趙勇 張維海
摘要
近年來(lái),一類由It隨機(jī)微分方程驅(qū)動(dòng)的奇異隨機(jī)系統(tǒng)因其在實(shí)際領(lǐng)域中的廣泛應(yīng)用而備受關(guān)注.然而,系統(tǒng)方程同時(shí)包含奇異矩陣和擴(kuò)散矩陣,大大增加了分析問(wèn)題的復(fù)雜性.本文首先概述了奇異It隨機(jī)系統(tǒng)幾個(gè)重要基礎(chǔ)問(wèn)題的研究進(jìn)展,主要包括:系統(tǒng)方程解的存在條件、廣義It公式、 容許性定義及穩(wěn)定性問(wèn)題.同時(shí)針對(duì)不同文獻(xiàn)對(duì)上述問(wèn)題的研究結(jié)果提出了自己的觀點(diǎn).最后對(duì)以上基礎(chǔ)問(wèn)題研究待解決的問(wèn)題進(jìn)行了展望.關(guān)鍵詞
奇異It隨機(jī)系統(tǒng);解的存在條件;廣義It公式;容許性;穩(wěn)定性
中圖分類號(hào)TP13
文獻(xiàn)標(biāo)志碼A
0引言
1974年,英國(guó)學(xué)者Rosenbrock在研究復(fù)雜電網(wǎng)時(shí),發(fā)現(xiàn)電網(wǎng)中某些部件突然失效,在失效的前后時(shí)刻有電流的瞬動(dòng)現(xiàn)象,這種瞬間的變化不包括在常見(jiàn)的正常線性系統(tǒng)描述之中.在經(jīng)歷了大量的研究與試驗(yàn)后,他首次提出了基于電網(wǎng)的“奇異系統(tǒng)”的模型[12]
.隨后,美國(guó)學(xué)者Luenberger發(fā)現(xiàn)經(jīng)濟(jì)領(lǐng)域中著名的動(dòng)態(tài)Leontief投入產(chǎn)出模型也屬于奇異系統(tǒng),并在文獻(xiàn)[3]中討論了這類系統(tǒng)的解的存在唯一條件.至此,人們對(duì)奇異系統(tǒng)的研究正式拉開(kāi)帷幕,并逐漸發(fā)展為現(xiàn)代控制理論的一大分支.隨著研究的不斷深入,在許多實(shí)際問(wèn)題中諸如大規(guī)模系統(tǒng)[4]、 機(jī)械工程[5]、航空模型[6]、 網(wǎng)路理論[78]、受限機(jī)器人[9]等相繼發(fā)現(xiàn)了奇異系統(tǒng)的廣泛應(yīng)用.奇異系統(tǒng)又被稱為廣義系統(tǒng)、描述系統(tǒng)、隱式系統(tǒng)、微分代數(shù)系統(tǒng)等[2,10].
從式(1)可以看出,當(dāng)E
為可逆陣時(shí),通過(guò)非奇異變換可將奇異系統(tǒng)轉(zhuǎn)化為正常線性系統(tǒng),因而可以說(shuō)正常線性系統(tǒng)是奇異系統(tǒng)的特例,奇異系統(tǒng)是正常線性系統(tǒng)的推廣,正是這種推廣賦予了奇異系統(tǒng)新的獨(dú)有的特性[78].比如奇異系統(tǒng)的解結(jié)構(gòu)中,不僅包含指數(shù)解還包含脈沖解,為了保證解的適定性,所研究的奇異系統(tǒng)必須要滿足正則性和無(wú)脈沖性的條件;奇異系統(tǒng)一般包括慢子系統(tǒng)和快子系統(tǒng)兩部分,其中慢子系統(tǒng)由微分方程(連續(xù)系統(tǒng))或差分方程(離散系統(tǒng))來(lái)描述,而快子系統(tǒng)由靜態(tài)的代數(shù)方程來(lái)描述;奇異系統(tǒng)不一定有李雅普諾夫意義下的穩(wěn)定性和鎮(zhèn)定性,因?yàn)檎>€性系統(tǒng)一般選李雅普諾夫函數(shù)為V(x)=xT(t)Px(t),P>0是正定的,而奇異系統(tǒng)選的李雅普諾夫函數(shù)V(x)=xT(t)ETPx(t),ETP=PTE≥0
是不定的(針對(duì)連續(xù)系統(tǒng)).正是由于奇異系統(tǒng)的以上特點(diǎn),使其研究起來(lái)比正常的線性系統(tǒng)更為復(fù)雜.近30年來(lái),繼文獻(xiàn)[78]給出奇異系統(tǒng)解存在唯一的條件后,奇異系統(tǒng)的研究取得了突飛猛進(jìn)的發(fā)展,學(xué)者們研究和解決了一系列奇異系統(tǒng)
業(yè)控制、社會(huì)經(jīng)濟(jì)和生物系統(tǒng)等眾多實(shí)際問(wèn)題中,隨著系統(tǒng)模型精確度的提高,確定性系統(tǒng)建模已經(jīng)不能夠滿足實(shí)際的要求,需要將隨機(jī)因素考慮到模型中來(lái).著名的Langevin方程、BlackSeholes方程均是考慮外界隨機(jī)環(huán)境噪聲 (白噪聲) 干擾的具體實(shí)例[3334],這類方程被稱為It隨機(jī)微分方程[35].眾所周知,基于It隨機(jī)微分方程的隨機(jī)控制已經(jīng)在金融、經(jīng)濟(jì)、生物、網(wǎng)絡(luò)等實(shí)際領(lǐng)域發(fā)揮了重要作用[3637],與之相關(guān)的大量的重要研究成果已經(jīng)陸續(xù)被報(bào)道,如穩(wěn)定和鎮(zhèn)定[38]、隨機(jī)H∞
為使奇異系統(tǒng)描述的實(shí)際模型更加精確,人們自然想到將外界環(huán)境噪聲影響加入到模型中來(lái).然而,由于奇異矩陣和擴(kuò)散矩陣同時(shí)出現(xiàn)在系統(tǒng)模型中,使得這類系統(tǒng)兼具確定性奇異系統(tǒng)和正常隨機(jī)系統(tǒng)的特征,所以研究起來(lái)也具有一定的挑戰(zhàn)性.目前為止,關(guān)于奇異隨機(jī)系統(tǒng)的研究成果遠(yuǎn)沒(méi)有確定奇異系統(tǒng)豐富和成熟,相關(guān)的研究文獻(xiàn)也比較少.
最早研究奇異隨機(jī)系統(tǒng)的文獻(xiàn)可追溯到2004年,Raouf等[45]將確定性奇異系統(tǒng)正則和無(wú)脈沖的定義移植到奇異隨機(jī)系統(tǒng),通過(guò)李雅普諾夫方法研究了狀態(tài)依噪聲的奇異馬爾可夫跳變系統(tǒng)的魯棒穩(wěn)定和鎮(zhèn)定問(wèn)題,文中并沒(méi)有給出對(duì)奇異隨機(jī)系統(tǒng)的It公式的嚴(yán)格證明.隨后,Ho等[46]研究了奇異It隨機(jī)系統(tǒng)的穩(wěn)定和濾波問(wèn)題,首次給出了奇異It隨機(jī)系統(tǒng)有無(wú)脈沖解的條件,該條件與確定奇異系統(tǒng)不同,它包含了擴(kuò)散矩陣.同時(shí),通過(guò)引入奇異矩陣E
的廣義逆E+
給出奇異隨機(jī)系統(tǒng)的It公式,并給出了嚴(yán)格的證明.然而,該文沒(méi)有給出奇異It隨機(jī)系統(tǒng)容許性完善的證明.盡管如此,該文的出現(xiàn)為奇異It隨機(jī)系統(tǒng)的后續(xù)研究奠定了重要理論基礎(chǔ).Huang等[47]研究了一類狀態(tài)依噪聲的奇異馬爾可夫跳變隨機(jī)系統(tǒng)的指數(shù)穩(wěn)定性,以兩種矩陣分解的形式給出了系統(tǒng)方程有無(wú)脈沖解的新條件,降低了文獻(xiàn)[46]給出無(wú)脈沖解條件的保守性,將狀態(tài)依噪聲的奇異隨機(jī)混雜系統(tǒng)轉(zhuǎn)化成等價(jià)的奇異馬爾可夫跳變系統(tǒng),利用奇異馬爾可夫跳變系統(tǒng)的正則、無(wú)脈沖、隨機(jī)容許性的定義給出奇異隨機(jī)系統(tǒng)均方正則、均方無(wú)脈沖、均方穩(wěn)定和均方容許的定義.利用文獻(xiàn)[46]給出的奇異隨機(jī)系統(tǒng)的無(wú)脈沖解條件,Gao等[48]研究了奇異隨機(jī)系統(tǒng)的狀態(tài)估計(jì)和控制問(wèn)題,文獻(xiàn)[4950]將文獻(xiàn)[46]的條件進(jìn)一步推廣到奇異隨機(jī)馬爾可夫跳變系統(tǒng),討論了不確定時(shí)滯奇異混雜系統(tǒng)的魯棒H∞
濾波控制問(wèn)題.Gao等[51]給出了奇異隨機(jī)系統(tǒng)有無(wú)脈沖解且均方指數(shù)穩(wěn)定的完整證明,從而改進(jìn)和完善了文獻(xiàn)[46]的穩(wěn)定結(jié)果.Wang[52]通過(guò)設(shè)計(jì)一種包含奇異矩陣的特殊控制器,給出了一類控制器進(jìn)入擴(kuò)散項(xiàng)的奇異隨機(jī)混雜系統(tǒng)指數(shù)穩(wěn)定的條件.Xing等[53]研究了具有范數(shù)界參數(shù)不確定性的有限時(shí)間奇異隨機(jī)系統(tǒng)的魯棒H∞
控制,基于擴(kuò)展的二次李雅普諾夫函數(shù)法研究了隨機(jī)TS模糊奇異系統(tǒng)的均方容許性[54].Zhang等[55]分別用兩種方法討論了連續(xù)和離散時(shí)間奇異隨機(jī)系統(tǒng)的穩(wěn)定,提出了一種新的解的存在唯一條件,利用
H
表示法將隨機(jī)奇異系統(tǒng)轉(zhuǎn)化成等價(jià)的n(n+1)2維標(biāo)準(zhǔn)的確定性奇異系統(tǒng),從而改進(jìn)了文獻(xiàn)[47]的結(jié)果,將文獻(xiàn)[51]的假設(shè)條件進(jìn)一步減弱,使得所研究的奇異隨機(jī)系統(tǒng)更有普遍性,并用嚴(yán)格的LMI法給出了系統(tǒng)均方容許的新條件.此外,文獻(xiàn)[55]首次給出了離散時(shí)間奇異隨機(jī)系統(tǒng)均方容許的LMI條件.文獻(xiàn)[56] 進(jìn)一步討論了連續(xù)和離散時(shí)間奇異隨機(jī)馬爾可夫跳變系統(tǒng)的穩(wěn)定性,明確提出了奇異隨機(jī)馬爾可夫跳變系統(tǒng)“無(wú)脈沖”和“均方容許”的新概念,同時(shí),該文從奇異隨機(jī)系統(tǒng)本身出發(fā),將對(duì)系統(tǒng)均方容許性的討論直接轉(zhuǎn)化為嚴(yán)格的LMI求解,大大簡(jiǎn)化了計(jì)算過(guò)程.在文獻(xiàn)[5556]的基礎(chǔ)上,Zhao等[57]研究了奇異隨機(jī)馬爾可夫跳變系統(tǒng)的鎮(zhèn)定和狀態(tài)觀測(cè)器設(shè)計(jì),用順序不等式法克服擴(kuò)散項(xiàng)導(dǎo)致的求解困難,用嚴(yán)格的LMI法求出了誤差系統(tǒng)的控制器增益和觀測(cè)器增益.最近,Zhao等[5859]討論了奇異隨機(jī)系統(tǒng)的狀態(tài)反饋H∞
查閱文獻(xiàn)發(fā)現(xiàn),研究奇異隨機(jī)系統(tǒng)不可避免地涉及以下幾個(gè)基礎(chǔ)問(wèn)題:
1) 怎樣給出系統(tǒng)方程解存在的條件?
2) 怎樣給出系統(tǒng)有無(wú)脈沖解及容許性的定義?
3) 怎樣給出奇異隨機(jī)系統(tǒng)的It公式?
4) 怎樣研究奇異隨機(jī)系統(tǒng)的穩(wěn)定性?
以上幾個(gè)基礎(chǔ)問(wèn)題的解決對(duì)研究奇異隨機(jī)系統(tǒng)的相關(guān)控制問(wèn)題起到了至關(guān)重要的作用.為此,本文回顧和整理了連續(xù)時(shí)間奇異隨機(jī)系統(tǒng)關(guān)于解的存在唯一條件、It公式、容許性定義及穩(wěn)定問(wèn)題的現(xiàn)有研究結(jié)果,并針對(duì)一些問(wèn)題提出自己的研究觀點(diǎn).
本文結(jié)構(gòu)如下:首先綜述連續(xù)時(shí)間奇異It隨機(jī)系統(tǒng)解的存在唯一條件,接下來(lái)總結(jié)系統(tǒng)無(wú)脈沖及容許定義的進(jìn)展,然后歸納現(xiàn)有文獻(xiàn)給出奇異It隨機(jī)系統(tǒng)的It公式,最后探討奇異隨機(jī)系統(tǒng)穩(wěn)定問(wèn)題的研究現(xiàn)狀.
2正則、無(wú)脈沖及容許性
確定性奇異系統(tǒng)的解存在非正則解與脈沖解,這些解的存在對(duì)系統(tǒng)的動(dòng)態(tài)特性有非常壞的影響.因此,研究奇異系統(tǒng)解的正則性和無(wú)脈沖性顯得尤為重要.而對(duì)于奇異隨機(jī)系統(tǒng),擴(kuò)散矩陣的存在使得正則性已經(jīng)不再構(gòu)成系統(tǒng)方程解存在的條件.那么,我們?nèi)绾谓o出奇異隨機(jī)系統(tǒng)無(wú)脈沖性及容許性的定義呢?為方便將確定性奇異系統(tǒng)和隨機(jī)奇異系統(tǒng)的結(jié)論加以對(duì)比,我們分別給出它們正則、無(wú)脈沖及容許的定義.
4奇異隨機(jī)系統(tǒng)的穩(wěn)定
穩(wěn)定是系統(tǒng)分析和綜合首先要考慮的問(wèn)題.由于奇異隨機(jī)系統(tǒng)的解存在脈沖攝動(dòng),因此研究奇異隨機(jī)系統(tǒng)的穩(wěn)定必須要保證系統(tǒng)的解是無(wú)脈沖的.目前,研究奇異隨機(jī)系統(tǒng)的穩(wěn)定問(wèn)題通常有兩種方法,一種是傳統(tǒng)的Lyapunov方法,一種是將奇異隨機(jī)系統(tǒng)轉(zhuǎn)化成確定的奇異系統(tǒng),通過(guò)確定奇異系統(tǒng)的穩(wěn)定來(lái)給出隨機(jī)奇異系統(tǒng)穩(wěn)定的條件.
文獻(xiàn)[47]在定義2與定義3的基礎(chǔ)上利用奇異系統(tǒng) (10)容許性的研究結(jié)果給出奇異隨機(jī)系統(tǒng)(2)均方容許的LMI條件.
不但將定理12中包含等式LMI條件轉(zhuǎn)化成嚴(yán)格的LMI形式,而且式(22)形式更易于討論奇異隨機(jī)系統(tǒng)的鎮(zhèn)定問(wèn)題.
5結(jié)論
本文綜述了奇異It隨機(jī)系統(tǒng)解的存在條件、廣義It公式、容許性定義及穩(wěn)定問(wèn)題的研究結(jié)果,并針對(duì)這些不同的結(jié)果提出了自己的研究觀點(diǎn).第1部分回顧了確定性奇異系統(tǒng)和隨機(jī)奇異系統(tǒng)的研究現(xiàn)狀,提出奇異隨機(jī)系統(tǒng)研究中涉及的重要問(wèn)題.第2部分總結(jié)了奇異隨機(jī)系統(tǒng)解的存在條件,明確了該系統(tǒng)解的存在條件并不是唯一的,擴(kuò)散矩陣起到了至關(guān)重要的作用,并給出了不同條件之間的包含關(guān)系.第3部分歸納了現(xiàn)有文獻(xiàn)給出的奇異It隨機(jī)系統(tǒng)的廣義It公式,分析了個(gè)別研究結(jié)果的不合理性.第4部分概述了奇異It隨機(jī)系統(tǒng)穩(wěn)定問(wèn)題的研究進(jìn)展,比較了所給穩(wěn)定條件的保守性.
目前為止,現(xiàn)有文獻(xiàn)給出的奇異隨機(jī)系統(tǒng)解的存在唯一條件均為充分的,發(fā)展充分且必要的解存在唯一條件將會(huì)對(duì)奇異隨機(jī)系統(tǒng)的研究起到重大的推動(dòng)作用.此外,奇異隨機(jī)系統(tǒng)穩(wěn)定問(wèn)題的研究結(jié)果均是基于一定的假設(shè)條件進(jìn)行的,如何去掉假設(shè)條件,使得奇異隨機(jī)系統(tǒng)的研究如同確定性奇異系統(tǒng)一樣通過(guò)直接尋求線性不等式的解來(lái)給出系統(tǒng)均方容許條件值得進(jìn)一步研究.
參考文獻(xiàn)
References
[1]Rosenbrock H H.Structural properties of linear dynamical systems[J].International Journal of Control,1974,20(2):191202
[2]王慧姣.不確定奇異系統(tǒng)的魯棒控制研究[D].杭州:浙江大學(xué)信息科學(xué)與工程學(xué)院,2008
WANG Huijiao.Study on robust control for uncertain singular systems[D].Hangzhou:College of Information Science and Engineering,Zhejiang University,2008
[3]Luenberger D G,Arbel A.Singular dynamic Leontief systems[J].Econometrica,1977,45(4):991995
[4]Luenberger D G.Dynamic equations in descriptor form[J].IEEE Transactions on Automatic Control,1977,22(3):312321
[5]Hemami H,Wyman B F.Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane[J].IEEE Transactions on Automatic Control,1979,24(4):526535
[6]Ardema M D.Singular perturbations in systems and control[M].New York:SpringerVerlag Wien,1983
[7]Lewis F L.A survey of linear singular systems[J].Circuits,Systems and Signal Processing,1986,5(1):336
[8]Dai L Y.Singular control systems lecture notes in control and information sciences[M].New York:Springer,1989
[9]Ailon A.On the design of output feedback for finite and infinite pole assignment in singular systems with application to the control problem of constrained robots[J].Circuits,Systems and Signal Processing,1994,13(5):525544
[10]吳爭(zhēng)光.廣義時(shí)滯系統(tǒng)的分析與綜合[D].杭州:浙江大學(xué)控制科學(xué)與工程學(xué)院,2011
WU Zhengguang.Analysis and synthesis of singular systems with timedelay[D].Hangzhou:College of Control Science anf Engineering,Zhejiang University,2011
[11]Takaba K,Morihira N,Katayama T.A generalized Lyapunov theorem for descriptor system[J].Systems & Control Letters,1995,24(1):4951
[12]Xu S Y,Yang C W.Stabilization of discretetime singular systems:A matrix inequalities approach[J].Automatica,1999,35(9):16131617
[13]Xu S Y,Yang C W.An algebraic approach to the robust stability analysis and robust stabilization of uncertain singular systems[J].International Journal of Systems Science,2010,31(1):5561
[14]Ishihara J Y,Terra M H.On the Lyapunov theorem for singular systems[J].IEEE Transactions on Automatic Control,2002,47(11):19261930
[15]Xu S Y,Van Dooren P,Stefen R,et al.Robust stability and stabilization for singular systems with state delay and parameter uncertainty[J].IEEE Transactions on Automatic Control,2002,47(7):11221128
[16]Xu S Y,Lam J.Robust stability and stabilization of discretetime singular systems:An equivalent characterization[J].IEEE Transactions on Automatic Control,2004,49(4):568574
[17]Masubuchi I,Kamitane Y,Ohara A,et al.H∞
control for descriptor systems:A matrix inequalities approach[J].Automatica,1997,33(4):669673
[18]Shi P,Boukas E K,Agarwal R K.Robust control of singular continuoustime systems with delays and uncertainties[C]∥The 39th IEEE Conference on Decision and Control,2000:15151520
[19]Kim J H,Lee J H,Hong B P.Robust H∞
control of singular systems with time delays and uncertainties via LMI approach[C]∥American Control Conference,2002:620621
[20]Xu S Y,Lam J,Yang C W.Robust H∞
control for discrete singular systems with state delay and parameter uncertainty[J].Dynamics of Continuous,Discrete and Impulsive Systems Series B:Application and Algorithm,2002,4(4):539554
[21]Xu S Y,Lam J,Yang C W.Robust H∞
control for uncertain singular systems with state delay[J].International Journal of Robust and Nonlinear Control,2003,13(13):12131223
[22]Ji X,Su H Y,Chu J.Robust state feedback control for uncertain linear discrete singular systems[J].IET Control Theory & Application,2007,1(1):195200
[23]Chadli M,Darouach M.Further enhancement on robust control design for discretetime singular systems[J].IEEE Transactions on Automatic Control,2014,59(2):494499
[24]Xu S Y,Lam J,Zou Y.H∞
filtering for singular systems[J].IEEE Transactions on Automatic Control,2003,48(12):22172222
[25]Xu S Y,Lam J.Robust control and filtering of singular systems[M].Berlin:SpringerVerlag,2006
[26]Xu S Y,Lam J.Reducedorder H∞
filtering for singular systems[J].Systems and Control Letters,2007,56(1):4857
[27]Zhang L X,Huang B,Lam J.LMI synthesis of H2
and mixed H2/H∞
controllers for singular systems[J].IEEE Transactions on Signal Processing,Circuits and Systems II:Analog and Digital,2003,50(9):615626
[28]Yue D,Lam J.Suboptimal robust mixed H2/H∞
controller design for uncertain descriptor systems with distributed delays[J].Computers & Mathematics with Applications,2004,47(6/7):10411055
[29]Xia Y Q,Shi P,Liu G P,et al.Robust mixed H2/H∞
statefeedback control for continuoustime descriptor systems with parameter uncertainties[J].Circuits,Systems and Signal Processing,2005,24(4):431443
[30]張慶靈,楊冬梅.不確定廣義系統(tǒng)的分析與綜合[M].沈陽(yáng):東北大學(xué)出版社,2003
ZHANG Qingling,YANG Dongmei.Analysis and synthesis for uncertain descriptor systems[M].Shenyang:Northeastern University Press,2003
[31]張慶靈,楊冬梅,姚波,等.廣義系統(tǒng)[M].北京:科學(xué)出版社,2004
ZHANG Qingling,YANG Dongmei,YAO Bo,et al.Generalized system[M].Beijing:Science Press,2004
[32]魯仁全,蘇宏業(yè),薛安克,等.奇異系統(tǒng)的魯棒控制理論[M].北京:科學(xué)出版社,2008
LU Renquan,SU Hongye,XUE Anke,et al.Robust control theory for singular systems[M].Beijing:Science Press,2008
[33]Langevin P.Sur la théorie du mouvement Brownien[J].CR Acad Sci Paris,1908,146:530533
[34]Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(3):637654
[35]It K.On stochastic differential equations[J].American Mathematical Society,1951,18(3):491508
[36]Oksendal B.Stochastic differential equations:an introduction with application[M].New York:Springer,1998
[37]Mao X R,Yuan C G.Stochastic differential equations with Markovian switching[M].London:Imperial College Press,2006
[38]Wang Z D,Hong Q,Burnham K J.On stabilization of bilinear uncertain timedelay stochastic systems with Markovian jumping parameters[J].IEEE Transactions on Automatic Control,2002,47(4):640646
[39]Hinrichsen D,Pritchard A.Stochastic H∞
[J].SIAM Journal on Control and Optimization,1998,36(5):15041538
[40]El Bouhtouri A,Hinrichsen D,Pritchard A J.H∞type control for discretetime stochastic systems[J].International Journal of Robust and Nonlinear Control,1999,9(13):923948
[41]Wang Z D,Lam J,Liu X H.Nonlinear filtering for state delayed systems with Markovian switching[J].IEEE Transactions on Signal Processing,2003,51(9):23212328
[42]Chen B S,Zhang W H.Stochastic H2/H∞
control with statedependent noise[J].IEEE Transactions on Automatic Control,2004,49(1):4557
[43]Zhang W H,Huang Y L,Zhang H S.Stochastic H2/H∞
control for discrete time systems with state and disturbance dependent noise[J].Automatica,2007,43(3):513521
[44]Zhang W H,Huang Y L,Xie L H.Infinite horizon stochastic H2/H∞
control for discretetime systems with state and disturbance dependent noise[J].Automatica,2008,44(9):23062316
[45]Raouf J,Boukas E K.Robust stabilization of Markovian jump linear singular systems with Wiener process[C]∥American Control Conference,2004:31703175
[46]Ho D W C,Shi X Y,Wang Z D,et al.Filtering for a class of stochastic descriptor systems[C]∥International Conference on Dynamics of Continuous,Discrete and Impulsive Systems,2005(2):848853
[47]Huang L R,Mao X R.Stability of singular stochastic systems with Markovian switching[J].IEEE Transactions on Automatic Control,2011,56(2):424429
[48]Gao Z Y,Shi X Y.Stochastic state estimation and control for stochastic descriptor systems[C]∥IEEE Conference on Robotics,Automation and Mechatronics,2008:331336
[49]Xia J W.Robust H∞ filtering design for uncertain timedelay singular stochastic systems with Markovian jump[J].Journal of Control Theory and Applications,2007,5(4):331335
[50]夏建偉.連續(xù)隨機(jī)時(shí)滯系統(tǒng)魯棒控制和濾波[D].南京:南京理工大學(xué)自動(dòng)化學(xué)院,2007
XIA Jianwei.Robust control and filter for continuous timedelay stochastic systems[D].Nanjing:School of Automation,Nanjing University of Science and Technology,2007
[51]Gao Z W,Shi X Y.Observerbased controller design for stochastic descriptor systems with Brownian motions[J].Automatica,2013,49(7):22292235
[52]Wang G L.Stochastic stabilization of singular systems with Markovian switchings[J].Applied Mathematics and Computation,2015,250:390401
[53]Xing S Y,Zhang Q L,Yuan S,et al.Robust finitetime H∞
control for uncertain stochastic singular systems[C]∥The 33rd Chinese Control Conference,2014:53455350
[54]Xing S Y,Zhang Q L,Zhu B Y.Meansquare admissibility for stochastic TS fuzzy singular systems based on extended quadratic Lyapunov function approach[J].Fuzzy Sets and Systems,2017,307:99114
[55]Zhang W H,Zhao Y,Sheng L.Some remarks on stability of stochastic singular systems with statedependent noise[J].Automatica,2015,51:273277
[56]Zhao Y,Zhang W H.New results on stability of singular stochastic Markov jump systems with statedependent noise[J].International Journal of Robust and Nonlinear Control,2016,26(10):21692186
[57]Zhao Y,Zhang W H.Observerbased controller design for singular stochastic Markov jump systems with state dependent noise[J].Journal of Systems Science and Complexity,2016,29(4):946958
[58]Zhao Y,Zhang W H.Stochastic state feedback H∞
control for singular systems with multiplicative noise[C]∥The 35th Chinese Control Conference,2016:17291733
[59]Zhao Y,Jiang X S,Zhang W H.Stochastic H∞
control for discretetime singular systems with state and disturbance dependent noise[J].Discrete Dynamics in Nature and Society,2017,DOI:101155/2017/4173852
[60]Zhao Y,Zhang W H.Robust stochastic stability and H∞
control for uncertain singular Markovian jump systems with multiplicative noise[J].Asian Journal of Control,2017,DOI:101002/asjc.1543
[61]Li J H,Zhang Q L.An integral sliding mode control approach to observerbased stabilization of stochastic It descriptor systems[J].Neurocomputing,2016,173:13301340
[62]Mathiyalagan K,Balachandran K.Finitetime stability of fractionalorder stochastic singular systems with time delay and white noise[J].Complexity,2016,21(S2):370379
[63]Zhang W H,Lin Y N,Xue L R.Linear quadratic Pareto optimal control problem of stochastic singular systems[J].Journal of the Franklin Institute,2017,354(2):12201238
[64]Boukas E K.Stabilization of stochastic singular nonlinear hybrid systems[J].Nonlinear Analysis:Theory,Methods & Applications,2006,64(2):217228
[65]Bellman R E.Introduction to matrix analysis[M].New York:McGrawHill,1970
[66]Zhang W H,Chen B S.H
AbstractIn recent years,singular stochastic systems governed by the It stochastic differential equation have received much attention due to their extensive applications to some practical areas.However,it is very complicated to discuss singular stochastic systems since the system equation includes both the singular matrix and the diffusion matrix simultaneously.In this paper,research development of several important and basic problems for singular It stochastic systems are concluded,including mainly the existence condition for the solution to the system equation,the general It formula,the definition of admissibility and the issue of stability.Also,some research perspectives are given for results of different references.Finally,some prospects to the unresolved problems are presented.
Key wordssingular It stochastic systems;existence of the solution;generalized It formula;admissibility;stability