• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于馬氏切換的時滯脈沖隨機(jī)Cohen睪rossberg神經(jīng)網(wǎng)絡(luò)模型的均方指數(shù)穩(wěn)定性分析

    2017-05-30 11:43:06李蕾何秀麗
    關(guān)鍵詞:馬氏均方時滯

    李蕾 何秀麗

    摘要

    通過向量Lyapunov函數(shù),給隨機(jī)CGNNs以均方估計,研究基于馬氏切換的脈沖時滯隨機(jī)CohenGrossberg神經(jīng)網(wǎng)絡(luò)模型的均方指數(shù)穩(wěn)定性,并利用數(shù)值例子對結(jié)論加以證明.關(guān)鍵詞CohenGrossberg網(wǎng)絡(luò)模型;均方指數(shù)穩(wěn)定性;馬氏切換

    中圖分類號O175

    文獻(xiàn)標(biāo)志碼A

    0引言

    在過去的幾十年里,神經(jīng)網(wǎng)絡(luò)在各個領(lǐng)域有著廣泛的研究和應(yīng)用,吸引了國內(nèi)外許多學(xué)者的關(guān)注[15].CohenGrossberg神經(jīng)網(wǎng)絡(luò)模型,由Cohen和Grossberg在1983年首次提出[1],包括著名的細(xì)胞神經(jīng)網(wǎng)絡(luò)模型、Hopfield網(wǎng)絡(luò)模型(HNNs),以及作為其特殊情況的LotkaVolterra競爭生態(tài)模型(LVCMs).因為其在各領(lǐng)域的廣泛應(yīng)用,如聯(lián)想記憶、模式分類、并行計算、機(jī)器人、計算機(jī)視覺和最優(yōu)化等,近幾年被研究人員廣泛研究和引用.

    時間延遲、脈沖擾動是導(dǎo)致神經(jīng)網(wǎng)絡(luò)不穩(wěn)定的因素.在現(xiàn)實生活中,時滯對于神經(jīng)網(wǎng)絡(luò)的研究來說是不可避免的,是CGNNs頻繁振蕩和不穩(wěn)定的來源,所以研究時滯CGNNs的穩(wěn)定性具有重要的意義.Xu等[2]研究討論了時滯隨機(jī)CohenGrossberg網(wǎng)絡(luò)模型的均方穩(wěn)定性.另一方面,脈沖也是必不可免的,脈沖能使穩(wěn)定的系統(tǒng)不穩(wěn)定或者使不穩(wěn)定的系統(tǒng)穩(wěn)定.它應(yīng)用在各個領(lǐng)域,如生物學(xué)、種群系統(tǒng)等.因此考慮脈沖作用下時滯隨機(jī)神經(jīng)網(wǎng)絡(luò)系統(tǒng)的均方指數(shù)穩(wěn)定性是很有必要的.越來越多的研究開始集中在脈沖神經(jīng)網(wǎng)絡(luò)和脈沖時滯隨機(jī)神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析,并取得了一些重要成果[34].

    最近幾年研究的脈沖神經(jīng)網(wǎng)絡(luò)模型大多基于標(biāo)量算子穩(wěn)定性分析[513],基于向量算子脈沖神經(jīng)網(wǎng)絡(luò)穩(wěn)定性分析的研究很少,例如周偉松等[14].所以基于向量算子研究脈沖CGNNs的均方指數(shù)穩(wěn)定性已成為一個具有重要的理論和實踐意義的課題.本文通過在特定時刻添加脈沖干擾,將L算子以及伊藤公式結(jié)合起來應(yīng)用到CGNNs,來研究帶有馬氏切換的隨機(jī)脈沖CohenGrossberg神經(jīng)網(wǎng)絡(luò)模型的均方指數(shù)穩(wěn)定性.

    1預(yù)備知識

    4討論

    穩(wěn)定性不僅是神經(jīng)網(wǎng)絡(luò)應(yīng)用的基礎(chǔ),同樣也是神經(jīng)網(wǎng)絡(luò)最基本和重要的問題.近年來,有不少學(xué)者對隨機(jī)神經(jīng)系統(tǒng)的穩(wěn)定性進(jìn)行了大量的研究和應(yīng)用.在此基礎(chǔ)上,得到了隨機(jī)脈沖時滯系統(tǒng)保持穩(wěn)定性的條件.研究帶有馬氏切換隨機(jī)脈沖時滯CGNNs的均方指數(shù)穩(wěn)定性突破了傳統(tǒng)只研究沒有時滯的隨機(jī)CGNNs的局限性,通過使用Halanay不等式以及伊藤公式得到了系統(tǒng)均方指數(shù)穩(wěn)定性的充分條件.所討論的隨機(jī)脈沖時滯CGNNs不僅在理論上有著廣泛的研究,在實際上也有著很大的發(fā)展前景.

    參考文獻(xiàn)

    References

    [1]Cohen M A,Grossberg S.Absolute stability and global pattern formation and parallel memory storage by competitive neural networks[J].IEEE Transactions on Systems,Man,and Cybernetics,1983,13(5):815826

    [2]Xu D Y,Zhou W S,Long S J.Global exponential stability of impulsive integrodifferential equation[J].Nonlinear Analysis(Theory,Methods & Applications),2006,64(12):28052816

    [3]Yao F Q,Cao J D,Cheng P,et al.Generalized average dwell time approach to stability and inputtostate stability of hybrid impulsive stochastic differential systems[J].Nonlinear Analysis(Hybrid Systems),2016,22:147160

    [4]Xu D Y,Yang Z C.Impulsive delay differential inequality and stability of neural networks[J].Journal of Mathematical Analysis and Applications,2005,305(1):107120

    [5]Luo T Q,Long S J.A new inequality of Loperation to stochastic nonautonomous impulsive neural networks with delays[J].Advances in Difference Equations,2016,DOI:101186/s136620150697y

    [6]Song Y F,Shen Y,Yin Q.New discrete Halanaytype inequalities and applications[J].Applied Mathematics Letters,2013,26(2):258263

    [7]Tang C Q,Wu Y H.Global exponential stability of nonresident computer virus models[J].Nonlinear Analysis:Real World Applications,2017,34:149158

    [8]Zhang Y.Global exponential stability of delay difference equations with delayed impulses[J].Mathematics and Computers in Simulation,2016,132:183194

    [9]Sun F L,Gao L X,Zhu W,et al.Generalized exponential inputtostate stability of nonlinear systems with time delay[J].Communications in Nonlinear Science & Numerical Simulation,2016,44:352359

    [10]王慧.脈沖時滯神經(jīng)網(wǎng)絡(luò)的全局穩(wěn)定性研究[D].重慶:重慶大學(xué)計算機(jī)學(xué)院,2007

    WANG Hui.Study on global stability of impulsive delayed neural networks[D].Chongqing:College of Computer Science,Chongqing University,2007

    [11]彭國強(qiáng).隨機(jī)神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性[D].長沙:湖南大學(xué)數(shù)學(xué)與計量經(jīng)濟(jì)學(xué)院,2009

    PENG Guoqiang.Stability of stochastic neural networks[D].Changsha:College of Mathematics and Econometrics,Hunan University,2009

    [12]Shen Y,Wang J.Almost sure exponential stability of recurrent neural networks with Markovian switching[J].IEEE Transactions on Neural Networks,2009,20(5):840855

    [13]Li Z H,Liu L,Zhu Q X.Meansquare exponential inputtostate stability of delayed CohenGrossberg neural networks with Markovian switching based on vector Lyapunov functions[J].Neural Networks,2016,84:3946

    [14]Zhou W S,Teng L Y,Xu D Y.Meansquare exponentially inputtostate stability of stochastic CohenGrossberg neural networks with timevarying delays[J].Neurocomputing,2015,153:5461

    [15]Wang X H,Guo Q Y,Xu D Y.Exponential pstability of impulsive stochastic CohenGrossberg neural networks with mixed delays[J].Mathematics & Computers in Simulation,2009,79(5):16981710

    AbstractFocused on CohenGrossberg neural networks,this paper investigates the meansquare exponential stability by means of the vector Lyapunov function.This method ensures that the impulsive stochastic CohenGrossberg neural network is exponentially stable.Finally,an example is used to illustrate the conclusions.

    Key wordsCohenGrossberg networks; meansquare exponential stability; Markovian switching

    猜你喜歡
    馬氏均方時滯
    一類隨機(jī)積分微分方程的均方漸近概周期解
    一類時間變換的強(qiáng)馬氏過程
    有環(huán)的可逆馬氏鏈的統(tǒng)計確認(rèn)
    帶有時滯項的復(fù)Ginzburg-Landau方程的拉回吸引子
    Beidou, le système de navigation par satellite compatible et interopérable
    關(guān)于樹指標(biāo)非齊次馬氏鏈的廣義熵遍歷定理
    一致可數(shù)可加馬氏鏈不變測度的存在性
    基于抗差最小均方估計的輸電線路參數(shù)辨識
    基于隨機(jī)牽制控制的復(fù)雜網(wǎng)絡(luò)均方簇同步
    一階非線性時滯微分方程正周期解的存在性
    尉犁县| 五大连池市| 萨嘎县| 夹江县| 瑞金市| 响水县| 麟游县| 兖州市| 浦江县| 普陀区| 莱阳市| 建湖县| 澄江县| 韶山市| 乌审旗| 玉田县| 龙泉市| 湾仔区| 报价| 拉孜县| 通州区| 茌平县| 连山| 宁波市| 新兴县| 新龙县| 青河县| 桦南县| 江北区| 安达市| 仙游县| 嵊州市| 同心县| 手游| 都江堰市| 海盐县| 玛多县| 台北县| 武山县| 沛县| 井陉县|