• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polymorph and morphology of CaCO3 in relation to precipitation conditions in a bubbling system☆

    2017-05-30 02:11:36JianSunLishengWangDongfangZhao

    Jian Sun,Lisheng Wang*,Dongfang Zhao

    School of Chemistry and Chemical Engineering,Beijing Institute of Technology,Beijing 100081,China

    1.Introduction

    The increasing consumption offossilfuels to meetglobaldemand for energy had resulted in an increase in CO2emission.Severalstudies have reached the conclusion that the rise in atmospheric CO2concentration is closely connected to global warming and consequent climate change[1,2].Most agree that carbon capture and sequestration(CCS)is necessary for greenhouse gas(GHG)reduction in the immediate future[3].Therefore,the development of appropriate technologies for CCS has attracted considerable attention worldwide.

    Among many technologies,mineralCO2sequestration is highlighted by its reliability.This method is based on the reaction of calcium(magnesium)silicates with gaseous CO2leading to solid carbonates and SiO2.Precipitated calcium carbonate(PCC)can be stored permanently and safely.Mineral CO2sequestration can be broadly classified as direct and indirect route.In the view of practical purpose,an indirect carbonation has advantages over a directcarbonation.In an indirectcarbonation,Ca2+is leached from rich calcium solids in solution first and then carbonate with CO2in a separate step.Pure CaCO3can be produced for future usage in this method.However,CaCO3with impurity is obtained in direct carbonation process,wherein solids containing calcium and other metals in an aqueous suspension carbonate with gaseous CO2directly[4,5].

    In an indirectcarbonation,many materials have been tested as feedback for extraction of Ca2+.Besides natural minerals,industrial wastes are another important resource of calcium.Vast amount industrial wastes consist of combustion residues,steel slags and fly ashes which can provide calcium resources with low cost.NH4NO3,CH3COONH4,NH4HCO3and NH4Clare favorite asleaching agentin extraction process.Ammonium salts strikingly stand outbecause ofhigh calcium extraction efficiency and selectivity.More importantly,they can be easily recovered by spontaneous reactions for reutilization[6,7].After calcium extraction,gaseous CO2are input into leachate containing calcium and ammonia in carbonation step.A briefprocedure consisting of extraction and carbonation steps using ammonium salts as leaching agents is described as in Eqs.(1)and(2).

    A significant amount of researches have been conducted to investigate extraction and carbonation reactions by using NH4X(X=NO3?1,CH3COO?1,HCO3?1,Cl?1,etc.).For instances,Heet al.[8]investigated the carbonation of coal fly ash using NH4Cl,NH4NO3and CH3COONH4.Kodama and coworkers[6]developed a pH swing CO2mineralization process with a recyclable reaction solution.Calcium extraction from steel-making slag by using NH4Cl in the first step,CaCO3precipitation and regeneration of NH4Cl occurred in the second step.Joet al.[9]evaluated the effects of CH3COONH4,NH4Cl,NH4NO3and(NH4)2SO4on the cation extraction and mineral carbonation of waste cement.

    Effects of various experimental conditions,covering temperature,pH,CO2pressure and CO2concentration,on carbonation efficiency were fully discussed in these articles,but knowledge regarding polymorph and morphology of PCC in relation to experimental conditions was provided inadequately.The application of calcium carbonate particles is determined by a great number of strictly de fined parameters,such as particle polymorph,morphology,size,specific surface area,brightness,oil adsorption,chemical purity and so on.One of the most important factors is particle polymorph[10].Calcium carbonate particles have three crystal polymorphs:rhombic calcite,needle-like aragonite and spherical vaterite.Calcite is the most stable phase at room temperature under normal atmospheric conditions,while aragonite and vaterite are metastable polymorphs which readily transform into the stable phase,calcite.Few articles discussed dependence of CaCO3polymorph on precipitation conditions in a bubbling system involved with ammonia.The relationship between precipitation conditions and morphology of CaCO3is the object of some experimental studies but it still is disputed.Takahashiet al.presented vaterite and calcite coprecipitated at pH=11.1,and proportion of calcite decreased as pH value dropped.Pure spherical vaterite was observed at pH=7.9[11].However,Olaru and coworkers reported that above 99%purity of vaterite precipitated at pH range 9.8–7.5[12].

    In order to clarify in fluences of precipitation conditions on polymorph and morphology of PCC,in the present research,a series of carbonation reactions were designed and conducted,simulating the carbonation step(Eq.(2)).CaCl2was dissolved in solution to provide Ca2+,pure CO2and NH3·H2O was utilized as feed gas and pH adjust agent,respectively.pH value, flow rate of CO2and temperature were experimental variables.The polymorph and morphology of PCC were examined by Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD)and scanning electron microscopy(SEM),and the correlation to experimental conditions was illuminated.The conclusion obtained from this article can provide theoretical direction for production of vaterite through mineral CO2sequestration under the in fluence of ammonia.Appropriate experimental condition is requisite for generation of pure vaterite with less cost and high efficiency.

    2.Experimental

    2.1.Materials and methods

    In the presentresearch,all carbonation reactions were carried out in a 0.5 L glass reactor at atmosphere.This glass reactor was heated by a water-bath thermostat(Shanghai Lp-laboratory Instrument Works Co.,Ltd).Uniform agitation of500 rpmforslurry was supplied by a magnetic stirrer(78HW-1,Bilon).

    Calcium chloride(CaCl299.9 wt%,Beijing Chemical Works)used in experiments for preparation of Ca-rich solution,and the prepared Ca-rich solution were filtered through a 0.22 μm membrane before use.The feed gas used in experiments was pure gaseous CO2.The flow rate(Q)of CO2was measured with a Cole-Parmer flow meter.Because aqueous carbonate precipitation is more favored in higher pH conditions[13],a peristaltic pump(RSC01)was utilized to convey NH3·H2O(25.0 wt%,Beijing Chemical Works)into Ca-rich solution to maintain alkalinity during carbonation.

    In a glass reactor,pure CO2was bubbled into Ca-rich solution at designed precipitation conditions,as depicted in Fig.1.During the precipitation process,the Ca2+concentration and pH value were monitored by a calcium ion selective electrode(ISE Ca800,WTW)and a pH meter(PHS-3C).CO2supply was turned off at 20 min,and then PCC sample was extracted immediately to avoid crystal transformation.After that,sample was separated on a filter equipped with polytetra fluoroethylene(PTFE)membrane discs(0.2 μm),washed with deionized water and dried over 24 h at 105°C.

    2.2.Characteristic analysis of PCC

    First,polymorphs of PCC were examined by Fourier transform infrared spectroscopy(FTIR,IS10,NICOLET).Band assignment for FTIR of CaCO3polymorphs was well established in literature[14–16].These absorption bands correspond to symmetric C--O stretching mode(v1),CO3out-of-plane bending mode(v2),doubly degenerated asymmetric C--O stretching mode(v3)and doubly degenerated in-plane O--C--O deformation bending mode(v4).The spectral region between 950 cm?1and 650 cm?1was selected for qualitative analysis:vaterite:v2 at 849 cm?1and 877 cm?1,v4 at 744 cm?1;calcite:v2 at 877 cm?1,v4 at 712 cm?1and aragonite:v2 at 854 cm?1,v4 at 700 cm?1and 712 cm?1.Apparently,there is overlapping of absorption bands among three polymorphs of CaCO3.An overlapping of vaterite and calcite absorption bands appears at 877 cm?1,and the same occurs at 712 cm?1for calcite and aragonite.

    Fig.1.Schematic diagram ofexperimentalsetup for carbonation reaction.1,CO2 cylinder;2,NH3·H2O;3,peristaltic pump;4,magnetic stirring;5,waterbath;6,glass reactor;7,pHmeter;8,calcium ion selective electrode.

    Further,PCC samples were examined by an X-ray diffractometer(Rigaku Ultima IV)at 40 kV and 40 mA with CuKαradiation(λ =0.15406nm).The diffraction data were recorded for 2θ angles from 20°to 60°with a scanning step 0.02°.The relative amounts ofthe polymorphic composition can be calculated from intensities ofthe vaterite(1 1 0),calcite(1 0 4),and aragonite(2 2 1)by using the Kontoyannis equation[17].The details of the Kontoyannis equation are presented:

    For mixture composed of calcite,vaterite and aragonite:

    whereXiis the molar fraction ofcalcite,vaterite or aragonite,Iifis the intensity of diffraction peak of one face.For example,IA221represents intensity of face(2 2 1)of aragonite.

    Crystal morphology of PCC samples was observed on a FEI Quanta 200 environmentalscanning electron microscope operating athigh vacuum and 15 kV.The samples were coated with gold prior to imaging.

    3.Experimental Design and Result

    The entire experimentalscheme constituted ofa series of18 independent carbonation reactions.In these reactions,pH value was regulated by addition of aqueous ammonia at the following three ranges,from initial pH to final pH:10.0–9.0,9.0–8.0 and 8.0–7.0 respectively.The declining rate of pH value of solution was controlled at 0.1 pH unit per 2 min,and thus overall change of pH value is 1.0 in each carbonate reaction(20 min).The initialCa2+concentration was 0.5 mol·L?1;the operational temperature wasT=25℃,45℃and 70°C,respectively;CO2input was maintained at relatively low flow rate,Q=50 and 100 ml·min?1respectively.The details of experimental design and corresponded polymorphic composition of PCC samples are summarized in Table 1.

    The carbonation process in the presence of ammonia can be described by the following steps:

    Dissolution of CO2

    From Eqs.(8)and(9),it can be concluded that amounts of CO2and OH?determine kinetically the carbonation process.When Ca2+is sufficient,high flow rate of CO2and pH value are expected to facilitate carbonation.

    Fig.2 is a representative example of carbonation reactions of PCC D,PCC J and PCC P.In Fig.2,there are 3 declining curves,where Ca2+concentration gradually decreases,indicating the precipitation of solidCaCO3was occurring.The ratio between overall consumption of Ca2+and time(20 min)in precipitation is considered as average carbonation reaction rate(mol·min?1).The average carbonation reaction rates of PCC A-R are also listed in Table 1.

    Table 1Details of experimental design and polymorphic composition of PCC

    Fig.2.A representative example of carbonation reactions of PCC D,J and P.

    Fig.3.FTIR spectra of PCC A,C and F.

    Fig.4.XRD patterns of PCC A,C and F.

    Fig.5.SEM images of PCC A,C and F.(a),PCC A;(b),PCC C(c),PCC F.

    4.Discussion

    4.1.PCC obtained at high pH

    PCC A(Q=50 ml·min?1,T=25 °C),B(Q=50 ml·min?1,T=45 °C),D(Q=100 ml·min?1,T=25 °C)and E(Q=100 ml·min?1,T=45 °C)were obtained at high pH(referring to pH=10.0–9.0).Their FTIR spectra are identical and spectrum of PCC A is selected in Fig.3.In PCC A,absorption peaks at 877 cm?1and 849 cm?1corresponding to vaterite present clearly,and no peak can be found at 712 cm?1and 700 cm?1,indicating sample is vaterite with high purity.XRD analysis was in agreement with this result.Diffraction pattern of PCC A is shown in Fig.4,where all diffraction peaks are associated with vaterite except for a very small peak corresponding to calcite(104)at2θ=29.4°.This result suggests PCC A is vaterite with trace calcite.Calculation of polymorphic composition shows purity of vaterite is 98.6%.SEM images prove that massive spherical shape vaterite mingled with single rhombic shape calcite obtained in PCC A,as it can be seen in Fig.5a.

    Metastable vaterite can precipitate probably because of high supersaturation of solution contributed by high pH value.From Eqs.(8)and(9),it can be known that the quantity of OH?controlled the formation of CO32?(aq).At high pH value,CO32?(aq)was formed sufficiently from gaseous CO2.As a result,high supersaturation towards Ca2+and CO32?was achieved in solution.According to Ostwald's rule of phases[18],in aqueous media,the less-stable polymorph can nucleate firstly and then converts into the most stable polymorph later.In the present research,the initial phase may be the amorphous calcium carbonate(ACC)and the subsequent transformation and crystallization of ACC follow a downhill pathway in the free energy γ:ACC → vaterite→aragonite → calcite.The reported values of free energy γs(mJ·m?2)for three polymorphs at 25 °C are γcalcite=7–280,γaragonite=150 and γvaterite=6.8–108[19,20].On the one hand,it can be predicted that if the solution supersaturation reaches the solubility constant value of vaterite,this metastable phase can be formed firstly.On the other hand,high reaction rate contributed by high supersaturation ensures crystallization of vaterite.As expected,PCC A,B,D and E obtained at high pH value were nearly pure vaterite(over 98.6%in purity).The above discussion indicates vaterite is the preferential polymorph of PCC at high pH value in this bubbling system.

    As temperature increased to 70°C,calcite and aragonite began to appear in PCC samples.FTIR shows that PCC C(Q=50 ml·min?1,T=70 °C)and F(Q=100 ml·min?1,T=70 °C)have multiple polymorphs of CaCO3.In Fig.3,the characteristic absorption peaks marked with “C”corresponding to the calcite,“V”to the vaterite and “A”to the aragonite appear in PCC C and PCC F,proving calcite,aragonite and vaterite coexisted in these samples.The result was further con firmed by XRD analysis.The principal diffraction peaks corresponding to aragonite(A221),vaterite(V104)and calcite(C110)polymorph are noted in patterns of PCC C and PCC F(Fig.4).Subsequently,polymorphic composition calculation from XRD patterns shows that for PCC C,dominant phase is vaterite 45.3%,side phase is calcite 33.1%,least phase is aragonite 21.6%,and PCC F is composed of 51.1%vaterite,24.6%calcite and 24.3%aragonite.

    Fig.6.FTIR spectra of PCC G,H,I,J,K and L.

    Fig.7.XRD patterns of PCC G,H,I,J,K and L.

    Three polymorphs of CaCO3coexisted in PCC C and PCC F can be ascribed to the thermal vibrations.At the beginning,vaterite was formed from ACC,and then gradually transformed into aragonite.Vaterite is a polymorph of CaCO3where six oxygen atoms coordinate to the calcium atom within the structure,while in aragonite,nine oxygen atoms coordinate to the calcium atom.This phase transition occurred at 70°C probably because high temperature increased effective radii of calcium atoms[21].In SEM images,rhombic calcite,needlelike aragonite and spherical vaterite can be seen clearly in Fig.5b and c.In addition,some disc-like particles are found to exist in PCC E and PCC F.These irregularsphericalshape particles are attributed to dissolution of spherical shape vaterite that was undergoing polymorphic transformation.

    In order to ascertain the role of calcite in transformation of PCC from vaterite to aragonite,PCC F carbonation was repeated in an additional experiment,namely as PCC F40.In this experiment,after supply of CO2stopped at 20 min,PCC F40was remained in solution for another 20 min to provide longer time for transformation.PCC F40sample was examined by means of FTIR and XRD analysis(see supporting information).The result shows a complex of aragonite and calcite obtained in the sample,indicating vaterite was completely converted into calcite and aragonite in 40 min.Polymorphic composition calculation shows PCC F40has 69.2%aragonite and 30.8%calcite.This result implies that aragonite is more stable than calcite at 70°C,and calcite may be an intermediate phase during transformation.It formed from vaterite and transformed into aragonite.

    Fig.8.FTIR spectra of PCC M,N,O,P,Q and R.

    4.2.PCC obtained at moderate pH

    Polymorphs of PCC obtained at moderate pH value(referring to pH=9.0–8.0)are different as a consequence of change of flow rate of CO2.FTIR spectra and XRD analysis show PCC G(Q=50 ml·min?1,T=25 °C),PCC H(Q=50 ml·min?1,T=45 °C),PCC J(Q=100 ml·min?1,T=25 °C)and PCC K(Q=100 ml·min?1,T=45 °C)are composites of vaterite and calcite,as shown in Figs.6 and 7.Polymorphic composition calculation shows 92.2%and 90.5%vaterite existed in PCC G and H respectively,while vaterite accounts for above 98%of PCC J and PCC K.This result indicates that in fluence of flow rate of CO2on polymorph of PCC is observed at the moderate pH range.At the same pH range(pH=9.0–8.0),when quantity of CO2is adequate,vaterite can precipitate without formation of calcite,but when flow rate of CO2is below a critical level,the transformation from vaterite to calcite can occur.This fact can also be interpreted from decline of average carbonation reaction rate.Average carbonation reaction rates for PCC A and PCC B,which can be found in Table 1,are 0.007435 and 0.007232 mol·min?1respectively,and are 0.006349 and 0.006132 mol·min?1for PCC G and H individually.It is manifest that average carbonation reaction rates of PCC G and H were reduced.As a result,nearly pure vaterite was obtained in PCC A and PCC B,while a part of calcite appeared in PCC G and PCC H.Decreased carbonation reaction rate cannot prevent dissolution of vaterite and crystallization of calcite[12].It can be concluded that carbonation reaction rate is the fundamental factor for precipitation of vaterite.At pH=9.0–8.0,50 ml·min?1CO2flow rate could not meet the requirement of carbonation reaction rate,and thus calcite formed partially in PCC G and PCC H.

    Fig.9.XRD patterns of PCC M,N,O,P,Q and R.

    Similarly,as temperature increased to 70°C,vaterite,calcite and aragonite were formed simultaneously in PCC samples.FTIR reveals that PCC I(Q=50 ml·min?1,T=70 °C)and PCC L(Q=100 ml·min?1,T=70°C)are mixtures of aragonite,vaterite and calcite.As shown in Fig.6,absorption peak at 854 cm?1,712 cm?1and 700 cm?1of aragonite,peaks at 877 cm?1,849 cm?1and 744 cm?1of vaterite,and peaks at 877 cm?1and 712 cm?1of calcite are apparently presented in PCC I and PCC L.The XRD analysis of PCC I and PCC L was also performed.Bragg re flections of principal peaks of PCC I and PCC L are noted in Fig.7.The calculated relative amounts of the three polymorphs of PCC I are 39.2%vaterite,22.6%calcite and 24.0%aragonite respectively,and for PCC L are 44.3%vaterite,24.8%calcite and 21.9%aragonite respectively.By comparison,it was found that polymorphic compositions of PCC I and PCC L have no significantdifference from PCC C and PCC F.This result indicates polymorphic transformation from vaterite to aragoniteviacalcite is mainly subject to elevation of temperature,and decrease of pH range from 10.0–9.0 to 9.0–8.0 has no significant impacts here.

    4.3.PCC obtained at low pH

    At low pH value(referring to pH=8.0–7.0),massive calcite precipitated in PCC samples.FTIR spectra and XRD analysis found PCC M(Q=50 ml·min?1,T=25 °C),N(Q=50 ml·min?1,T=45 °C),P(Q=100 ml·min?1,T=25 °C),and Q(Q=100 ml·min?1,T=45°C)are mixtures of calcite and vaterite(Figs.8 and 9).Polymorphic composition calculation shows calcite is main polymorph for PCC M(calcite 52.3%)and N(calcite 59.7%).From SEM images,it can be seen substantial rhombic calcite appeared in PCC M and PCC N(Fig.10a and b).This result demonstrates calcite is the dominant polymorph at low supersaturation attributed to low pH value and low flow rate of CO2.Dissolution of vaterite and crystallization of calcite substantially occurred at this experimental condition.In addition,it can be found that PCC Nhas higher contentofcalcite than PCC M.Temperature elevation from 25 °C to 45 °C can account for this fact.As temperature increases,solubility of CO2was dropped in aqueous solution[22],which led to less formation of CO32?and lower supersaturation.Therefore,more calcite converted from vaterite in PCC N than in PCC M.PCC P and PCC Q have higher supply of CO2,so vaterite remains the dominant polymorph in these two samples.PCC P and PCC Qhave 73.4%and 70.9%vaterite,respectively.This result suggests in fluence of flow rate of CO2on polymorph of PCC became more important at low pH range.

    At 70°C,FTIR spectra and XRD analysis just found calcite and aragonite coexisted in PCC samples.PCC O(Q=50 ml·min?1,T=70 °C)has 41%calcite and 59%aragonite,and PCC P(Q=100 ml·min?1,T=70°C)has 44.7%calcite and 55.3%aragonite.This result demonstrates preservation of vaterite at low pH value and high temperature is very difficult.SEM images are consistent with this result that only rhombic calcite and needle-like aragonite can be seen in PCC O and PCC R(Fig.10c and d).

    Fig.10.SEM images of PCC M,N,O and R.(a),PCC M;(b),PCC N;(c),PCC O,(d)PCC R.

    5.Conclusions

    A series of PCC samples were obtained by carbonation reaction in a bubbling system at regulated pH ranges.Polymorph and morphology ofPCC were found to be closely connected with precipitation conditions.Vaterite was the preferable polymorph at a high pH value.pH condition(10.0–9.0)can be applied for a relatively low CO2flow rate leading to pure vaterite,while pH condition(9.0–8.0)requires 100 ml·min?1for pure vaterite formation.This finding could guide synthesis of vaterite in emission reduction of greenhouse gases by mineral CO2sequestration.Calcite is the preferential polymorph of PCC at low pH value range(8.0–7.0)because low supersaturation would not prevent dissolution of vaterite and recrystallization of calcite.In addition,high temperature was found to be a critical factor for the formation of aragonite.At 70°C,transformation from vaterite to aragoniteviacalcite was detected in the presentresearch.In an additional carbonation reaction that provides 40 min for polymorphic transformation,vaterite vanished and only major aragonite and minor calcite were found in sample.This finding suggests aragonite is more stable than calcite at high temperature,and calcite is an intermediate phase during this transformation.

    Supplementary Material

    Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cjche.2016.12.004.

    [1]J.R?is?nen,J.S.Ylh?isi,CO2-induced climate change in northern Europe:Cmip2 versus Cmip3 versus Cmip5,Clim.Dyn.45(2014)1–21.

    [2]P.Wu,J.Ridley,A.Pardaens,R.Levine,J.Lowe,The reversibility of CO2induced climate change,Clim.Dyn.45(2014)1–10.

    [3]D.A.Wood,Carbon dioxide(CO2)handling and carbon capture utilization and sequestration(CCUS)research relevant to natural gas:A collection of published research(2009–2015),J.Nat.Gas Sci.Eng.25(2015)A1–A9.

    [4]A.Azdarpour,M.Asadullah,E.Mohammadian,H.Hamidi,R.Junin,M.A.Karaei,A review on carbon dioxide mineral carbonation through pH-swing process,Chem.Eng.J.61(2015)615–630.

    [5]A.A.Olajire,A review of mineral carbonation technology in sequestration of CO2,J.Pet.Sci.Eng.109(2013)364–392.

    [6]S.Kodama,T.Nishimoto,N.Yamamoto,K.Yogo,K.Yamada,Development of a new pH-swing CO2mineralization process with a recyclable reaction solution,Energy33(2008)776–784.

    [7]S.Eloneva,Reduction of CO2emissions by mineral carbonation:steelmaking slags as raw material with a pure calcium carbonate end product,Starch-Starke60(2008)61–69.

    [8]L.L.He,D.X.Yu,W.Z.Lv,J.Q.Wu,M.H.Xu,CO2sequestration by indirect carbonation of high-calcium coal fly ash,Adv.Mater.Res.726-731(2013)2870–2874.

    [9]H.Jo,S.H.Park,Y.N.Jang,S.C.Chae,P.K.Lee,H.Y.Jo,Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions,Chem.Eng.J.254(2014)313–323.

    [10]M.Vu?ak,M.N.Pons,J.Peri?,H.Vivier,Effect of precipitation conditions on the morphology of calcium carbonate:quantification of crystal shapes using image analysis,Powder Technol.97(1998)1–5.

    [11]S.H.Yong,G.Hadiko,M.Fuji,M.Takahashi,Crystallization and transformation of vaterite at controlled pH,J.Cryst.Growth289(2006)269–274.

    [12]I.Udrea,C.Capat,E.A.Olaru,R.Isopescu,M.Mihai,C.D.Mateescu,C.Bradu,Vaterite synthesis via gas–liquid route under controlled pH conditions,Ind.Eng.Chem.Res.51(2012)8185–8193.

    [13]S.Eloneva,S.Teir,J.Salminen,C.J.Fogelholm,R.Zevenhoven,Fixation of CO2by carbonating calcium derived from blast furnace slag,Energy33(2008)1461–1467.

    [14]C.E.Weir,E.R.Lippincott,Infrared studies of aragonite,calcite,and vaterite type structures in the borates,carbonates,and nitrates,J.Res.Natl.Bur.Stand.Us65A(1961).

    [15]A.A.Garrison,Infrared and Raman spectroscopy:methods and applications,TrAC Trends Anal.Chem.15(5)(1996)XII.

    [16]N.V.Vagenas,A.Gatsouli,C.G.Kontoyannis,Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy,Talanta59(2003)831–836.

    [17]C.G.Kontoyannis,N.V.Vagenas,Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy,Analyst125(2000)251–255.

    [18]Lehrbuch Der Allgemeinen Chemie,Von W.Ostwald.Ii.Band,Zweiter Teil,FÜNfte Lieferung.23 Bogen Mit 237 Figuren.Verlag Von W.Engelmann,Leipzig.1902.Preis 9 Mk,1902 907.

    [19]J.Gómez-Morales,J.Torrent-Burgués,R.Rodríguez-Clemente,Nucleation of calcium carbonate at different initial pH conditions,J.Cryst.Growth169(1996)331–338.

    [20]A.V.Radha,T.Z.F.,Christopher E.Killian,P.U.P.A.Gilbert,Alexandra Navrotsky,Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate,Proc.Natl.Acad.Sci.107(2010)16438–16443.

    [21]Y.S.Han,G.Hadiko,M.Fuji,M.Takahashi,Factors affecting the phase and morphology of CaCO3prepared by a bubbling method,J.Eur.Ceram.Soc.26(2006)843–847.

    [22]K.Gilbert,P.C.Bennett,W.Wolfe,T.Zhang,K.D.Romanak,CO2solubility in aqueous solutions containing Na+,Ca2+,Cl?,SO42?and HCO3?:the effects of electrostricted water and ion hydration thermodynamics,Appl.Geochem.67(2016)59–67.

    伦理电影免费视频| 午夜a级毛片| 999久久久国产精品视频| 亚洲国产欧美网| 99精品在免费线老司机午夜| 高潮久久久久久久久久久不卡| 精品久久久久久成人av| 香蕉国产在线看| 人成视频在线观看免费观看| 99精品欧美一区二区三区四区| 亚洲成人精品中文字幕电影 | 好看av亚洲va欧美ⅴa在| 中文字幕色久视频| 首页视频小说图片口味搜索| 国产熟女午夜一区二区三区| av福利片在线| 这个男人来自地球电影免费观看| 啪啪无遮挡十八禁网站| 亚洲五月天丁香| 久久久久久久精品吃奶| 大型av网站在线播放| 久久人妻福利社区极品人妻图片| 国产欧美日韩精品亚洲av| 亚洲成人精品中文字幕电影 | 在线观看免费视频网站a站| 欧美日韩黄片免| 亚洲专区国产一区二区| 亚洲欧美日韩另类电影网站| 国产精品一区二区精品视频观看| 韩国av一区二区三区四区| 成人精品一区二区免费| 91大片在线观看| 亚洲情色 制服丝袜| 久久热在线av| 国产精品电影一区二区三区| 日韩国内少妇激情av| 欧美激情久久久久久爽电影 | 脱女人内裤的视频| www国产在线视频色| 性欧美人与动物交配| bbb黄色大片| 亚洲第一欧美日韩一区二区三区| 久久久国产成人精品二区 | 最好的美女福利视频网| 免费在线观看影片大全网站| 午夜两性在线视频| 激情视频va一区二区三区| 亚洲一区二区三区色噜噜 | 免费av毛片视频| 他把我摸到了高潮在线观看| 岛国视频午夜一区免费看| 精品国产美女av久久久久小说| 国产xxxxx性猛交| 午夜精品国产一区二区电影| 精品国产超薄肉色丝袜足j| 国产亚洲av高清不卡| 国产乱人伦免费视频| 搡老熟女国产l中国老女人| 日日爽夜夜爽网站| 国产成人免费无遮挡视频| xxx96com| 国产高清国产精品国产三级| 国产成人啪精品午夜网站| 法律面前人人平等表现在哪些方面| 国产亚洲欧美98| 首页视频小说图片口味搜索| 亚洲一区高清亚洲精品| 日本撒尿小便嘘嘘汇集6| 97超级碰碰碰精品色视频在线观看| 大码成人一级视频| 高清av免费在线| 国产激情久久老熟女| 免费av中文字幕在线| 男男h啪啪无遮挡| aaaaa片日本免费| 亚洲第一欧美日韩一区二区三区| 亚洲精品国产一区二区精华液| 制服人妻中文乱码| 麻豆国产av国片精品| 国产一区二区激情短视频| 亚洲九九香蕉| 一个人免费在线观看的高清视频| 免费高清在线观看日韩| av超薄肉色丝袜交足视频| 男人操女人黄网站| 国产熟女午夜一区二区三区| 99精品久久久久人妻精品| 99精品久久久久人妻精品| 久久九九热精品免费| 国产欧美日韩精品亚洲av| 男人舔女人下体高潮全视频| 成人国产一区最新在线观看| 午夜影院日韩av| 天天影视国产精品| 他把我摸到了高潮在线观看| 免费高清视频大片| 久久99一区二区三区| 视频在线观看一区二区三区| 免费搜索国产男女视频| 午夜免费激情av| av福利片在线| 精品一区二区三区四区五区乱码| 久久久国产一区二区| 精品国产乱子伦一区二区三区| 亚洲午夜理论影院| 手机成人av网站| 亚洲专区中文字幕在线| 国产主播在线观看一区二区| 国产午夜精品久久久久久| 免费观看人在逋| 亚洲精品中文字幕一二三四区| 国产精华一区二区三区| 两人在一起打扑克的视频| 久久人人爽av亚洲精品天堂| 国产成+人综合+亚洲专区| 少妇 在线观看| 国产精品影院久久| 宅男免费午夜| 日日干狠狠操夜夜爽| 别揉我奶头~嗯~啊~动态视频| 成年女人毛片免费观看观看9| 亚洲精品国产色婷婷电影| 黑人操中国人逼视频| 一二三四在线观看免费中文在| 纯流量卡能插随身wifi吗| 精品一区二区三卡| 天堂√8在线中文| 亚洲七黄色美女视频| 两性夫妻黄色片| 国产97色在线日韩免费| 黄色丝袜av网址大全| 亚洲国产欧美网| 精品国产亚洲在线| avwww免费| 一个人免费在线观看的高清视频| 两性夫妻黄色片| 国产亚洲欧美精品永久| 国产精品亚洲av一区麻豆| 午夜久久久在线观看| 久久 成人 亚洲| 国产乱人伦免费视频| 女人高潮潮喷娇喘18禁视频| 午夜福利欧美成人| 国产欧美日韩精品亚洲av| 老鸭窝网址在线观看| 美女 人体艺术 gogo| 9色porny在线观看| 又紧又爽又黄一区二区| 欧美+亚洲+日韩+国产| 18禁国产床啪视频网站| 午夜亚洲福利在线播放| 69精品国产乱码久久久| 欧美成人免费av一区二区三区| 久久 成人 亚洲| 国产视频一区二区在线看| 亚洲少妇的诱惑av| 国产欧美日韩精品亚洲av| 欧美乱妇无乱码| 久久伊人香网站| netflix在线观看网站| 精品国产亚洲在线| 国产av一区二区精品久久| 香蕉丝袜av| 真人一进一出gif抽搐免费| 伦理电影免费视频| 久久精品亚洲精品国产色婷小说| 91字幕亚洲| 长腿黑丝高跟| 国产精品偷伦视频观看了| 精品久久蜜臀av无| 中文字幕高清在线视频| 国产成人欧美| 日本欧美视频一区| 免费高清视频大片| 99riav亚洲国产免费| 色尼玛亚洲综合影院| 欧美 亚洲 国产 日韩一| 午夜免费成人在线视频| 久久精品影院6| 久久精品91无色码中文字幕| 国产亚洲欧美98| 一本综合久久免费| 嫩草影视91久久| 十八禁网站免费在线| 国产av又大| 欧美大码av| 国产精品一区二区精品视频观看| av欧美777| videosex国产| a级毛片在线看网站| 夜夜夜夜夜久久久久| 色播在线永久视频| 女同久久另类99精品国产91| 成年版毛片免费区| 涩涩av久久男人的天堂| 久久中文字幕人妻熟女| 精品国产一区二区久久| av天堂久久9| a级毛片黄视频| 国产亚洲精品久久久久久毛片| 亚洲色图av天堂| 免费看a级黄色片| 欧美日韩中文字幕国产精品一区二区三区 | 免费高清视频大片| 久久久久久久久久久久大奶| x7x7x7水蜜桃| 日本vs欧美在线观看视频| 午夜免费鲁丝| 久久久久久久久免费视频了| 日韩国内少妇激情av| 黑人巨大精品欧美一区二区蜜桃| 日韩欧美三级三区| 国内毛片毛片毛片毛片毛片| 在线观看免费午夜福利视频| 最近最新中文字幕大全电影3 | 免费在线观看完整版高清| 少妇裸体淫交视频免费看高清 | 免费观看人在逋| 热99re8久久精品国产| 日韩大尺度精品在线看网址 | 亚洲成人免费电影在线观看| 一区福利在线观看| 国产伦人伦偷精品视频| 在线观看免费午夜福利视频| 国产精品一区二区在线不卡| 久久国产精品影院| 日本欧美视频一区| 狠狠狠狠99中文字幕| e午夜精品久久久久久久| 美女福利国产在线| 老汉色∧v一级毛片| 免费在线观看完整版高清| 丝袜人妻中文字幕| 国产精品 欧美亚洲| 亚洲欧美精品综合一区二区三区| 日韩成人在线观看一区二区三区| 91成年电影在线观看| 麻豆国产av国片精品| 日韩大尺度精品在线看网址 | 国产高清视频在线播放一区| 欧美黄色片欧美黄色片| 老鸭窝网址在线观看| svipshipincom国产片| 国产乱人伦免费视频| 涩涩av久久男人的天堂| 亚洲av日韩精品久久久久久密| 波多野结衣一区麻豆| www.熟女人妻精品国产| 一边摸一边抽搐一进一出视频| 亚洲国产精品999在线| 90打野战视频偷拍视频| 制服诱惑二区| 国产精品一区二区免费欧美| 欧美国产精品va在线观看不卡| 亚洲国产精品999在线| 亚洲性夜色夜夜综合| 久9热在线精品视频| 黄色怎么调成土黄色| 一二三四在线观看免费中文在| 国产高清激情床上av| 国产精品爽爽va在线观看网站 | 国产亚洲精品一区二区www| 波多野结衣av一区二区av| 国产精品自产拍在线观看55亚洲| 中文欧美无线码| 国产人伦9x9x在线观看| 久久久久久免费高清国产稀缺| 欧美激情极品国产一区二区三区| 亚洲成a人片在线一区二区| xxx96com| 日本免费一区二区三区高清不卡 | 久久人人精品亚洲av| 性色av乱码一区二区三区2| 免费久久久久久久精品成人欧美视频| 午夜激情av网站| 巨乳人妻的诱惑在线观看| а√天堂www在线а√下载| 狂野欧美激情性xxxx| 757午夜福利合集在线观看| av视频免费观看在线观看| 又大又爽又粗| 99精品在免费线老司机午夜| 国产深夜福利视频在线观看| 搡老岳熟女国产| 色精品久久人妻99蜜桃| 久久香蕉激情| 很黄的视频免费| 99精国产麻豆久久婷婷| 亚洲片人在线观看| 亚洲精品av麻豆狂野| 两个人免费观看高清视频| 水蜜桃什么品种好| 老司机福利观看| 夜夜夜夜夜久久久久| 国产乱人伦免费视频| 国产亚洲精品第一综合不卡| 国产成人精品久久二区二区91| 日本三级黄在线观看| 中文亚洲av片在线观看爽| 久久久久久久午夜电影 | 免费观看人在逋| 精品无人区乱码1区二区| 国产乱人伦免费视频| 91精品三级在线观看| 99热国产这里只有精品6| 久久久久久久久中文| 丁香欧美五月| 男女下面插进去视频免费观看| 午夜成年电影在线免费观看| 一边摸一边做爽爽视频免费| 亚洲熟妇中文字幕五十中出 | 三上悠亚av全集在线观看| 一二三四社区在线视频社区8| 三级毛片av免费| 99久久99久久久精品蜜桃| 在线观看一区二区三区| 高清毛片免费观看视频网站 | 男女午夜视频在线观看| 一级片免费观看大全| 人人澡人人妻人| 少妇粗大呻吟视频| 欧美激情高清一区二区三区| 夫妻午夜视频| 亚洲三区欧美一区| 久久久水蜜桃国产精品网| 99久久国产精品久久久| 免费观看精品视频网站| 91字幕亚洲| 日日干狠狠操夜夜爽| 国产在线精品亚洲第一网站| 999久久久国产精品视频| 日日干狠狠操夜夜爽| 久久久久精品国产欧美久久久| 12—13女人毛片做爰片一| 99国产综合亚洲精品| 免费av中文字幕在线| 久久人人97超碰香蕉20202| 日韩欧美免费精品| 久久影院123| 精品人妻1区二区| 最近最新中文字幕大全免费视频| 国产成人av激情在线播放| 女人高潮潮喷娇喘18禁视频| 国产亚洲精品久久久久5区| 美女扒开内裤让男人捅视频| 动漫黄色视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产av一区在线观看免费| 国产成人欧美| 91成年电影在线观看| 亚洲精品国产一区二区精华液| 亚洲一区中文字幕在线| 欧美黄色片欧美黄色片| 免费在线观看亚洲国产| a级毛片黄视频| 亚洲激情在线av| 国产成人一区二区三区免费视频网站| 老司机深夜福利视频在线观看| 国产91精品成人一区二区三区| 国产欧美日韩一区二区精品| 亚洲午夜理论影院| 亚洲国产看品久久| 久久精品91无色码中文字幕| 国产精品一区二区在线不卡| 亚洲 国产 在线| 亚洲七黄色美女视频| 国产片内射在线| 少妇粗大呻吟视频| 天堂中文最新版在线下载| 国产人伦9x9x在线观看| 亚洲熟女毛片儿| 久久中文字幕一级| 国产高清videossex| 国产99白浆流出| 少妇裸体淫交视频免费看高清 | www.精华液| 天堂俺去俺来也www色官网| 国产精品爽爽va在线观看网站 | 黄色 视频免费看| 国产伦人伦偷精品视频| 搡老乐熟女国产| 亚洲少妇的诱惑av| 麻豆av在线久日| 午夜日韩欧美国产| 男女做爰动态图高潮gif福利片 | 中文字幕另类日韩欧美亚洲嫩草| 多毛熟女@视频| 国产无遮挡羞羞视频在线观看| 色综合站精品国产| 精品久久久久久成人av| 亚洲一区二区三区色噜噜 | www国产在线视频色| 黄网站色视频无遮挡免费观看| 天天添夜夜摸| 国产日韩一区二区三区精品不卡| 成人国产一区最新在线观看| 国产伦人伦偷精品视频| 天堂影院成人在线观看| 精品电影一区二区在线| 91av网站免费观看| 久久久久精品国产欧美久久久| 大型黄色视频在线免费观看| 日本免费a在线| 最近最新中文字幕大全电影3 | 色精品久久人妻99蜜桃| 免费一级毛片在线播放高清视频 | avwww免费| 久久九九热精品免费| 日韩国内少妇激情av| 99国产精品免费福利视频| 很黄的视频免费| 777久久人妻少妇嫩草av网站| 国产欧美日韩精品亚洲av| 亚洲欧美精品综合久久99| 国产99白浆流出| 大型av网站在线播放| 亚洲国产欧美网| a级片在线免费高清观看视频| 精品一区二区三区四区五区乱码| 757午夜福利合集在线观看| 日本黄色日本黄色录像| 自拍欧美九色日韩亚洲蝌蚪91| 三上悠亚av全集在线观看| a在线观看视频网站| 国产精品久久久久成人av| 深夜精品福利| √禁漫天堂资源中文www| 亚洲精品中文字幕在线视频| 中国美女看黄片| 色播在线永久视频| 久久中文看片网| 欧美中文日本在线观看视频| 老熟妇乱子伦视频在线观看| 欧美日本中文国产一区发布| 国产成人欧美在线观看| 在线观看www视频免费| 男女下面插进去视频免费观看| 18禁观看日本| 在线观看午夜福利视频| netflix在线观看网站| 午夜免费观看网址| 精品久久蜜臀av无| 好男人电影高清在线观看| 视频在线观看一区二区三区| 又黄又粗又硬又大视频| 88av欧美| 欧美成人免费av一区二区三区| 亚洲 国产 在线| a在线观看视频网站| 无限看片的www在线观看| 美女高潮喷水抽搐中文字幕| 亚洲精品国产一区二区精华液| 黑人巨大精品欧美一区二区蜜桃| 两性夫妻黄色片| 亚洲国产精品合色在线| 长腿黑丝高跟| 多毛熟女@视频| 美女大奶头视频| av福利片在线| 亚洲精品一卡2卡三卡4卡5卡| 51午夜福利影视在线观看| 亚洲中文日韩欧美视频| 免费在线观看完整版高清| 人妻久久中文字幕网| 少妇粗大呻吟视频| 久久久久九九精品影院| 日韩国内少妇激情av| videosex国产| 91大片在线观看| 国产精品久久久人人做人人爽| 日韩一卡2卡3卡4卡2021年| 亚洲片人在线观看| 日本撒尿小便嘘嘘汇集6| 黄色 视频免费看| 在线观看午夜福利视频| 久久精品亚洲熟妇少妇任你| 天堂√8在线中文| 正在播放国产对白刺激| 在线观看一区二区三区| 99久久精品国产亚洲精品| 欧美日韩亚洲高清精品| 久久久久国内视频| 老司机亚洲免费影院| 久热这里只有精品99| 色婷婷av一区二区三区视频| 神马国产精品三级电影在线观看 | 人人妻人人澡人人看| 动漫黄色视频在线观看| 亚洲一码二码三码区别大吗| 咕卡用的链子| 精品久久久久久久毛片微露脸| 精品国产乱子伦一区二区三区| 精品乱码久久久久久99久播| 久久久久精品国产欧美久久久| 搡老岳熟女国产| 日本wwww免费看| 不卡一级毛片| 国产成人影院久久av| 国产熟女xx| 久久久久久久午夜电影 | 19禁男女啪啪无遮挡网站| 精品第一国产精品| 精品国产美女av久久久久小说| 成人三级做爰电影| 亚洲精品一区av在线观看| 久久精品成人免费网站| x7x7x7水蜜桃| 久久欧美精品欧美久久欧美| 欧美人与性动交α欧美精品济南到| 好看av亚洲va欧美ⅴa在| 欧美黑人欧美精品刺激| 国产精品一区二区免费欧美| 男女做爰动态图高潮gif福利片 | 性色av乱码一区二区三区2| 久久久久久久久中文| 亚洲精品国产精品久久久不卡| 精品国内亚洲2022精品成人| 88av欧美| 9色porny在线观看| 欧美老熟妇乱子伦牲交| 高清av免费在线| 亚洲国产看品久久| 国产亚洲欧美精品永久| 国产不卡一卡二| 99精品久久久久人妻精品| 不卡一级毛片| 中文欧美无线码| 久久久久久免费高清国产稀缺| 成人手机av| 麻豆成人av在线观看| 麻豆av在线久日| 国产精品98久久久久久宅男小说| 亚洲国产精品一区二区三区在线| 在线观看免费高清a一片| 少妇被粗大的猛进出69影院| 人妻久久中文字幕网| 午夜影院日韩av| 国产熟女午夜一区二区三区| 在线观看www视频免费| 青草久久国产| 亚洲专区国产一区二区| 日韩人妻精品一区2区三区| 九色亚洲精品在线播放| av网站免费在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲第一欧美日韩一区二区三区| 啦啦啦免费观看视频1| 校园春色视频在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品电影一区二区三区| 黄色视频不卡| 窝窝影院91人妻| 女生性感内裤真人,穿戴方法视频| 成人18禁高潮啪啪吃奶动态图| 国产不卡一卡二| 日韩欧美在线二视频| 国产在线观看jvid| 欧美丝袜亚洲另类 | 丰满饥渴人妻一区二区三| 青草久久国产| 亚洲成人久久性| 免费在线观看黄色视频的| 天堂俺去俺来也www色官网| tocl精华| 国产精品综合久久久久久久免费 | 亚洲中文av在线| 午夜日韩欧美国产| 免费女性裸体啪啪无遮挡网站| 无限看片的www在线观看| cao死你这个sao货| 一级黄色大片毛片| 成人手机av| 天天躁夜夜躁狠狠躁躁| 国产成人一区二区三区免费视频网站| 国产深夜福利视频在线观看| 午夜老司机福利片| 涩涩av久久男人的天堂| 欧美中文日本在线观看视频| 美女午夜性视频免费| 国产成人啪精品午夜网站| 久久中文看片网| 亚洲精品久久午夜乱码| 久久精品人人爽人人爽视色| 91在线观看av| 一夜夜www| 国产精品一区二区精品视频观看| 国产黄色免费在线视频| 亚洲一区二区三区色噜噜 | 91在线观看av| 亚洲国产精品一区二区三区在线| 亚洲精品一卡2卡三卡4卡5卡| 久久久久九九精品影院| 一进一出抽搐gif免费好疼 | 日韩欧美国产一区二区入口| 十分钟在线观看高清视频www| 精品国产一区二区三区四区第35| svipshipincom国产片| 亚洲第一青青草原| 啦啦啦在线免费观看视频4| 免费高清视频大片| 91在线观看av| 欧美在线一区亚洲| 亚洲精品成人av观看孕妇| 黄片大片在线免费观看| 纯流量卡能插随身wifi吗| 国产麻豆69| 国产又色又爽无遮挡免费看| 国内久久婷婷六月综合欲色啪| 日韩欧美三级三区| 在线观看免费高清a一片| 一夜夜www| 亚洲精品成人av观看孕妇| 波多野结衣一区麻豆| 欧美日本亚洲视频在线播放| www.精华液|