temperatures of 1100 °C,1200 °C,1300 °C and 1400 °C.

    Fig.3.Comparisons of carbon conversion vs reaction time between numerical predictions and experimental measurements[1].

    4.2.The particle thermophoresis

    In this section,the gas temperature gradient and thermophoretic force are investigated.Firstly,the predicted isothermal contours in the entrained flow coal gasifier are shown in Fig.4(a)and the maximum and minimum temperatures are also marked in the isothermal contours.The temperature difference increases with wall temperature increasing,which is caused by the increase of reaction rate.Fig.4(b)demonstrates the conclusion by presenting the volume fraction contours of CO generated in the gasifier.The mass fraction of CO increases with wall temperature increasing and the maximum value is only 0.0284130,which has little effects on gas-particle phases flow behaviors.

    Then,the characteristics in five cross sections are investigated to show the entire gasifier performance clearly.The five cross sections are built in the gasifier,0.1 m,0.2 m,0.3 m,0.4 m,and 0.5 m from the inlet.Figs.5 and 6 present the gas temperature gradients and particle thermophoretic forces along both radial and axial directions of the gasifier in the five cross sections.The particle thermophoretic force has significant correlation with the gas temperature gradient and has the same trend and the opposite direction with the gas temperature gradient has.They all increase with wall temperature increasing.As Fig.5 shows,the radial gas temperature gradient and particle thermophoretic force reach the maximum values near the wall surface of gasifier.Compared to the gas temperature gradient and particle thermophoretic force along the radial direction,those along axial direction are too small to be ignored.

    Fig.4.Isothermal contours and CO mass fraction contours in the drop tube furnace.

    Fig.5.Gradient of gas temperature and thermophoretic force along the radial direction.

    Fig.6.Gradient of gas temperature and thermophoretic force along the axial direction.

    4.3.Effects on particle distributions

    This paper contrasts computational results of the particle volume fraction in five cross sections whether the particle thermophoresis is considered in this simulation model.The effects on the particle distributions can be reflected.These effects are obvious near the wall surface of gasifier at all wall temperatures,where gas temperature gradient has the maximum value.The computational result of particle volume fraction with thermophoresis effects is lower than that without the effects,shown in Fig.7.At 1400°C wall temperature,the changes of particle volume fraction are becoming remarkable,which may be caused by higher gasification reaction rate or other factors.

    Fig.7.Comparisons of coal char volume fraction with thermophoresis or not.Talbot,None.

    Fig.8.The trends of the difference and variance ratio of particle volume fraction on wall surface with increase of the wall temperature.

    For estimating thermophoresis effects on the computational results of particle volume fraction,Fig.8 presents the trends of the difference and variance ratio of particle volume fraction on wall surface with the wall temperature increases whether the particle thermophoresis is considered in this simulation model.The value of the particle volume fraction increases the wall temperature increases in all five cross sections.These trends are consistent with those of the radial gas temperature gradients and the particle thermophoretic forces.The maximum variance ratio of particle volume fraction on wall surface reaches up to 1.38%whether the particle thermophoresis effects are considered in the simulation.

    4.4.Effects on particle velocity

    The changes of particle velocity are also need to be studied[6,10]because the thermophoresis will directly influence the particle velocity and the particle velocity change will affect the particle distance.The changes of axial velocity can be negligible in Fig.9,which are associated with the small axial gas temperature gradients and thermophoretic forces presented in Fig.5.However,the changes of radial velocity are observable,especially at wall temperature of 1400°C as Fig.10 shows,owing to the higher gas temperature gradients and thermophoretic forces along this direction presented in Fig.3.So effects of particle thermophoresis are reflected in the changes along radial direction in this paper.

    4.5.Effects on gasification reaction rate

    The reaction rate is one of main characteristics of coal char gasification,which will affect the temperature field in the gasifier.So in this section,it is investigated that the effects are on the calculation result of gasification reaction rate whether the particle thermophoresis is considered in the simulation model.

    Fig.11 presents the compared results of gasification reaction rate in the five cross sections whether the particle thermophoresis is considered in the model.At wall temperatures of 1200°C and 1300 °C,the compared results are only observable near the wall surface of gasifier in five cross sections in Fig.11(2),(3),which has the same trend with that particle volume fraction has.As Fig.11(4)shows,the differences of the compared results become remarkable at 1400°C wall temperature,which is also consistent with the changes the particle distribution has.

    5.Conclusions

    In this study,a numerical model was developed to investigate particle thermophoresis effect on gas-particle phases flow behaviors in entrained flow coal gasifier based on Eulerian method.Four wall temperatures was considered,including 1100 °C,1200 °C,1300°C and 1400°C.The main findings of the present study can be summarized as follows:

    (1)The gas temperature gradient and particle thermophoretic force along axial direction can be negligible in comparison to thosealong radial direction in the gasifier.Besides,the radial gas temperature gradient and particle thermophoretic force increase with the increase of wall temperature.

    (2)Considering particle thermophoresis had some effects on the distribution of particle volume concentration in simulation model,especially at wall temperature of 1400°C.The effects were obvious near the wall surface of gasifier at all wall temperatures where the computational result of particle volume fraction with effects of particle thermophoresis is lower than that without the effects.Then the maximum particle volume fraction variance ratio reaches up to 1.38%on wall surface of the gasifier.

    (3)For the calculation of particle velocity in the gasifier,the change of axial velocity is too small to be ignored and that of radial velocity is observable,especially at wall temperature of 1400°C.

    (4)There are few effects on calculation result of gasification reaction rate caused by particle thermophoresis,only the effects are significantly at wall temperature of 1400°C.

    With further decrease of particle size and further increase of reaction temperature the particle thermophoresis may have more effects on the investigation of gas-particle phases flow behaviors in entrained flow coal gasifier.So it is meaningful that more attention is paid to develop the gasification model in which particle thermophoresis is considered.

    Nomenclature

    Cmmomentum exchange coefficient

    Cp,ggas specific heat capacity at constant pressure,J·kg-1·K-1

    Cp,pparticle specific heat capacity at constant pressure,J·kg-1·K-1

    Csthermal slip coefficient

    Cttemperature jump coefficient

    dpparticle diameter,m

    FT,rthermophoretic force,rcomponent,N·m-3

    FT,zthermophoretic force,zcomponent,N·m-3

    KnKnudsen number,2 L·d-1

    lmean free path of gas molecules,m

    PrPrandtl number

    RepReynolds number

    Tgas temperature,K

    Tpparticle temperature,K

    up,zfalling velocity of coal char particle

    Vpvolume of a coal char particle

    Λ gas-particle thermal conductivity ratio,Λ = λg/λp

    λggas thermal conductivity,W·m-1·K-1

    λpparticle thermal conductivity,W·m-1·K-1

    φpvolume fraction of particle

    φgvolume fraction of gas

    ρggas density,kg·m-3

    ρpparticle density,kg·m-3

    Subscripts

    g gas

    p particle

    r radial direction

    z axial direction

    Fig.11.Comparisons of the gasification reaction rate with thermophoresis or not.Talbot

    [1]D.H.Ahn,B.M.Gibbs,K.H.Ko,et al.,gasification kinetics of an Indonesian sub-bituminous coal-char with CO2,at elevated pressure,Fuel80(11)(2001)1651-1658.

    [2]S.Kajitani,S.Hara,H.Matsuda,gasification rate analysis of coal char with a pressurized drop tube furnace,Fuel81(5)(2002)539-546.

    [3]S.Kajitani,N.Suzuki,M.Ashizawa,et al.,CO2,gasification rate analysis of coalchar in entrained flow coal gasifier,Fuel85(2)(2006)163-169.

    [4]M.F.Irfan,M.R.Usman,K.Kusakabe,Coal gasification in CO2,atmosphere and its kinetics since 1948:a brief review,Energy36(1)(2011)12-40.

    [5]W.Vicente,S.Ochoa,J.Aguillón,et al.,An Eulerian model for the simulation of an entrained flow coal gasifier,Appl.Therm.Eng.23(15)(2003)1993-2008.

    [6]A.Toda,H.Ohnishi,R.Dobashi,et al.,Experimental study on the relation between thermophoresis and size of aerosol particles,Int.J.Heat Mass Transf.41(17)(1998)2710-2713.

    [7]P.S.Epstein,Zur Theoriedes Radiometers,Ann.Phys.54(7-8)(1929)537-563.

    [8]C.F.Schadt,R.D.Cadle,Thermal forces on aerosol particles,J.Phys.Chem.65(10)(1961)1689-1694.

    [9]J.R.Brock,On the theory of thermal forces acting on aerosol particles,J.Colloid Sci.17(8)(1962)768-780.

    [10]L.Talbot,R.K.Cheng,R.W.Schefer,et al.,Thermophoresis of particles in a heated boundary layer,J.Fluid Mech.101(101)(1980)737-758.

    [11]C.Chen,M.Horio,T.Kojima,Numerical simulation of entrained flow coal gasifiers.Part I:modeling of coal gasification in an entrained flow gasifier,Chem.Eng.Sci.55(18)(2000)3861-3874.

    [12]L.Hao,C.Luo,M.Kaneko,et al.,Unification of gasification kinetics of char in CO2at elevated temperatures with a modified random pore model,Energy&Fuels17(4)(2003)961-970.

    [13]Q.Ni,A.Williams,A simulation study on the performance of an entrained- flow coal gasifier,Fuel74(1)(1995)102-110.

    [14]C.J.Chen,C.I.Hung,W.H.Chen,Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier,Appl.Energy100(4)(2012)218-228.

    [15]C.T.Crowe,M.Sommerfeld,Multiphase flows with droplets and particles,Multiphase Flows With Droplets and Particles,CRC,1998.

    [16]H.Enwald,E.Peirano,A.E.Almstedt,Eulerian two-phase flow theory applied to fluidization,Int.J.Multiphase Flow22(1345)(1996)21-66.

    [17]M.J.Pang,J.J.Wei,Analysis of drag and lift coefficient expressions of bubbly flowsystem for low to medium Reynolds number,Nucl.Eng.Des.241(6)(2011)2204-2213.

    [18]O.Visuri,G.A.Wierink,V.Alopaeus,Investigation of drag models in CFD modeling and comparison to experiments of liquid-solid fluidized systems,Int.J.Miner.Process.s 104-105(s 104-105)(2012)58-70.

    [19]C.Shen,Thermophoresis of spherical particle and the dependence of the jump coefficients on the accommodation coefficient,Acta Mech.Sinica(1983).

    [20]G.K.Batchelor,C.Shen,Thermophoretic deposition of particles in gas flowing over cold surfaces,J.Colloid Interface Sci.107(1)(1985)21-37.

    亚洲在线自拍视频| 成人午夜高清在线视频| 一进一出好大好爽视频| 偷拍熟女少妇极品色| 69av精品久久久久久| 成人无遮挡网站| 能在线免费观看的黄片| 免费黄网站久久成人精品| 十八禁国产超污无遮挡网站| 中国美白少妇内射xxxbb| 少妇高潮的动态图| 大型黄色视频在线免费观看| 久久99热这里只有精品18| 免费av毛片视频| 国产精品爽爽va在线观看网站| 夜夜爽天天搞| 又爽又黄无遮挡网站| 亚洲avbb在线观看| 在线观看舔阴道视频| 在线a可以看的网站| 夜夜看夜夜爽夜夜摸| 午夜影院日韩av| 久久中文看片网| 俄罗斯特黄特色一大片| 在现免费观看毛片| 亚洲精品乱码久久久v下载方式| 日韩一区二区视频免费看| 久久久久国产精品人妻aⅴ院| 国产白丝娇喘喷水9色精品| 亚洲 国产 在线| 丰满的人妻完整版| 校园人妻丝袜中文字幕| bbb黄色大片| 亚洲美女搞黄在线观看 | 婷婷六月久久综合丁香| 国产精品日韩av在线免费观看| 男人和女人高潮做爰伦理| 一本精品99久久精品77| .国产精品久久| 少妇丰满av| 色综合站精品国产| 99国产精品一区二区蜜桃av| 亚洲成人久久爱视频| 好男人在线观看高清免费视频| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美在线乱码| 动漫黄色视频在线观看| 午夜福利欧美成人| 超碰av人人做人人爽久久| 午夜精品在线福利| 别揉我奶头 嗯啊视频| 午夜视频国产福利| 不卡一级毛片| 午夜a级毛片| 国产一区二区三区在线臀色熟女| 国产真实乱freesex| 亚洲图色成人| 看十八女毛片水多多多| 久久国产乱子免费精品| 我要看日韩黄色一级片| 熟女人妻精品中文字幕| 国产精品一区二区免费欧美| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产高清在线一区二区三| 久久精品国产清高在天天线| 亚洲精华国产精华精| 在线看三级毛片| 久久人妻av系列| 少妇熟女aⅴ在线视频| 欧美一区二区精品小视频在线| 久久久成人免费电影| 88av欧美| 亚洲黑人精品在线| 国产亚洲av嫩草精品影院| 国产麻豆成人av免费视频| 国内久久婷婷六月综合欲色啪| 欧美日韩国产亚洲二区| 日本五十路高清| 国产亚洲91精品色在线| 国产精品久久视频播放| 91精品国产九色| 日日摸夜夜添夜夜添小说| 白带黄色成豆腐渣| 亚洲精品在线观看二区| 亚洲精品国产成人久久av| 在线观看美女被高潮喷水网站| 久久天躁狠狠躁夜夜2o2o| 非洲黑人性xxxx精品又粗又长| 级片在线观看| 亚洲色图av天堂| av天堂在线播放| 免费电影在线观看免费观看| 嫁个100分男人电影在线观看| 亚洲成a人片在线一区二区| 人人妻人人看人人澡| 国产高清视频在线播放一区| 18禁在线播放成人免费| 成人二区视频| 免费人成在线观看视频色| 少妇高潮的动态图| 久久这里只有精品中国| 一夜夜www| 一级黄片播放器| 大又大粗又爽又黄少妇毛片口| 在线a可以看的网站| 国产不卡一卡二| 一级毛片久久久久久久久女| 国产视频内射| 中文资源天堂在线| 国产av在哪里看| 成人亚洲精品av一区二区| 国内久久婷婷六月综合欲色啪| av在线亚洲专区| 亚洲经典国产精华液单| 国产精品免费一区二区三区在线| 午夜老司机福利剧场| 成人亚洲精品av一区二区| 欧美+日韩+精品| 又粗又爽又猛毛片免费看| 国产国拍精品亚洲av在线观看| 久久久久国内视频| 国产又黄又爽又无遮挡在线| 免费观看在线日韩| 国产男人的电影天堂91| 别揉我奶头~嗯~啊~动态视频| 赤兔流量卡办理| 最好的美女福利视频网| 亚洲性夜色夜夜综合| 成人av在线播放网站| 午夜久久久久精精品| 又黄又爽又免费观看的视频| 男女做爰动态图高潮gif福利片| 午夜亚洲福利在线播放| 蜜桃久久精品国产亚洲av| 免费看光身美女| 2021天堂中文幕一二区在线观| 久久久久久久午夜电影| 国产麻豆成人av免费视频| 日日夜夜操网爽| 22中文网久久字幕| 在线免费观看的www视频| 毛片女人毛片| 精品国内亚洲2022精品成人| 精品人妻偷拍中文字幕| 亚洲精品国产成人久久av| 亚洲国产色片| 91在线观看av| 国产男靠女视频免费网站| 精品免费久久久久久久清纯| 国产成人a区在线观看| 一区二区三区激情视频| 国产一区二区激情短视频| 在线看三级毛片| 欧美日本视频| 欧美日韩精品成人综合77777| 最近中文字幕高清免费大全6 | 亚洲最大成人中文| 亚洲精品成人久久久久久| 午夜亚洲福利在线播放| 久久精品国产亚洲av天美| 永久网站在线| 亚州av有码| 在现免费观看毛片| 18+在线观看网站| www日本黄色视频网| 日韩欧美精品免费久久| 99久久成人亚洲精品观看| 露出奶头的视频| 免费看日本二区| 内射极品少妇av片p| 亚洲自拍偷在线| 国内毛片毛片毛片毛片毛片| 校园春色视频在线观看| 九九在线视频观看精品| 国产精品一区二区三区四区久久| bbb黄色大片| 午夜免费男女啪啪视频观看 | 九色成人免费人妻av| 给我免费播放毛片高清在线观看| 午夜精品一区二区三区免费看| 亚洲国产高清在线一区二区三| 国产成年人精品一区二区| 最后的刺客免费高清国语| 精品久久久久久久久久久久久| 国产精品1区2区在线观看.| 日本 av在线| 欧美在线一区亚洲| 久久精品国产鲁丝片午夜精品 | 黄色视频,在线免费观看| aaaaa片日本免费| netflix在线观看网站| 人人妻,人人澡人人爽秒播| 欧美在线一区亚洲| 亚洲第一电影网av| 22中文网久久字幕| 在线观看美女被高潮喷水网站| 国产精品久久久久久久久免| 老熟妇乱子伦视频在线观看| 免费电影在线观看免费观看| 乱系列少妇在线播放| 精品久久久久久久人妻蜜臀av| 此物有八面人人有两片| 色播亚洲综合网| 内地一区二区视频在线| 一区二区三区激情视频| 国产黄a三级三级三级人| 日韩 亚洲 欧美在线| 小蜜桃在线观看免费完整版高清| 无遮挡黄片免费观看| 亚洲七黄色美女视频| 日本在线视频免费播放| 1000部很黄的大片| 精品免费久久久久久久清纯| 最近最新中文字幕大全电影3| av.在线天堂| 少妇的逼好多水| 免费看av在线观看网站| 老熟妇乱子伦视频在线观看| 久久精品影院6| x7x7x7水蜜桃| av.在线天堂| 久久久久久国产a免费观看| 麻豆精品久久久久久蜜桃| 伊人久久精品亚洲午夜| 日本精品一区二区三区蜜桃| 欧美xxxx性猛交bbbb| 亚洲国产日韩欧美精品在线观看| www.色视频.com| 欧美成人一区二区免费高清观看| 中国美白少妇内射xxxbb| 搡老岳熟女国产| 亚洲欧美日韩卡通动漫| 国产在视频线在精品| 白带黄色成豆腐渣| a级毛片a级免费在线| 免费看av在线观看网站| 国产精品98久久久久久宅男小说| 色哟哟·www| 日本黄色片子视频| av天堂中文字幕网| 国产高清视频在线观看网站| 色视频www国产| 成人国产综合亚洲| 99热只有精品国产| 少妇人妻精品综合一区二区 | 18禁在线播放成人免费| 久久精品国产亚洲av天美| 亚洲第一区二区三区不卡| 欧美一区二区国产精品久久精品| 婷婷丁香在线五月| 小说图片视频综合网站| 长腿黑丝高跟| 久久草成人影院| 一级黄色大片毛片| 亚洲熟妇中文字幕五十中出| 国产视频内射| 又黄又爽又免费观看的视频| 亚洲一级一片aⅴ在线观看| 日本一二三区视频观看| 成人一区二区视频在线观看| 国产 一区精品| 亚洲精品影视一区二区三区av| 99热这里只有是精品50| 亚洲av中文av极速乱 | 国产精品人妻久久久久久| 美女免费视频网站| 精品一区二区三区视频在线| 不卡视频在线观看欧美| 美女黄网站色视频| 国产日本99.免费观看| 欧美精品啪啪一区二区三区| 精品久久久久久久久亚洲 | 尾随美女入室| 久久99热这里只有精品18| 1024手机看黄色片| av在线亚洲专区| 九九久久精品国产亚洲av麻豆| 欧美色视频一区免费| 韩国av一区二区三区四区| 国产高清激情床上av| 成年人黄色毛片网站| 国产伦在线观看视频一区| 精品一区二区免费观看| 国产精品美女特级片免费视频播放器| 一个人看视频在线观看www免费| 亚洲av.av天堂| 99久久无色码亚洲精品果冻| 亚洲av中文字字幕乱码综合| 少妇丰满av| 好男人在线观看高清免费视频| 久久久久免费精品人妻一区二区| 久久精品国产清高在天天线| 三级毛片av免费| 国产毛片a区久久久久| 哪里可以看免费的av片| 婷婷丁香在线五月| 亚洲专区中文字幕在线| 亚洲av熟女| 淫妇啪啪啪对白视频| 亚洲真实伦在线观看| 夜夜爽天天搞| 在线播放无遮挡| 久久久成人免费电影| 无人区码免费观看不卡| .国产精品久久| 国产精品美女特级片免费视频播放器| 亚洲专区国产一区二区| 少妇的逼好多水| 亚洲av不卡在线观看| 全区人妻精品视频| 日本a在线网址| 国内精品久久久久精免费| 精品久久久久久,| 亚洲va在线va天堂va国产| 色综合婷婷激情| 搡女人真爽免费视频火全软件 | 亚洲真实伦在线观看| 性插视频无遮挡在线免费观看| 亚洲在线自拍视频| 3wmmmm亚洲av在线观看| 亚洲精品久久国产高清桃花| 国产伦一二天堂av在线观看| avwww免费| 久久久色成人| 亚洲av二区三区四区| a级毛片免费高清观看在线播放| 精品99又大又爽又粗少妇毛片 | 99riav亚洲国产免费| netflix在线观看网站| 久久久成人免费电影| bbb黄色大片| 国产精品国产高清国产av| 精品乱码久久久久久99久播| 夜夜夜夜夜久久久久| 亚洲人成网站在线播放欧美日韩| 美女xxoo啪啪120秒动态图| 又黄又爽又刺激的免费视频.| 成人三级黄色视频| 乱系列少妇在线播放| 国产黄片美女视频| 日韩欧美免费精品| 国内精品久久久久精免费| 久久精品国产自在天天线| 国产精品一区www在线观看 | 一级a爱片免费观看的视频| 给我免费播放毛片高清在线观看| 精品福利观看| 欧美一区二区亚洲| 欧美最黄视频在线播放免费| 少妇被粗大猛烈的视频| 别揉我奶头~嗯~啊~动态视频| 看免费成人av毛片| 国产精品爽爽va在线观看网站| 直男gayav资源| 人人妻人人澡欧美一区二区| 亚洲欧美日韩高清专用| 国产乱人伦免费视频| 狂野欧美激情性xxxx在线观看| 国产高清三级在线| 一a级毛片在线观看| 少妇人妻精品综合一区二区 | 狠狠狠狠99中文字幕| 可以在线观看毛片的网站| 日本 av在线| 麻豆精品久久久久久蜜桃| 亚洲成人免费电影在线观看| 免费人成视频x8x8入口观看| 尾随美女入室| 欧美性猛交黑人性爽| 精品午夜福利视频在线观看一区| 国产三级中文精品| 最近在线观看免费完整版| 亚洲色图av天堂| 嫩草影院精品99| av在线老鸭窝| 一区福利在线观看| 久久精品国产99精品国产亚洲性色| 人妻夜夜爽99麻豆av| 国产精品久久视频播放| 国内精品一区二区在线观看| 我要搜黄色片| 免费一级毛片在线播放高清视频| 久久久久久久久久黄片| 欧美高清性xxxxhd video| 午夜福利在线在线| 麻豆成人午夜福利视频| 九九在线视频观看精品| 啪啪无遮挡十八禁网站| 内射极品少妇av片p| 亚洲av日韩精品久久久久久密| 国产高清三级在线| 色综合亚洲欧美另类图片| 久久草成人影院| 日韩欧美国产一区二区入口| 熟女人妻精品中文字幕| 1000部很黄的大片| 午夜精品在线福利| 一级黄色大片毛片| 国产一区二区在线av高清观看| 中文在线观看免费www的网站| 一级a爱片免费观看的视频| 51国产日韩欧美| 国产伦一二天堂av在线观看| 狂野欧美激情性xxxx在线观看| 亚洲人成网站高清观看| 国产91精品成人一区二区三区| 男人狂女人下面高潮的视频| 亚洲精品亚洲一区二区| 亚洲欧美日韩高清专用| 熟女电影av网| 最近最新免费中文字幕在线| 亚洲性久久影院| 91麻豆精品激情在线观看国产| 成人二区视频| 色在线成人网| 很黄的视频免费| 精品不卡国产一区二区三区| 日韩av在线大香蕉| 一个人看视频在线观看www免费| a级毛片免费高清观看在线播放| 欧美一级a爱片免费观看看| 精品一区二区免费观看| 亚洲美女搞黄在线观看 | 精品久久久久久久久亚洲 | 村上凉子中文字幕在线| 久久精品国产亚洲网站| 国产高潮美女av| 日本一二三区视频观看| 亚洲成人免费电影在线观看| 99riav亚洲国产免费| 国产黄片美女视频| 久久6这里有精品| 搡老熟女国产l中国老女人| 琪琪午夜伦伦电影理论片6080| 国产色婷婷99| 国产高清视频在线观看网站| 精品久久久久久久久久免费视频| 九九久久精品国产亚洲av麻豆| 国产高清三级在线| 美女高潮喷水抽搐中文字幕| 国产在视频线在精品| 十八禁网站免费在线| 亚洲天堂国产精品一区在线| 国产蜜桃级精品一区二区三区| 成熟少妇高潮喷水视频| 国产精品无大码| 免费黄网站久久成人精品| 婷婷色综合大香蕉| 男人狂女人下面高潮的视频| 精品人妻视频免费看| 国产中年淑女户外野战色| 亚洲乱码一区二区免费版| 少妇人妻精品综合一区二区 | 亚洲国产色片| 精品乱码久久久久久99久播| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品色激情综合| 成人欧美大片| 搡老妇女老女人老熟妇| 欧美日韩综合久久久久久 | 在现免费观看毛片| 一个人看的www免费观看视频| 亚洲七黄色美女视频| 老司机深夜福利视频在线观看| 亚洲无线在线观看| 麻豆一二三区av精品| 亚洲av.av天堂| 久久精品国产鲁丝片午夜精品 | 国产精品嫩草影院av在线观看 | 五月玫瑰六月丁香| 老师上课跳d突然被开到最大视频| www.色视频.com| 久久久久久久久久久丰满 | a级毛片免费高清观看在线播放| 又黄又爽又刺激的免费视频.| 日韩欧美三级三区| 亚洲欧美日韩高清在线视频| 国产免费av片在线观看野外av| 精品99又大又爽又粗少妇毛片 | aaaaa片日本免费| 身体一侧抽搐| 简卡轻食公司| 国内少妇人妻偷人精品xxx网站| 天天躁日日操中文字幕| 成年版毛片免费区| 欧美成人a在线观看| 网址你懂的国产日韩在线| 两个人视频免费观看高清| 伊人久久精品亚洲午夜| av视频在线观看入口| 欧美日韩瑟瑟在线播放| 亚洲av熟女| 国产精品国产高清国产av| 欧美zozozo另类| 国产精品乱码一区二三区的特点| 一夜夜www| 亚洲最大成人中文| 69av精品久久久久久| 色综合色国产| 性插视频无遮挡在线免费观看| av福利片在线观看| 一边摸一边抽搐一进一小说| 亚洲av二区三区四区| 中亚洲国语对白在线视频| 在线观看66精品国产| 国产成人影院久久av| 亚洲成人免费电影在线观看| 午夜精品在线福利| 22中文网久久字幕| 国产日本99.免费观看| 亚洲乱码一区二区免费版| 一级av片app| 一级a爱片免费观看的视频| 亚洲av不卡在线观看| eeuss影院久久| 精品午夜福利视频在线观看一区| 少妇丰满av| 国内久久婷婷六月综合欲色啪| 99热网站在线观看| 老师上课跳d突然被开到最大视频| 亚州av有码| 欧美一级a爱片免费观看看| 国产欧美日韩精品亚洲av| 欧美一级a爱片免费观看看| 国产精品免费一区二区三区在线| 亚洲久久久久久中文字幕| 亚洲国产精品sss在线观看| 国产精品美女特级片免费视频播放器| 身体一侧抽搐| 欧美xxxx性猛交bbbb| 成人av一区二区三区在线看| 国产成人影院久久av| 欧美区成人在线视频| 久久6这里有精品| 老熟妇乱子伦视频在线观看| 国产精品久久视频播放| 一区二区三区激情视频| 1024手机看黄色片| 大型黄色视频在线免费观看| 97超级碰碰碰精品色视频在线观看| 亚洲美女黄片视频| 亚洲精品456在线播放app | 中文字幕免费在线视频6| 丰满的人妻完整版| 国产在线精品亚洲第一网站| 丰满乱子伦码专区| 国产免费男女视频| 亚洲精品影视一区二区三区av| 日韩中文字幕欧美一区二区| av女优亚洲男人天堂| 此物有八面人人有两片| 一级av片app| 国内揄拍国产精品人妻在线| 乱码一卡2卡4卡精品| 国产av不卡久久| 18+在线观看网站| 国产伦人伦偷精品视频| 国产精品1区2区在线观看.| 国产亚洲精品久久久com| 中文字幕av成人在线电影| 桃色一区二区三区在线观看| 精华霜和精华液先用哪个| 高清在线国产一区| 国产精品人妻久久久影院| a级一级毛片免费在线观看| 亚洲最大成人av| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲七黄色美女视频| 一级黄色大片毛片| 真人一进一出gif抽搐免费| 此物有八面人人有两片| 91精品国产九色| 他把我摸到了高潮在线观看| 日韩大尺度精品在线看网址| 国产精品爽爽va在线观看网站| 免费看光身美女| 欧美成人一区二区免费高清观看| 悠悠久久av| 97超级碰碰碰精品色视频在线观看| 欧美bdsm另类| 久久草成人影院| 亚洲综合色惰| 成人一区二区视频在线观看| 亚洲性夜色夜夜综合| 老熟妇乱子伦视频在线观看| 午夜福利视频1000在线观看| 成人av一区二区三区在线看| 亚洲一区高清亚洲精品| 黄色女人牲交| 啦啦啦观看免费观看视频高清| 乱人视频在线观看| 99久久九九国产精品国产免费| 俺也久久电影网| 夜夜看夜夜爽夜夜摸| bbb黄色大片| 欧美又色又爽又黄视频| 老司机福利观看| 免费av毛片视频| 国产欧美日韩精品一区二区| av在线天堂中文字幕| 亚洲av五月六月丁香网| 国内精品宾馆在线| 3wmmmm亚洲av在线观看| 色综合婷婷激情| 久久午夜亚洲精品久久| 一区福利在线观看| 国产aⅴ精品一区二区三区波| 99在线人妻在线中文字幕| 尾随美女入室| 国产黄色小视频在线观看| av天堂中文字幕网| 男人的好看免费观看在线视频| 午夜福利高清视频| 最新在线观看一区二区三区| 国产一区二区在线观看日韩|