• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    隨機非完整系統(tǒng)控制問題綜述和展望

    2017-05-30 11:40:43馮文莉張東凱王朝立杜慶輝
    南京信息工程大學學報 2017年3期
    關鍵詞:鏈式移動機器人控制器

    馮文莉 張東凱 王朝立 杜慶輝

    摘要

    隨著隨機非線性控制的發(fā)展,隨機非完整系統(tǒng)的控制引起了學者們的注意.本文首先探討了隨機非完整控制系統(tǒng)的鎮(zhèn)定問題,涉及嚴反饋鏈式系統(tǒng)的反饋鎮(zhèn)定和不滿足嚴反饋的移動機器人鎮(zhèn)定等;其次,介紹了該系統(tǒng)跟蹤控制及現(xiàn)狀;最后,在總結現(xiàn)有結果的基礎上,分析了隨機非完整系統(tǒng)發(fā)展的趨勢,給出了6個可能的研究方向.關鍵詞

    隨機非完整系統(tǒng);鎮(zhèn)定;跟蹤

    中圖分類號TP2732

    文獻標志碼A

    0引言

    非完整系統(tǒng)控制問題的研究已有30余年的歷史,它的主要難點在于不存在連續(xù)的時不變純狀態(tài)反饋鎮(zhèn)定器[1],故需要新的控制和穩(wěn)定性理論設計控制器.基于文獻[1]的結論,Kolmanovsky等[2]給出了非完整系統(tǒng)能夠轉化為鏈式系統(tǒng)的結論,文獻[3]探討了非完整系統(tǒng)不連續(xù)反饋控制器的設計方法,這些工作為非完整系統(tǒng)的快速發(fā)展打下了堅實的基礎.

    隨機控制的概念[4]始于1967年,可是由于隨機穩(wěn)定性理論和方法的匱乏,其控制問題的研究一直是一個難點.基于Backstepping方法,文獻[5]首次設計了隨機嚴反饋系統(tǒng)的控制器,它為隨機控制的發(fā)展,特別是為隨機嚴反饋系統(tǒng)控制的發(fā)展打下了堅實的基礎,至此許多學者將精力投入到隨機控制理論的研究中[68].

    近10年來,隨機控制理論的發(fā)展為非完整系統(tǒng)和隨機控制的結合起了極大的推動作用,才有了隨機非完整系統(tǒng)控制的可行性,并引起了學者們的注意[913].

    1隨機非完整系統(tǒng)鎮(zhèn)定問題

    目前的鎮(zhèn)定問題的研究主要為嚴反饋整鏈式系統(tǒng)和不滿足嚴反饋隨機非完整機器人的鎮(zhèn)定,涉及反饋鎮(zhèn)定和有限時間鎮(zhèn)定等問題.

    11狀態(tài)反饋鎮(zhèn)定控制器設計

    已有的確定性非完整系統(tǒng)鎮(zhèn)定問題的結論,對解決隨機非完整系統(tǒng)鎮(zhèn)定問題有很大的指導意義.基于Backstepping方法,Ge等[14]設計了帶有強非線性項和不確定參數(shù)的自適應狀態(tài)反饋和輸出反饋鎮(zhèn)定控制器,Hong等[15]探討了不確定非完整系統(tǒng)的有限時間鎮(zhèn)定.

    基于視覺伺服模型,文獻[16]研究了移動機器人的有限時間鎮(zhèn)定問題.基于Backstepping技術,文獻[17]設計的自適應狀態(tài)反饋鎮(zhèn)定器能使系統(tǒng)狀態(tài)以概率全局收斂.基于帶有不確定參數(shù)的隨機非完整系統(tǒng),文獻[1821]給出了自適應律的設計方案.基于文獻[22]的結論,Du等[23]討論了帶有非線性參數(shù)的高階非線性系統(tǒng)的自適應鎮(zhèn)定反饋控制器,且該系統(tǒng)的第一個方程為隨機微分方程.對于帶有馬爾科夫切換的隨機非完整系統(tǒng),Zhang等[24]和Du等[25]討論了自適應鎮(zhèn)定反饋控制器的設計.文獻[2628]設計了隨機非完整系統(tǒng)的有限時間鎮(zhèn)定器.文獻[29]給出了隨機非完整變時滯系統(tǒng)的鎮(zhèn)定控制器.

    12輸出反饋鎮(zhèn)定控制器設計

    文獻[3031]設計了非完整鏈式系統(tǒng)的輸出反饋控制律,其主要原因是系統(tǒng)狀態(tài)只有部分可測.當隨機非完整系統(tǒng)的第一個方程為常微分方程時,文獻[32]討論了其輸出反饋鎮(zhèn)定問題.如果系統(tǒng)滿足線性增長條件,文獻[33]給出了高增益觀測器,設計了輸出反饋控制器.Zhang等[34]將文獻[33]的結果推廣至帶有馬爾可夫切換的情形,設計了系統(tǒng)的輸出反饋鎮(zhèn)定控制器.

    2隨機非完整系統(tǒng)跟蹤問題

    文獻[3540]討論了非完整系統(tǒng)控制的跟蹤問題.基于遞歸法,文獻[4142]討論了確定性非完整鏈式系統(tǒng)跟蹤問題.由上面的討論可知,隨機非完整系統(tǒng)鎮(zhèn)定問題研究的結果較多,但是跟蹤問題一直是一個難點,主要的原因在于現(xiàn)存的鎮(zhèn)定控制器的設計,需要用到狀態(tài)變換[41].Zhang等[43]給出了一類隨機非完整動力學的模型,設計了自適應跟蹤控制器,該控制器能使跟蹤誤差任意小,最后給出了一個實際的例子.

    3機器人鎮(zhèn)定控制器的設計

    基于文獻[44]的模型,Wu等[45]將非完整機器人推廣到隨機的情形并給出了反饋鎮(zhèn)定控制器設計方法,但是此類隨機非完整機器人并不滿足嚴格的下三角結構,傳統(tǒng)的Backstepping方法很難用于這類系統(tǒng).在文獻[45]討論的基礎上,Shang等[46]和Gao等[47]分別給出了隨機非完整機器人的指數(shù)狀態(tài)反饋控制器和魯棒狀態(tài)反饋鎮(zhèn)定控制器的設計方法.Zhang等[48]將基于視覺伺服的非完整機器人推廣到隨機的情形,給出了狀態(tài)反饋鎮(zhèn)定控制器的設計方法.Hespanha等[49]將文獻[50]中基于不確定參數(shù)的非完整移動機器人推廣到隨機情形,設計的自適應反饋鎮(zhèn)定控制器和切換策略能使閉環(huán)系統(tǒng)鎮(zhèn)定到原點.

    4總結與展望

    綜上所述,10余年來,隨機非完整系統(tǒng)發(fā)展的較為迅速,涌現(xiàn)了一批結果,主要可分為鎮(zhèn)定和跟蹤兩個方面.但是關于鎮(zhèn)定的結果大都為基于不連續(xù)變換的運動學系統(tǒng)的控制器設計,而實際系統(tǒng)由于是物理驅動的,多為動力學系統(tǒng),故還存在下列尚未解決的問題.

    41動力學鏈式系統(tǒng)鎮(zhèn)定控制器的設計

    基于文獻[42,5152]的結果,全部狀態(tài)可測的滿足下三角結構的隨機非完整動力學系統(tǒng)可表述為

    研究其反饋鎮(zhèn)定問題,特別是系統(tǒng)包括不確定該參數(shù)和時變系數(shù)時自適應控制器的設計和穩(wěn)定性分析.

    3) 將系統(tǒng)(1)—(4)推廣到含有馬爾科夫切換和任意切換的情形,并討論控制器的設計.

    44有限時間鎮(zhèn)定和飽和鎮(zhèn)定

    參考文獻[2628]的結論,研究隨機非完整下三角系統(tǒng)、隨機前饋系統(tǒng)和隨機移動機器人系統(tǒng)的自適應有限時間鎮(zhèn)定問題.但是關于此系統(tǒng)飽和鎮(zhèn)定問題的研究較少,基于文獻[5761]的結論,討論上述三類系統(tǒng)的飽和鎮(zhèn)定問題,包含不確定的情形.

    45隨機非完整系統(tǒng)的跟蹤控制問題

    目前只有文獻[43]給出了隨機非完整系統(tǒng)的跟蹤問題,并且第一個子系統(tǒng)還是確定性的,但是對于解決隨機非完整系統(tǒng)的跟蹤問題有很大的借鑒意義.那么,基于下三角結構和前饋型隨機非完整系統(tǒng)的跟蹤問題,特別是不確定系統(tǒng)和切換系統(tǒng)的跟蹤問題的解決將是下一步工作的重點.

    46隨機非完整系統(tǒng)新的控制方法

    現(xiàn)存的關于隨機非完整系統(tǒng)鎮(zhèn)定問題的文獻大都是基于切換策略的,那么能不能找到新的控制方法解決此問題?

    1)基于文獻[6264]的結果,利用滑模變結構方法討論上述三類隨機不確定非完整系統(tǒng)的鎮(zhèn)定問題,特別是連續(xù)滑模理論的應用.

    2)結合文獻[6567]中光滑時變鎮(zhèn)定控制器的設計方法,設計上述三類系統(tǒng)的連續(xù)時變反饋控制器.

    參考文獻

    References

    [1]Brockett R W.Asymptotic stability and feedback stabilization[C]∥Differential Geometric Control Theory,Boston:Birkhauser,1983:181191

    [2]Kolmanovsky I,Mcclamroch N.Developments in nonholonomic control problems[J].IEEE Control Systems,1995,15(6):2036

    [3]Astolfi A.Discontinuous control of nonholonomic systems[J].Systems & Control Letters,1996,27(1):3745

    [4]Kushner H J.Stochastic stability and control[M].New York:Academic Press,1967

    [5]Pan Z G,Baar T.Backstepping controller design for nonlinear stochastic systems under a risksensitive cost criterion[J].SIAM Journal of Control and Optimization,1999,37(3):957995

    [6]Deng H,Krstic M.Outputfeedback stochastic nonlinear stabilization[J].IEEE Transactions on Automatic Control,1999,44(2):328333

    [7]Wu Z J,Yang J,Shi P.Adaptive tracking for stochastic nonlinear systems with Markovian switching[J].IEEE Transactions on Automatic Control,2010,55(9):21352141

    [8]Liu L,Xie X J.State feedback stabilization for stochastic feedforward nonlinear systems with timevarying delay[J].Automatica,2013,49(4):936942

    [9]Moshchuk N K,Sinitsyn I N.On stochastic nonholonomic systems[J].Journal of Applied Mathematics and Mechanics,1990,54(2):174182

    [10]Shang M,Guo Y X.The meansquare exponential stability and instability of stochastic nonholonomic systems[J].Chinese Physics,2001,10(6):480485

    [11]Liu S J,Krstic M.Stochastic source seeking for nonholonomic unicycle[J].Automatica,2010,46(9):14431453

    [12]張東凱.隨機非完整系統(tǒng)鎮(zhèn)定問題研究[D].上海:上海理工大學管理學院,2013

    ZHANG Dongkai.The satabilization of stochastic nonholonomic systems[D].Shanghai:Business School,University of Shanghai for Science and Technology,2013

    [13]Do K D.Global inverse optimal stabilization of stochastic nonholonomic systems[J].Systems & Control Letters,2015,75:4155

    [14]Ge S S,Wang Z,Lee T H.Adaptive stabilization of uncertain nonholonomic systems by state and output feedback[J].Automatica,2003,39(8):14511460

    [15]Hong Y G,Wang J K,Xi Z R.Stabilization of uncertain chained form systems within finite settling time[J].IEEE Transactions on Automatic Control,2005,50(9):13791384

    [16]Chen H,Ding S R,Chen X,et al.Global finitetime stabilization for nonholonomic mobile robots based on visual servoing[J].International Journal of Advanced Robotic Systems,2014,11:113

    [17]Wang J,Gao H Q,Li H Y.Adaptive robust control of nonholonomic systems with stochastic disturbances[J].Science in China Series F(Information Sciences),2006,49(2):189207

    [18]Zhang D K,Wang C L,Chen H,et al.Adaptive stabilization of stochastic nonholonomic systems with nonhomogeneous uncertainties[J].Transactions of the Institute of Measurement and Control,2013,35(5):648663

    [19]Wang C L,Wei G L,Zhang H J.Adaptive stabilization of stochastic nonholonomic systems with uncertain parameters and timevarying coefficients[C]∥IFAC Proceedings Volumes,2014,47(3):57345739

    [20]Gao F Z,Yuan F S,Yao H J.Adaptive stabilization for a class of stochastic nonholonomic systems with nonlinear parameterization[C]∥24th Chinese Control and Decision Conference,2012,23(1):13771382

    [21]Gao F Z,Yuan F S,Wu Y Q.Adaptive stabilization for a class of stochastic nonlinearly parameterized nonholonomic systems with unknown control coefficients[J].Asian Journal of Control,2014,16(6):18291838

    [22]Zhao Y,Yu J B,Wu Y Q.Statefeedback stabilization for a class of more general high order stochastic nonholonomic systems[J].International Journal of Adaptive Control and Signal Processing,2011,25(8):687706

    [23]Du Q H,Wang C L,Wang G.Adaptive statefeedback stabilization of stochastic highorder nonholonomic systems with nonlinear parameterization[J].Transactions of the Institute of Measurement and Control,2015,37(4):536549

    [24]Zhang D K,Wang C L,Qiu J Q.Statefeedback stabilization for stochastic nonholonomic systems with Markovian switching[J].International Journal of Modelling,Identification and Control,2012,16(3):221228

    [25]Du Q H,Wang C L,Wang G,et al.Statefeedback stabilization for stochastic highorder nonholonomic systems with Markovian switching[J].Nonlinear Analysis(Hybrid Systems),2015,18:114

    [26]Gao F Z,Yuan F S.Finitetime stabilization of stochastic nonholonomic systems and its application to mobile robot[J].Abstract and Applied Analysis,2012(4):118

    [27]Gao F Z,Yuan F S,Yao H J.Finitetime stabilization of stochastic nonholonomic systems[C]∥The 31st Chinese Control Conference,2012(4):812817

    [28]Gao F Z,Yuan F S,Zhang J,et al.Further result on finitetime stabilization of stochastic nonholonomic systems[J].Abstract and Applied Analysis,2013(5):551552

    [29]Gao F Z,Yuan F S,Wu Y Q.Statefeedback stabilisation for stochastic nonholonomic systems with timevarying delays[J].IET Control Theory & Applications,2012,6 (17):25932600

    [30]Xi Z R,F(xiàn)eng G,Jiang Z P,et al.Output feedback exponential stabilization of uncertain chained systems[J].Journal of the Franklin Institute,2007,344(1):3657

    [31]Zheng X Y,Wu Y Q.Adaptive output feedback stabilization for nonholonomic systems with strong nonlinear drifts[J].Nonlinear Analysis,2009,70(2):904920

    [32]Zheng X Y,Wu Y Q.Output feedback stabilization of stochastic nonholonomic systems[C]∥World Congress on Intelligent Control and Automation,2010:20912096

    [33]Liu Y L,Wu Y Q.Output feedback control for stochastic nonholonomic systems with growth rate restriction[J].Asian Journal of Control,2011,13(1):177185

    [34]Zhang D K,Wang C L,Wei G L,et al.Output feedback stabilization for stochastic nonholonomic systems with nonlinear drifts and Markovian switching[J].Asian Journal of Control,2014,16(6):16791692

    [35]Do K D,Jiang Z P,Pan J.Simultaneous tracking and stabilization of mobile robots:an adaptive approach[J].IEEE Transactions on Automatic Control,2004,49(7):11471152

    [36]Ma B L,Tso S K.Unified controller for both trajectory tracking and point regulation of secondorder nonholonomic chained systems[J].Robotics and Autonomous Systems,2008,56(4):317323

    [37]Tian Y P,Cao K C.An LMI design of tracking controllers for nonholonomic chainedform system[C]∥American Control Conference,2007:45124517

    [38]董文杰,霍偉.鏈式系統(tǒng)的軌跡跟蹤控制[J].自動化學報,2000,26(13):310316

    DONG Wenjie,HUO Wei.Trajectory tracking control of chained systems[J].Acta Automatica Sinica,2000,26(13):310316

    [39]Park B S,Yoo S J,Jin B P,et al.A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots[J].IEEE Transactions on Control Systems Technology,2010,18(5):11991206

    [40]Li Q X,Hu Y M,Pei H L,et al.Robust output tracking for mobile robot[J].Control Theory and Applications,1998,15(4):515524

    [41]Jiang Z p,Nijmeijer H.Tracking control of mobile robots:A case study in backstepping[J].Automatica,1997,33(7):13931399

    [42]Jiang Z P,Nijmeijer H.A recursive technique for tracking control of nonholonomic systems in chained form[J].IEEE Transactions on Automatic Control,1999,44(2):265279

    [43]Zhang Z C,Wu Y Q.Modeling and adaptive tracking for stochastic nonholonomic constrained mechanical systems[J].Nonlinear Analysis(Modelling and Control),2016,21(2):166184

    [44]Astolfi A.Exponential stabilization of a wheeled mobile robot via discontinuous control[J].Journal of Dynamic Systems(Measurement and Control),1999,121(1):121126

    [45]Wu Z J,Liu Y H.Stochastic stabilization of nonholonomic mobile robot with headingangledependent disturbance[J].Mathematical Problems in Engineering,2012,DOI:101155/2012/870498

    [46]Shang Y L,Meng H.Exponential stabilization of nonholonomic mobile robots subject to stochastic disturbance[J].Journal of Information & Computational Science,2012,9(9):26352642

    [47]Gao F Z,Shang Y L.Robust state feedback stabilization for nonholonomic mobile robots with stochastic disturbances[J].International Journal of Applied Mathematics and Statistics,3013,40(10):259268

    [48]Zhang D K,Wang C L,Wei G,et al.Statefeedback stabilization for stochastic nonholonomic mobile robots with uncertain visual servoing parameters[J].International Journal of Systems Science,2014,45(7):14511460

    [49]Hespanha J,Liberzon D,Morse A S.Towards the supervisory control of uncertain nonholonomic systems[C]∥American Control Conference,1999,5:35203524

    [50]Feng W L,Sun Q L,Cao Z J,et al.Adaptive statefeedback stabilization for stochastic nonholonomic mobile robots with unknown parameters[J].Discrete Dynamics in Nature and Society,2013(4):19

    [51]Dong W J,Xu Y S,Huo W.On stabilization of uncertain dynamic nonholonomic systems[J].International Journal of Control,2000,73(4):349359

    [52]Dong W J,Huo W.Adaptive stabilization of uncertain dynamic nonholonomic systems[J].International Journal of Control,1999,72(18):16891700

    [53]Fang Y,Wang C L.Adaptive stabilization for uncertain nonholonomic dynamic mobile robots based on visual serving feedback[J].Acta Automatic Sinica,2011,37(7):857864

    [54]Gao F Z,Wu Y Q,Zhang Z C.Finitetime stabilization of uncertain nonholonomic systems in feedforwardlike form by output feedback[J].ISA Transactions,2015,59:125132

    [55]Wu Y Q,Gao F Z,Zhang Z C.Saturated finitetime stabilization of uncertain nonholonomic systems in feedforwardlike form and its application[J].Nonlinear Dynamics,2016,84(3):16091622

    [56]Gao F Z,Yuan Y,Wu Y Q.Finitetime stabilization for a class of nonholonomic feedforward systems subject to inputs saturation[J].ISA Transactions,2016,64:193201

    [57]Gao F Z,Wu Y Q.Finitetime output feedback stabilisation for a class of feedforward nonlinear systems with input saturation[J].International Journal of Systems Science,2017,48(6):12541265

    [58]Bloch A,Drakunov S.Stabilization of a nonholonomic system via sliding models[C]∥IEEE Conference of Decision and Control,1995,3:29612963

    [59]Jiang Z P,Lefeber E,Nijmeijer H.Saturated stabilization and tracking of a nonholonomic mobile robot[J].Systems & Control Letters,2001,42(5):327332

    [60]Wang C L.Semiglobal practical stabilization of nonholonomic wheeled mobile robots with saturated inputs[J].Automatica,2008,44(3):816822

    [61]Chen H,Wang C L,Liang Z Y,et al.Robust practical stabilization of nonholonomic mobile robots based on visual servoing feedback with inputs saturation[J].Asian Journal of Control,2014,16(3):692702.

    [62]王朝立,霍偉.用滑動模態(tài)實現(xiàn)一類非完整動力學系統(tǒng)的指數(shù)鎮(zhèn)定[J].自動化學報,2000,26(2):254257

    WANG Chaoli,HUO Wei.Exponential stabilization of a nonholonomic dynamic system via sliding modes[J].Acta Automatica Sinica,2000,26(2):254257

    [63]Hu Y,Ge S S,Su C Y.Stabilization of uncertain nonholonomic systems via timevarying sliding mode control[J].IEEE Transactions on Automatic Control,2004,49(5):757763

    [64]Ferrara A,Giacomimi L,Vecchio C.Control of nonholonomic systems with uncertainties via secondorder sliding modes[J].International Journal of Robust and Nonlinear Control,2008,18(4/5):515528

    [65]Tian Y P,Li S.Exponential stabilization of nonholonomic dynamic systems by smooth timevarying control[J].Automatica,2002,38(7):11391146

    [66]馬保離,霍偉.非完整鏈式系統(tǒng)的時變光滑指數(shù)鎮(zhèn)定[J].自動化學報,2003,29(2):301305

    MA Baoli,HUO Wei.Smooth timevarying exponential stabilization of nonholonomic chained systems[J].Acta Automatica Sinica,2003,29(2):301305

    [67]Samson C.Timevarying feedback stabilization of a carlike wheeled mobile robots[J].International Journal of Robotics Research,1993,12(1):5566

    猜你喜歡
    鏈式移動機器人控制器
    移動機器人自主動態(tài)避障方法
    基于Twincat的移動機器人制孔系統(tǒng)
    鏈式STATCOM內部H橋直流側電壓均衡控制策略
    黑龍江電力(2017年1期)2017-05-17 04:25:05
    鏈式D-STATCOM直流電壓分層協(xié)調控制策略
    電測與儀表(2015年4期)2015-04-12 00:43:08
    10kV鏈式STATCOM的研究與設計
    電測與儀表(2015年4期)2015-04-12 00:43:08
    鏈式咨詢看浙江
    模糊PID控制器設計及MATLAB仿真
    MOXA RTU控制器ioPAC 5542系列
    自動化博覽(2014年9期)2014-02-28 22:33:17
    倍福 CX8091嵌入式控制器
    自動化博覽(2014年4期)2014-02-28 22:31:15
    極坐標系下移動機器人的點鎮(zhèn)定
    冷水江市| 清新县| 宁城县| 汉寿县| 天祝| 黄大仙区| 乐亭县| 合肥市| 徐州市| 福鼎市| 耒阳市| 北海市| 沧州市| 西城区| 集贤县| 伊川县| 阳山县| 遂川县| 沁阳市| 漳浦县| 丽水市| 林甸县| 阜宁县| 普兰店市| 固安县| 榆中县| 丰原市| 浪卡子县| 西峡县| 丹阳市| 津南区| 南川市| 奉化市| 马公市| 珠海市| 海城市| 彝良县| 抚顺县| 文成县| 巫溪县| 家居|