• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aminopropyl-containing ionic liquid based organosilica as a novel and efficient adsorbent for removal of crystal violet from wastewaters☆

    2017-05-30 02:11:32FroodShojaeipoorBakhshaliMasoumiMohammadHossainBanakarJavadRastegar

    Frood Shojaeipoor*,Bakhshali MasoumiMohammad Hossain Banakar ,Javad Rastegar

    1 Department of Chemistry,Payame Noor University,Tehran 19395-4697,Iran

    2 Department of Chemistry,Yasouj University,Yasouj 7518-74831,Iran

    1.Introduction

    Dye contaminants dismissed from dyestuff,textile and plastic industries have to be treated due to their emphasis on water bodies and exclusively growing public concern over their carcinogenicity and toxicity.It has been rather laborious to treat dye contaminants by conventional physical,chemical and biological methods because of their complex aromatic structures.Since,innovative treatment technologies are being considered,a lot of physical,chemical and biological treatment methods such as photocatalytic degradation,advanced oxidation,electrochemical oxidation,ultra filtration and adsorption have been successfully applied for removal of dyes from waste waters[1–7].It is important to note that the toxic nature of dyes has resulted in only limited success in the usage of biological treatments,moreover electrochemical methods are rather expensive and usually dependent on the concentration of contaminates.While adsorption approach is simple,economical and widely used for the dye removal under moderate conditions.In this method an efficient sorbent with characteristics of simplicity in operation,high adsorption capacity and excellent removal efficiency is employed for elimination of dyes from wastewaters[8–13].Crystal violet(CV,Fig.1)or gentian violet is a triaminoarylmethane dye that has antifungal,antiseptic,antibacterial and anthelmintic properties and used as a histological stain and in Gram's process of classifying bacteria.Moreover,this dye has been found to be a mitotic poisoning agent,which is recalcitrant and carcinogenic and thus regarded as a biohazard[13].Therefore,on the basis of environmental criteria and toxicological concerns,it is essential to remove CV dye from wastewaters before its discharge[14–18].

    On the other hand,ionic liquids(ILs)are one of the most important class of organic salts which have emerged as promising media in different areas of chemical and industrial processes due to their unique properties such as high viscosity,low combustibility,negligible vapor pressure,excellent thermal stability,wide liquid range,high ability for dissolving a broad range of organic and inorganic compounds and high electrochemical window[18–20].Moreover,these compounds are also one of the most promising sorbents that offer the specificity required to separate hazardous materials and can be the aid of recycling of the synthetic dyes,plastics and metals from wastewaters[21–29].Despite the aforementioned advantages as the potential in fine-tuning their structure in order to enhance selectivity and the possibility of their reuse,ILs suffer from some drawbacks.These compounds are usually expensive and due to their high viscosity,their handling is often cumbersome and the corresponding reactions are limited by diffusion processes.Therefore it is economically desirable to reduce the amount of utilized ionic liquids in a typical chemical process.To overcome these restrictions,the concept of supported ionic liquid phases(SILPs)has been recently introduced.The preparation of SILPs is achieved by immobilization of ILs on both inorganic solids and organic polymer supportsviadifferent approaches such as simple impregnation,chemical attachment,co-condensation and encapsulation or pore trapping.Among the inorganic supports,particularly silica has the advantages of low cost and ease of preparation.Along this line,more recently we developed a new strategy for the chemical immobilization of ionic liquidsviaco-condensation and self-assembly ofalkylimidazolium ionic liquids under moderate acidic conditions.The prepared materials were applied as capable support in a number of chemical processes and showed nice efficiency and recyclability[23,31].In continuation of these studies,herein for the first time a novel amine-functionalized ionic liquid based organosilica(ILOS-NH2)is prepared,characterized and successfully applied as powerful sorbent for the removal of CV dye from wastewaters(Fig.2).

    Fig.1.Chemical structure of CV.

    2.Experimental

    2.1.Instruments and reagents

    The CV concentration evaluation was carried out using Jusco UV–visible spectrophotometer model V-530(Jasco,Japan)at a wavelength of 590 nm,while the pH/ion meter model-686 thermometer Metrohm was used for measurement of pH adjustment(Metrohm,Switzerland,Swiss).The morphology of the ILOS-NH2was taken by scanning electron microscopy model KYKY-EM 3200(China).The diffuse re flectance infrared Fourier transform(DRIFT)spectrumwas determined using a Brucker-Vector 22.Thermal gravimetric analysis(TGA)was conducted in an air flow using a Pheometric Scientific analyzer.The energy dispersive X-ray(EDX)spectra were determined using a Seron AIS 2300(Korea).All chemicals including NaOH,HCl,KCl and Crystal violet(CV)with the highest purity were purchased from Merck(Dermasdat,Germany).The stock CV solution was prepared by dissolving appropriate amounts of solid dye in double distilled water and the desired concentrations of test solutions were prepared by diluting the stock solution.All other chemicals were used as received and purchased from Merck or Fluka.

    2.2.Preparation of ionic liquid based organosilica supported propyl-amine(ILOS-NH2)

    The ILOS-NH2was prepared by simultaneous hydrolysis and co-condensation of 1,3-bis(3-trimethoxysilylpropyl)-imidazolium chloride(BTMSPIC)under acidic conditions followed by treatment with 3-aminopropyl-trimethoxysilane(Fig.2)[23–29].Firstly,the 1,3-bis(3-trimethoxysilylpropyl)imidazolium chloride(BTMSPIC)ionic liquid was prepared according to our previous reported procedure with a slight modification[23–31].Then,the BTMSPIC(50 mmol)was added in a flask containing 25 ml of deionized water and 105 ml of HCl(2.0 mmol·L?1)and stirred at 35 °C for 24 h.The mixture was then heated at100°C for72 h under static conditions.Next,the obtained material was completely washed with a 1:1 mixture of deionized water and ethanol solvents(4 times).The resulted sample was dried at 70°C for 12 h and denoted as ionic liquid based organosilica(ILOS).The ILOS(1 g)was then added into a flask containing toluene(30 ml)and stirred at room temperature.After complete dispersion of the ILOS in toluene,0.6 mmol of 3-aminopropyl-trimethoxysilane was added and it was re fluxed under argon atmosphere for 24 h.After cooling the reaction to room temperature,the resulted mixture was filtered and completely washed with ethanol.Finally,the obtained material was dried at 70°C overnight and denoted as ionic liquid based organosilica supported propyl-amine(ILOS-NH2).

    Fig.2.Preparation of amine-functionalized ionic liquid based organosilica(ILOS-NH2)material.

    2.3.Measurements of dye uptake

    The dye concentrations in the aqueous solution were estimated quantitatively using the linear regression equations obtained at different CV concentrations.The adsorption experiment was carried out in a stirring batch mode as follows:specified amounts of dye solution at a known concentration(10 mg·L?1)and initial pH of 8.0 with a known amount of adsorbent(0.05 g per 25 ml)were poured into the flask and maintained the desired stirring time(45.0 min)in temperature of(35±2)°C((308±2)K).At the end of the adsorption experiments,the sample was immediately centrifuged and analyzed.The experiments were also performed in the initial CV concentration range of 10–40 mg·L?1to obtain adsorption isotherms.The amount of adsorbed dye(qe,mg·g?1)was calculated by the following mass balance relationship:

    WhereC0andCe(mg·L?1)are the initial and equilibrium dye concentrations in aqueous solution,respectively,V(L)is the volume of the solution andW(g)is the mass of the adsorbent.

    3.Results and Discussion

    Aminopropyl containing ionic liquid based organosilica(ILOS-NH2)was prepared by simultaneous hydrolysis and co-condensation of 1,3-bis(3-trimethoxysilylpropyl)-imidazolium chloride(BTMSPIC)under acidic conditions followed by treatment with 3-aminopropyltrimethoxysilane(Fig.2)[23-31].The ILOS-NH2was characterized with several techniques such as diffuse re flectance infrared Fourier transform spectroscopy(DRIFTS),scanning electron microscopy(SEM),thermal gravimetric analysis(TGA)and energy dispersive X-ray analysis(EDAX).

    3.1.Characterization of ILOS-NH2

    DRIFT spectroscopy was used to study the surface functional groups of ILOS-NH2(Fig.3).The broad and strong bands appearing between 3400 and 3430 cm?1are corresponded to stretching vibration of O--H and N--H bonds of material surface[32,33].The bands at 1133 cm?1,1041 cm?1and 925 cm?1are respectively assigned to the asymmetric stretching vibration,symmetric stretching vibration and bending vibration of the siloxane(Si--O--Si)groups[34].Moreover,the absorption peaks of other organic functional groups are observed at 3137 cm?1(for unsaturated C--H stretching),3090,2931 and 2881 cm?1(aliphatic C--H stretching),1652 cm?1(C=N stretching of immidazolium ring),1557 cm?1(C=C stretching of immidazolium ring),1453 cm?1(C--H deformation vibrations),773 cm?1(for C--Si stretching vibrations)and 455 cm?1(bending vibration of Si--O--Si),respectively[23-29,35–37].The N--H bending vibration is also observed at 684 cm?1.These data con firm successful incorporation and/or immobilization of ionic liquid and aminopropyl organic groups onto/into material network.The results of energydispersive X-ray(EDX)spectroscopy elemental microanalysis of the ILOS-NH2before the adsorption of dye showed the presence of carbon,nitrogen,oxygen,silicon and chlorine in nanoparticles of the material(Fig.4a).After adsorption of CV,the intensity of carbon and nitrogen peaks,corresponding to dye molecule,are increased(Fig.4b).These observations strongly con firm the successful adsorption of the CV molecules onto/into the ILOS-NH2material.

    Thermal gravimetric analysis(TGA)of the ILOS-NH2was next carried out to investigate thermal stability of the material(Fig.5).This showed three mass losses in different temperature ranges.The first one(9.70%)observed at temperature below 130°C,can be attributed to the removal of water and methanol or ethanol solvents retained from synthesis process on the ILOS-NH2surface and/or occluded in the micro-or mesopores of the material.The second mass loss(19.23%)observed at the range of 280–360 °C is attributed to propylamine groups and that part of ionic liquid moieties which are located in the surface of the material.The third and main mass loss(36.31%)that took place between 360 and 660°C is corresponded to the ionic liquid moieties incorporated in the body of the solid network.These data are in good agreementwith DRIFT and EDX analyses and significantly con firm the successful supporting of aminopropyl and ionic liquid groups in the solid framework as well as prove high thermal stability of the material.The scanning electron microscopy(SEM)image of the ILOS-NH2was taken to study the surface morphology ofthe material(Fig.6).This showed the presence of spherical particles with high pores available on the surface and size distribution about 45–75 nm for the ILOS-NH2.These types of particles and pores make the material as efficient candidate for dye sorption.

    Fig.3.DRIFT spectrum of ILOS-NH2.

    Fig.4.Energy dispersive X-ray(EDX)spectroscopy of the ILOS-NH2(a)before and(b)after the adsorption of CV.

    3.2.Effect of pH

    The pH value of the dye solution has been recognized as an important factor in adsorption process,which in fluences not only the surface charge,the dissociation of functional groups on the active sites,the degree of ionization of the adsorbents,but also the dye chemistry[15,46].Solution pH affects the functional groups present in ILOS-NH2.Sorption of CV as a function of pH was studied over a pH range of 4–10 with CV concentration of 10 mg·L?1and adsorbent dose of 0.05 g per 25 ml.The experiments were conducted for 45 min of contact time in temperature of(35±2)°C(308±2)K.Fig.7a shows the effect of pH on the sorption of CV.As can be seen,the maximum uptake and removal of the CV was obtained at pH 8.0.Therefore,all subsequent studies were carried out at pH 8.0 as optimum pH.It was observed that the elimination of CV increases with increasing pH.At initial pH lower than 8.0,as a result of protonation of the OHand NH2functional groups,the ILOS-NH2surface gets positively charged and there would be a strong repulsion forces between the cationic dye molecules and ILOS-NH2surface,this would in turn decrease the sorption at lower pH values.On the other hand,high pH leads to deprotonation of the active adsorption sites on the ILOS-NH2surface,so the negatively charged sites dominate which results in an increase in the attraction forces and therefore increase the adsorption.Accordingly,it can be concluded that the adsorption of CV molecules is achievedviahydrogen bonding interactions between Si--OH and NH2groups of the ILOS-NH2with NH2groups of CV molecules.The effective π–π interactions between imidazolium ring of sorbent and aromatic rings of CV are additional ways for this successful adsorption(Fig.8).

    Fig.5.Thermal gravimetric analysis(TGA)of ILOS-NH2 material.

    Fig.6.Scanning electron microscopy(SEM)image of ILOS-NH2.

    3.3.Effect of contact time

    The kinetic experiments were performed at(35±2)°C to determine the rate of CV removal from the aqueous solutions by the ILOS-NH2and SiO2.The initial CV concentration was 10 mg·L?1and the pH value of solution was 8.0.In the case of ILOS-NH2it can be seen that the initial sorption rate was rapid because of high vacant surface area of adsorbent and the system has reached equilibrium about 45 min.While for SiO2the equilibrium time for the adsorption of dye was longer than 45 min.The rapid sorption at the initial contact time can be due to the quite high accessibility of the empty reactive sites of adsorbent,while at higher times it is difficult to occupy the remaining vacant surface sites due to repulsive interactions between the solute molecules on the solid and bulk phases.Up to 95%ofCVremovaloccurs at45 min.In addition,the equilibrium time of 45 min and under other optimal conditions,was tested on SiO2adsorbent.The result showed that after 45 min,dye uptake was only 64%that is much lower than those of the ILOS-NH2.The higher efficiency ofILOS-NH2in comparison with SiO2may be attributed to ionic liquid nature of ILOS-NH2which increases the adsorption capacity of the material through π–π interaction with dye molecules.

    3.4.Effect of adsorbent dose

    In fluence ofadsorbentdosage wasstudied by contacting initialconcentration of CV(10 mg·L?1)at the pH of 8.0 and stirring period of 45 min using 0.03–0.07 g of ILOS-NH2sorbent.The efficacy of sorbent dosage on adsorption of CV dye onto the sorbents was carried out and the actual results are shown in Fig.7c.Ascan be seen from this Figure,the percentage of dye uptake was found to increase proportionally with an increase in amount of ILOS-NH2.As shown the maximum removal percentage was obtained in the presence of 0.05 g of adsorbent.Accordingly,in the future experiments this amount was used under optimum conditions[37].

    3.5.Effect of initial dye concentration

    Fig.7.Effect of(a)pH;dye concentration:10 mg·L?1,adsorbent dose:0.05 g per 25 ml,time:45 min,stirrer speed:400 r·min?1 and temperature of(35 ± 2)°C(b)contact time;dye:10 mg·L?1,adsorbent dose:0.05 g per 25 ml,pH:8.0,stirring speed:400 r·min?1 and temperature of(35 ± 2)°C(c)adsorbent dosage;dye concentration:10 mg·L?1,pH:8.0,time:45 min,stirrer speed:400 r·min?1 and temperature of(35 ± 2) °C(d)initial dye concentration;adsorbent dose:0.05 g per 25 ml,pH:8.0,45 min agitation time at speed of 400 r·min?1 in temperature of(35 ± 2)°C on the removal of CV by ILOS-NH2 and SiO2.

    The effectiveness of initial CV concentration in the range of 10–40 mg·L?1on its uptake of dye was studied and the results are shown in Fig.7d.This study showed that with increasing the amount of dye,the uptake percentage and actual amount of adsorbed dye have opposite correlation.At lower CV concentrations,the ratio of adsorbent to the CV molecules is high,which causes an increase in dye uptake and the transfer to the adsorbent surface by migrating and convection.The lower adsorption yield at high concentration of CV may be attributed to saturation of surface active sites as well as possible repulsive interactions between the dye molecules on the solid and bulk phases.The percentage difference of dye removal by ILOS-NH2and SiO2dose is also shown in Fig.7d.This figure successfully shows that the removal dye capacity of ILOS-NH2is much better than SiO2.

    Fig.8.Proposed hydrogen bonding and π–π interaction for the adsorption of CV on ILOS-NH2.

    3.6.Equilibrium isotherms

    Adsorption equilibrium isotherm is based on the mathematical relationship between amounts of adsorbed per gram of adsorbent(qe,mg·g?1)and equilibrium solution concentration(Ce,mg·L?1)at a fixed temperature[38].The following isotherms are considered for the present study.

    3.6.1.Langmuir isotherm

    The Langmuir isotherm is valid for monolayer adsorption of solute from liquid solution without change in the plane of the surface[39].Based on the linear form of Langmuir isotherm model,the values ofKa(the Langmuir adsorption constant(L·mg?1))andQm(theoretical maximum adsorption capacity(mg·g?1))were obtained from the intercept and slope of the plot ofCe/qevs Ce,respectively(Fig.9 a).The high correlation coefficient with maximum monolayer capacity shows strong positive evidence on the fitness ofequilibriumdata ofadsorption of CV using the Langmuir model(Table 1).

    Fig.9.(a)The Langmuir plotforthe adsorption ofCVon ILOS-NH2(adsorbentdose:0.05 g per 25 ml,pH:8.0,45 min agitation time atspeed of400 r·min?1 in temperature of(35±2)°C).(b)pseudo-second order kinetics plot for the adsorption of CV on ILOS-NH2(dye concentration:10 mg·L?1,adsorbent dose:0.05 g per 25 ml,pH:8.0,stirring speed:400 r·min?1 and temperature of(35 ± 2)°C).

    Table 1Isotherm constant parameters and correlation coefficients calculated for the adsorption of CV onto ILOS-NH2 and SiO2

    3.6.2.Freundlich isotherm

    The Freundlich isotherm model is applicable fornon-idealheterogeneous sorption[40].The applicability of the Freundlich adsorption isotherm was assessed by plotting lnqeversuslnCe(Table 1).KFstrongly gives useful information on the bonding energy and/or distribution coefficientand represents the quantity ofdye adsorbed onto an adsorbent.1/nshows adsorption intensity(surface heterogeneity)that takes value ranges between 0 and 1.When the value of 1/nis equalto unity,the adsorption is linear,while the value of 1/n<1 indicates the chemically driven adsorption process and the value of 1/n>1 indicates the physically driven process of adsorption[41].The values of 1/n(0.27)give an indication of the favorability of adsorption and high tendency of CV for the adsorption onto ILOS-NH2.

    3.6.3.Tempkin isotherm

    The heat of the adsorption and the adsorbent–adsorbate interaction were evaluated by using Temkin isotherm model.In this model,Bis the Temkin constant related to heat of the adsorption(J·mol?1),Tis the absolute temperature(K),Ris the universal gas constant(8.314 J·mol?1·K?1)andKTis the equilibrium binding constant(L·mg?1).Values ofB1andKTwere calculated from the plot ofqeagainst lnCe[42].The value of the correlation coefficient(0.982)of this model is lower than those of the Langmuir model(Table 1).Therefore,the Temkin isotherm represents a worse fit of experimental data than Langmuir isotherms.

    3.7.Kinetics evaluation

    In order to study the kinetic process that controls the adsorption mechanism,the experimental data presented in Table 2 were investigated using the Lagergren pseudo first and second order,Elovich and intraparticle diffusion models[43–48].The pseudo- first-order model can be expressed as:

    Table 2Kinetic parameters for the adsorption of CV onto ILOS-NH2 and SiO2

    Whereqeis amount of CV adsorbed onto ILOS-NH2(mg·g?1)at equilibrium time andqtis at any time,t(min);andk1is the equilibrium rate constant(min?1).By plotting ln(qe?qt)versustime one can obtain the values ofk1andqefrom the slope and intercept,respectively.Pseudo-second-order kinetics can be expressed as:

    Wherek2is the rate constant for pseudo-second-order kinetics(g·mg?1·min?1).For dye concentrations of 10(mg·L?1)and the optimized pH(8.0)it's obvious that the kinetics data fitted very well with the pseudo-second-order model with the correlation coefficient values,R2≈1.0 and show good agreement with experimental data(Fig.9b).The Elovich equation is as follow:

    Whereqtis the sorption capacity attimet(mg·g?1),α and β are the initial sorption rate(mg·g?1·min?1)and desorption constant(g·mg?1),respectively.Thus,the constants can be obtained from the slop and the intercept,plotting ofqtagainst lnt.Adsorption is a multistep procedure included transport of the adsorbate from the aqueous phase to the surface of adsorbent then followed by diffusion of the adsorbate into the pore interiors.If the experiment is a batch system,there is the chance that the transportation of adsorbate from solution into pores of the adsorbent is the rate-controlling step.This eventuality was examined in terms of a relationship between the quantity of dye adsorbed and the square root of time.Whereas the dye is perhaps transported from its aqueous solution to the sorbent by intraparticle diffusion,so the intraparticle diffusion is other kinetic pattern should be used to investigate the rate-limiting step for dye sorption onto adsorbent.The intra-particular diffusion is generally expressed by the following equation:

    wherekidis the intraparticle diffusion constant(mg·g?1·min?0.5)andCis a constant related to the thickness of the boundary layer(mg·g?1).The values ofKidwere calculated from the slopes ofqtversus t0.5whileCwas obtained from its intercept.The kinetics parameters obtained from this study are listed in Table 2.

    3.8.Thermodynamic studies

    The temperature has two major effects on the adsorption process.On one hand,increasing the temperature can enhance the diffusion of the adsorbate molecules.On the other hand,changing the temperature will change the equilibrium capacity of the adsorbent for a particular adsorbate[49].The effect of temperature on the adsorption of CV on ILOS-NH2adsorbent was investigated at 293–333 K.When the solution temperature increased from20 °C to 35 °C,the adsorption capacity ofCV increased to 10.63 mg·g?1.At temperature greater than 35 °C,the adsorption capacity did not change with variations in temperature.There are three thermodynamic parameters that must be considered to characterize the adsorption process which include the standard enthalpy(ΔH0),standard free energy(ΔG0)and standard entropy(ΔS0).The relationships among these parameters are described by the following equations:

    whereKcis called the adsorption affinity and is obtained fromqe/Ceequation,qeis the amount of dye adsorbed per unit mass of adsorbent(mg·g?1),Ceis the equilibrium concentration(mg·L?1)andTis temperature in kelvin.Combination of Eqs.(6)and(7)gives;

    The plots of lnKCagainst 1/Tand the values of ΔH0and ΔS0can be estimated fromthe slope and intercept.The values ofΔG0were negative indicating that the adsorption of CV on the ILOS-NH2is feasible and spontaneous.The value of ΔH0was observed to be positive(11.38 kJ·mol?1)for the adsorption of CV corresponding to an endothermic process.The positive value of ΔS0suggests that the adsorbed CV molecules remain more randomly over the adsorbent surface[50].The thermodynamic parameters obtained from this study are listed in Table 3.

    Table 3Thermodynamic parameters for the adsorption of CV dye on adsorbent

    3.9.Various adsorbent for CV removal

    The maximum adsorption capacity of the ILOS-NH2for removal of CV was compared with those reported in previous literatures for different adsorbents,as shown in Table 4.The result showed that the present absorbentis much more efficientthan otheradsorbents and can remove CV dye from wastewater in nearly short time and quite low dosage of sorbent(0.05 g per 25 ml of sorbent).The high adsorption capacity of ILOS-NH2may be attributed to its excellent porous structure as well as the presence of ionic liquid and amine functional groups in the material framework.

    Table 4Comparison of adsorption results of previously reported CV removal with the proposed adsorbent

    4.Conclusions

    In conclusion,forthe firsttime a novelaminopropyl-containing ionic liquid based organosilica(ILOS-NH2)was prepared,characterized and successfully applied as effective sorbent in the removal of CV dye.The DRIFT spectrum con firmed well incorporation and immobilization of ionic liquid and propyl-amine functional groups into/onto material framework.The TGA also proved high thermal stability of the material.The experimental data showed that the ILOS-NH2had a great capacity absorbance for removing CV dye from wastewater in almost short time and low dosage of sorbent(0.05 g per 25 ml of adsorbent).Comparative study also showed that the efficiency of ILOS-NH2was much better than those of SiO2attributing to the ionic liquid nature of the ILOS-NH2.The achievement of adsorption process was attributed to the π–π interactions and hydrogen bonding between sorbent and dye molecules.The isotherm models such as Langmuir,Freundlich and Temkin were also evaluated and the equilibrium data were best described by the Langmuir model.The process kinetics was successfully fitted to the pseudo-second-orderkinetic model.The temperature effect was also used to calculate the change in activation enthalpy(ΔH0),free energy of adsorption(ΔG0),and entropy(ΔS0).This fundamental study will be helpful for the technology of removing dyes from wastewater.

    Acknowledgments

    The authors acknowledge the Graduate Schooland Research Council of the Payame Noor University(78257),the Yasouj University(6691)and Iran National Science Foundation(66489)(INSF)for supporting this work.

    [1]M.C.S.Reddy,L.Sivaramakrishna,A.Varada Reddy,The use of an agricultural waste material,Jujuba seeds for the removal of anionic dye(Congo red)from aqueous,J.Hazard.Mater.203–204(2012)118–127.

    [2]V.S.Mane,P.V.Vijay Babu,Kinetic and equilibrium studies on the removal of Congo red from aqueous solution using eucalyptus wood(eucalyptus globules)saw dust,J.Taiwan Inst.Chem.Eng.44(2013)81–88.

    [3]M.Roosta,M.Ghaedi,M.Mohammadi,Removal of Alizarin Red S by gold nanoparticles loaded on activated carbon combined with ultrasound device:Optimization by experimental design methodology,Powder Technol.267(2014)134–144.

    [4]S.Mona,A.Kaushik,C.P.Kaushik,Waste biomass ofNostoc linckiaas adsorbent of crystal violet dye:Optimization based on statistical model,Int.Biodeterior.Biodegrad.65(2011)513–521.

    [5]J.S.Do,M.L.Chen,Decolourization of dye-containing solutions by electrocoagulation,J.Appl.Electrochem.24(1994)785–790.

    [6]W.Au,S.Pathak,C.I.Collie,T.S.Hsu,Cytogenetic toxicity of gentian violet and crystal violet on mammalian cells in vitro,Mutat.Res.58(1978)269–276.

    [7]M.Baek,C.Olakitan Ijagbemi,S.Jin,D.Kim,Removal of malachite green from aqueous solution using degreased coffee bean,J.Hazard.Mater.176(2010)820–828.

    [8]F.D.Ardejani,K.H.Badii,N.Y.Limaee,N.M.Mahmoodi,M.Arami,S.Z.Shafaei,A.R.Mirhabibi,Numerical modeling and laboratory studies on the removal of Direct Red 23 and Direct Red 80 dyes from textile ef fluents using orange peel,a low cost adsorbent,Dyes Pigments73(2007)178–185.

    [9]E.Bayram,E.Ayranci,Electrochemically enhanced removal of polycyclic aromatic basic dyes from dilute aqueous solutions by activated carbon cloth electrodes,Environ.Sci.Technol.44(2010)6331–6336.

    [10]A.Deriszadeh,M.M.Husein,T.G.Harding,Produced water treatment by micellarenhanced ultra filtration,Environ.Sci.Technol.44(2010)1767–1772.

    [11]C.Kaewprasit,E.Hequet,N.Abidi,J.P.Gourlot,Application of methylene blue adsorption to cotton fiber specific surface area measurement:Part I.Methodology,J.Cotton Sci.2(1998)164–173.

    [12]K.Kannan,M.M.Sundaram,Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—A comparative study,Dyes Pigments51(2001)25–40.

    [13]R.Han,D.Ding,Y.Xu,W.Zou,Y.Wang,Y.Li,L.Zou,Use of rice husk for the adsorption of Congo red from aqueous solution in column mode,Bioresour.Technol.99(2008)2938–2946.

    [14]S.C.R.Santos,V.J.P.Vilar,R.A.R.Boaventura,Waste metal hydroxide sludge as adsorbent for a reactive dye,J.Hazard.Mater.153(2008)999–1008.

    [15]Z.Bekci,Y.Seki,L.Cavas,Removal of malachite green by using an invasive marine algaCaulerpa racemosavar.Cylindracea,J.Hazard.Mater.161(2009)1454–1460.

    [16]W.Cheng,S.G.Wang,L.Lu,W.X.Gong,X.W.Liu,B.Y.Gao,H.Y.Zhang,Removal of malachite green(MG)from aqueous solutions by native and heat-treated anaerobic granular sludge,Biochem.Eng.J.39(2008)538–546.

    [17]A.Mahdavi Talarposhti,T.Donnelly,G.K.Anderson,Color removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor,Water Res.35(2001)425–432.

    [18]M.Petkovic,K.R.Seddon,L.P.N.Rebelo,C.S.Pereira,Ionic liquids:A pathway to environmental acceptability,Chem.Soc.Rev.40(2011)1383–1403.

    [19]A.B.Dos Santos,F.J.Cervantes,J.B.Van Lier,Review paper on currenttechnologies for decolourisation of textile wastewaters:Perspectives for anaerobic biotechnology,Bioresour.Technol.98(2007)2369–2385.

    [20]C.Chiappe,D.Pieraccini,Ionic liquids:Solvent properties and organic reactivity,J.Phys.Org.Chem.18(2005)275–297.

    [21]H.Weingartner,Understanding ionic liquids at the molecular level:Facts,problems,and controversies,Angew.Chem.Int.Ed.47(2008)654–670.

    [22]I.Cota,R.Gonzalez-Olmos,M.Iglesias,F.Medina,New short aliphatic chain ionic liquids:Synthesis,physical properties,and catalytic activity in aldol condensations,Phys.Chem.B111(2007)12468–12477.

    [23]B.Karimi,D.Elhamifar,J.H.Clark,A.J.Hunt,Ordered mesoporous organosilica with ionic-liquid framework:An efficient and reusable support for the palladiumcatalyzed Suzuki-Miyaura coupling reaction in water,Chem.Eur.J.16(2010)8047–8053.

    [24]B.Karimi,D.Elhamifar,O.Yari,M.Khorasani,H.Vali,J.H.Clark,A.J.Hunt,Synthesis and characterization of alkyl-imidazolium based periodic mesoporous organosilicas:A versatile host for immobilization of perruthenate(RuO4?)in aerobic oxidation of alcohols,Chem.Eur.J.18(2012)13520–13530.

    [25]D.Elhamifar,B.Karimi,J.Rastegar,M.H.Banakar,Palladium-containing ionic liquidbased ordered mesoporous organosilica:An efficient and reusable catalyst for the heck reaction,ChemCatChem5(2013)2418–2424.

    [26]D.Elhamifar,A.Shábani,Manganese-containing periodic mesoporous organosilica with ionic-liquid framework(Mn@PMO-IL):A powerful,durable,and reusable nanocatalyst for the Biginelli reaction,Chem.Eur.J.20(2014)3212–3217.

    [27]D.Elhamifar,B.Karimi,A.Moradi,J.Rastegar,Synthesis of sulfonic acid containing ionic-liquid-based periodic mesoporous organosilica and study of its catalytic performance in the esterification of carboxylic acids,ChemPlusChem79(2014)1147–1152.

    [28]D.Elhamifar,M.Nasr-Esfahani,B.Karimi,R.Moshkelgosha,A.Shábani,Ionic liquid and sulfonic acid based bifunctional periodic mesoporous organosilica(BPMO–IL–SO3H)as a highly efficient and reusable nanocatalyst for the Biginelli reaction,ChemCatChem6(2014)2593–2599.

    [29]D.Elhamifar,F.Hosseinpoor,B.Karimi,S.Hajati,Ionic liquid-based ordered mesoporous organosilica-supported copper as a novel and efficient nanocatalyst for the one-pot synthesis of Biginelli products,Microporous Mesoporous Mater.204(2015)269–275.

    [30]B.Karimi,A.Maleki,D.Elhamifar,J.H.Clark,A.J.Hunt,Self-assembled organic–inorganic hybrid silica with ionic liquid framework:A novel support for the catalytic enantioselective Strecker reaction of imines using Yb(OTf)3–pybox catalyst,Chem.Commun.46(2010)6947–6949.

    [31]D.Elhamifar,F.Shojaeipoor,M.Roosta,Self-assembled ionic-liquid based organosilica(SAILBO)as a novel and powerful adsorbent for removal of malachite green from aqueous solution,J.Taiwan Inst.Chem.Eng.59(2016)267–274.

    [32]B.Jankovic,I.Smiciklas,J.Stajic-Trosic,D.Antonovic,Thermal characterization and kinetic analysis of non-isothermal decomposition process of Bauxite red mud.Estimation of density distribution function of the apparent activation energy,Int.J.Miner.Process.123(2013)46–59.

    [33]M.K.Sahu,S.Mandal,S.S.Dash,P.Badhai,R.K.Patel,RemovalofPb(II)from aqueous solution by acid activated red mud,J.Environ.Chem.Eng.1(2013)1315–1324.

    [34]C.Kannan,T.Sundaram,T.Palvannan,Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution,J.Hazard.Mater.157(2008)137–145.

    [35]A.A.Jalil,S.Triwahyono,M.R.Yaakob,Z.Z.A.Azmi,N.Sapawe,N.H.N.Kamarudin,H.D.Setiabudi,N.F.Jaafar,S.M.Sidik,S.H.Adam,B.H.Hameed,Utilization of bivalve shell-treatedZea maysL.(maize)husk leaf as a low-cost biosorbent for enhanced adsorption of malachite green,Bioresour.Technol.120(2012)218–224.

    [36]W.Ma,X.Y.Song,Y.Q.Pan,Z.H.Cheng,G.Xin,B.D.Wang,X.G.Wang,Adsorption behavior of crystal violet onto opal and reuse feasibility of opal-dye sludge for binding heavy metals from aqueous solutions,Chem.Eng.J.193(2012)381–390.

    [37]M.Roosta,M.Ghaedi,A.Daneshfar,R.Sahraei,A.Asghari,Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology,Ultrason.Sonochem.21(2014)242–252.

    [38]M.Ghaedi,D.Elhamifar,M.Roosta,R.Moshkelgosha,Ionic liquid based periodic mesoporous organosilica:An efficient support for removal of sunset yellow from aqueous solutions under ultrasonic conditions,J.Ind.Eng.Chem.20(2014)1703–1712.

    [39]Y.S.Ho,G.McKay,D.A.J.Wase,C.F.Foster,Study on the sorption of divalent metal ions onto peat,Adsorpt.Sci.Technol.18(2000)639–650.

    [40]H.M.F.Freundlich,U ber die adsorption in losungen,Z.Phys.Chem.57(1906)385–470.

    [41]S.K.Theydan,M.J.Ahmed,Adsorption of methylene blue onto biomass-based activated carbon by FeCl3activation:Equilibrium,kinetics,and thermodynamic studies,J.Anal.Appl.Pyrolysis97(2012)116–122.

    [42]M.J.Temkin,V.Pyzhev,Kinetics of ammonia synthesis on promoted iron catalyst,Acta Physicochim.URSS12(1940)327–356.

    [43]S.Lagergren,A bout the theory of so called adsorption of soluble substances,Ksver.Veterskapsakad.Handl.24(1898)1–6.

    [44]S.Azizian,Kinetic models of sorption:A theoretical analysis,J.Colloid Interface Sci.276(2004)47–52.

    [45]S.Azizian,R.Naviri-fallah,A new empirical rate equation for adsorption kinetics at solid/solution interface,Appl.Surf.Sci.256(2010)5153–5156.

    [46]S.Azizian,H.Bashiri,Adsorption kinetics at the solid/solution interface:Statistical rate theory at initial times of adsorption and close to equilibrium,Langmuir24(2008)11669–11676.

    [47]M.M.Brdar,A.A.Takaci,M.B.Sciban,D.Z.Rakic,Isotherms for the adsorption of Cu(II)onto lignin:Comparison of linear and non-linear methods,Hem.Ind.66(2012)497–503.

    [48]S.Khansorthong,M.Hunsom,Remediation of wastewater from pulp and paper mill industry by the electrochemical technique,Chem.Eng.J.151(2009)228–234.

    [49]M.Alkan,M.Dogan,Y.Turhan,O.Demirba?,P.Turan,Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions,Chem.Eng.J.139(2008)213–223.

    [50]A.Mittal,J.Mittal,A.Malviya,D.Kaur,V.K.Gupta,Adsorption of hazardous dye crystal violet from wastewater by waste materials,J.Colloid Interface Sci.343(2010)463–473.

    [51]R.Malarvizhi,Y.S.Ho,The in fluence of pH and the structure of the dye molecules on adsorption isotherm modeling using activated carbon,Desalination264(2010)97–101.

    [52]T.C.R.Bertolini,J.C.Izidoro,C.P.Magdalena,D.A.Fungaro,Adsorption of crystal violet dye from aqueous solution onto zeolites from coal fly and bottom ashes,Orbital Electron.J.Chem.5(2013)179–191.

    [53]R.Gandhimathi,S.T.Ramesh,V.Sindhu,P.V.Nidheesh,Single and tertiary system dye removal from aqueous solution using bottom ash:Kinetic and isotherm studies,Iran J.Energy Environ.3(2012)52–62.

    [54]E.Eren,B.Afsin,Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated sepiolite surfaces,Dyes Pigments73(2007)162–167.

    av播播在线观看一区| 亚洲国产精品成人久久小说| 国产欧美另类精品又又久久亚洲欧美| 国产精品一区二区在线观看99 | 亚洲av成人av| 国产爱豆传媒在线观看| 亚洲精品久久久久久婷婷小说 | 色哟哟·www| 久久99蜜桃精品久久| 国产白丝娇喘喷水9色精品| a级一级毛片免费在线观看| 国产精品女同一区二区软件| 亚洲精品日韩在线中文字幕| 天堂网av新在线| 久久久国产成人精品二区| 卡戴珊不雅视频在线播放| 爱豆传媒免费全集在线观看| 男女啪啪激烈高潮av片| 国产精品久久久久久久电影| 国产欧美日韩精品一区二区| 老司机福利观看| 非洲黑人性xxxx精品又粗又长| 性色avwww在线观看| 日韩av在线大香蕉| 亚洲国产欧美在线一区| 中文欧美无线码| 国产综合懂色| 亚洲国产欧美人成| 一区二区三区高清视频在线| 国内精品一区二区在线观看| 欧美日本亚洲视频在线播放| 国产精品一区二区三区四区久久| 免费观看的影片在线观看| 久久久国产成人精品二区| 天堂网av新在线| 亚洲国产精品合色在线| 2022亚洲国产成人精品| 亚洲精品色激情综合| 99九九线精品视频在线观看视频| 亚洲国产精品成人久久小说| 秋霞伦理黄片| 成人毛片60女人毛片免费| 少妇丰满av| 午夜亚洲福利在线播放| 91精品国产九色| 在线播放无遮挡| 成年女人看的毛片在线观看| 日韩三级伦理在线观看| 日本欧美国产在线视频| 国产综合懂色| 身体一侧抽搐| 国产国拍精品亚洲av在线观看| 亚洲五月天丁香| 中文字幕亚洲精品专区| 岛国毛片在线播放| 少妇人妻一区二区三区视频| 网址你懂的国产日韩在线| 日韩人妻高清精品专区| 国产一区有黄有色的免费视频 | 变态另类丝袜制服| 久久99热这里只有精品18| 少妇人妻一区二区三区视频| 欧美又色又爽又黄视频| 黄色一级大片看看| 日日摸夜夜添夜夜添av毛片| 国产探花在线观看一区二区| 十八禁国产超污无遮挡网站| 男插女下体视频免费在线播放| 成人三级黄色视频| 波野结衣二区三区在线| 可以在线观看毛片的网站| 欧美3d第一页| 亚洲av成人精品一区久久| 99视频精品全部免费 在线| 久久精品夜夜夜夜夜久久蜜豆| 国产黄色小视频在线观看| 久久精品久久久久久久性| 日韩欧美在线乱码| 97人妻精品一区二区三区麻豆| 国产高清国产精品国产三级 | 久久久午夜欧美精品| 国产精品日韩av在线免费观看| 国产真实乱freesex| 亚洲三级黄色毛片| 久久欧美精品欧美久久欧美| 亚洲av一区综合| 又爽又黄无遮挡网站| 91狼人影院| 汤姆久久久久久久影院中文字幕 | 国产精品一区二区性色av| 秋霞伦理黄片| 村上凉子中文字幕在线| 在线观看av片永久免费下载| 亚洲精品aⅴ在线观看| 精品人妻偷拍中文字幕| 精品一区二区三区人妻视频| 身体一侧抽搐| 三级国产精品欧美在线观看| 成人高潮视频无遮挡免费网站| 99热全是精品| 91在线精品国自产拍蜜月| 亚洲熟妇中文字幕五十中出| 亚洲伊人久久精品综合 | 色尼玛亚洲综合影院| 网址你懂的国产日韩在线| 国产精品av视频在线免费观看| av免费在线看不卡| 女人久久www免费人成看片 | 国产美女午夜福利| 亚洲国产欧美人成| 精品久久久久久电影网 | 男插女下体视频免费在线播放| 精品久久久久久久久亚洲| 久久亚洲国产成人精品v| 国产精品嫩草影院av在线观看| 美女xxoo啪啪120秒动态图| 深夜a级毛片| av又黄又爽大尺度在线免费看 | 最近2019中文字幕mv第一页| 日本黄色片子视频| 99久久精品一区二区三区| 国内精品一区二区在线观看| 亚洲国产欧洲综合997久久,| 干丝袜人妻中文字幕| 亚洲国产精品合色在线| 又粗又硬又长又爽又黄的视频| 国产黄色视频一区二区在线观看 | 18禁在线无遮挡免费观看视频| 国产在线一区二区三区精 | 色播亚洲综合网| 在线播放国产精品三级| 午夜日本视频在线| 97热精品久久久久久| 国产色婷婷99| 婷婷色综合大香蕉| 最后的刺客免费高清国语| 成人综合一区亚洲| 深夜a级毛片| 国产精品久久视频播放| 精品国内亚洲2022精品成人| 只有这里有精品99| 午夜老司机福利剧场| 亚洲丝袜综合中文字幕| 婷婷色综合大香蕉| 在现免费观看毛片| 欧美日本视频| 国产成人91sexporn| 国产片特级美女逼逼视频| 午夜免费男女啪啪视频观看| 久久这里只有精品中国| 成人性生交大片免费视频hd| 久久久久国产网址| 亚洲av成人av| 国产亚洲av嫩草精品影院| 一级黄片播放器| 成人亚洲精品av一区二区| 嫩草影院入口| 午夜a级毛片| 精品不卡国产一区二区三区| 亚洲国产精品国产精品| 国产精品一区www在线观看| 中文乱码字字幕精品一区二区三区 | 五月玫瑰六月丁香| 少妇人妻精品综合一区二区| 国产黄片美女视频| 亚洲av免费在线观看| 久99久视频精品免费| 亚洲,欧美,日韩| 搡女人真爽免费视频火全软件| 国产精品嫩草影院av在线观看| 亚洲欧美成人精品一区二区| 丰满人妻一区二区三区视频av| 最近2019中文字幕mv第一页| av天堂中文字幕网| 中文字幕熟女人妻在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲电影在线观看av| 国产精品国产三级国产av玫瑰| 精品一区二区三区视频在线| 国产成人午夜福利电影在线观看| 国产精品av视频在线免费观看| 男人的好看免费观看在线视频| 精品久久久久久久人妻蜜臀av| 久久国产乱子免费精品| 午夜爱爱视频在线播放| 成人午夜精彩视频在线观看| 精品不卡国产一区二区三区| 午夜福利网站1000一区二区三区| 欧美不卡视频在线免费观看| 亚洲欧美精品综合久久99| 熟女人妻精品中文字幕| 六月丁香七月| 亚洲内射少妇av| av在线天堂中文字幕| 精品免费久久久久久久清纯| 精品一区二区三区视频在线| 欧美极品一区二区三区四区| 赤兔流量卡办理| 亚洲欧美精品自产自拍| 国产一区二区在线av高清观看| 国产精品熟女久久久久浪| 国产精品不卡视频一区二区| 国产精品一区二区三区四区久久| 精品久久久久久成人av| 国产精品国产三级专区第一集| 亚洲国产精品成人综合色| 大又大粗又爽又黄少妇毛片口| 国产精品无大码| 99久久精品国产国产毛片| 欧美日本视频| 国产精品一区二区三区四区久久| 国产精品久久电影中文字幕| 日本五十路高清| 日韩高清综合在线| 不卡视频在线观看欧美| 久久久久久久午夜电影| 观看免费一级毛片| 精品久久久久久久久亚洲| 色综合亚洲欧美另类图片| 国产在视频线精品| 日韩国内少妇激情av| 亚洲av免费在线观看| 一级av片app| 久久精品91蜜桃| 免费看美女性在线毛片视频| 免费一级毛片在线播放高清视频| 亚洲av男天堂| 久久精品国产99精品国产亚洲性色| 高清午夜精品一区二区三区| 国产黄片视频在线免费观看| 精品久久久久久久人妻蜜臀av| 久久这里只有精品中国| 成人鲁丝片一二三区免费| 国产精品久久久久久久电影| 亚洲最大成人av| 99久国产av精品| 内射极品少妇av片p| 国产熟女欧美一区二区| av线在线观看网站| 亚洲在线自拍视频| 麻豆av噜噜一区二区三区| 精品人妻熟女av久视频| 非洲黑人性xxxx精品又粗又长| 国产麻豆成人av免费视频| 国产亚洲一区二区精品| 免费看日本二区| 人妻制服诱惑在线中文字幕| 国产乱人视频| 国国产精品蜜臀av免费| 久久99热6这里只有精品| 成人欧美大片| 日本免费一区二区三区高清不卡| 日韩精品有码人妻一区| 免费观看人在逋| 国产精品久久久久久久久免| 一个人看的www免费观看视频| 麻豆国产97在线/欧美| 免费黄网站久久成人精品| 日韩av不卡免费在线播放| 最近手机中文字幕大全| 少妇高潮的动态图| 日本爱情动作片www.在线观看| 中文字幕久久专区| 高清日韩中文字幕在线| 99热这里只有精品一区| 亚洲自拍偷在线| 在线免费十八禁| 欧美最新免费一区二区三区| 色播亚洲综合网| 日日摸夜夜添夜夜添av毛片| 国产视频首页在线观看| 国产精品电影一区二区三区| 97超视频在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 纵有疾风起免费观看全集完整版 | 国产成人a∨麻豆精品| av在线亚洲专区| 日本猛色少妇xxxxx猛交久久| 又爽又黄a免费视频| 日本午夜av视频| 国产美女午夜福利| 国产精品综合久久久久久久免费| 欧美成人一区二区免费高清观看| 看十八女毛片水多多多| 亚洲av熟女| 亚洲成av人片在线播放无| 精品午夜福利在线看| 99热这里只有精品一区| 精品久久久久久久久亚洲| 免费在线观看成人毛片| 日韩人妻高清精品专区| 人妻少妇偷人精品九色| 1000部很黄的大片| 欧美色视频一区免费| 三级男女做爰猛烈吃奶摸视频| 免费看美女性在线毛片视频| 亚洲国产日韩欧美精品在线观看| 精品一区二区免费观看| 晚上一个人看的免费电影| 国产精品国产三级专区第一集| 国产片特级美女逼逼视频| 在线天堂最新版资源| 99国产精品一区二区蜜桃av| 日韩,欧美,国产一区二区三区 | 少妇高潮的动态图| 丝袜美腿在线中文| 人妻制服诱惑在线中文字幕| 久久精品久久精品一区二区三区| 日本熟妇午夜| 精品免费久久久久久久清纯| 日韩国内少妇激情av| 激情 狠狠 欧美| 免费人成在线观看视频色| 国产私拍福利视频在线观看| av线在线观看网站| 色综合亚洲欧美另类图片| 午夜精品国产一区二区电影 | 久久亚洲国产成人精品v| 国产亚洲午夜精品一区二区久久 | 晚上一个人看的免费电影| 身体一侧抽搐| 少妇丰满av| 身体一侧抽搐| av在线天堂中文字幕| 国产在线一区二区三区精 | 久久99蜜桃精品久久| 一个人观看的视频www高清免费观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品自拍成人| 免费搜索国产男女视频| 成人欧美大片| 久久精品久久久久久噜噜老黄 | 夜夜看夜夜爽夜夜摸| 九九热线精品视视频播放| 国产高清三级在线| 日韩精品青青久久久久久| 视频中文字幕在线观看| 日韩欧美国产在线观看| av在线观看视频网站免费| 亚洲综合精品二区| 岛国毛片在线播放| 久久久精品94久久精品| 国产精品久久电影中文字幕| 美女脱内裤让男人舔精品视频| 国产不卡一卡二| 亚洲av成人av| 久久精品影院6| 成人漫画全彩无遮挡| 欧美97在线视频| 免费不卡的大黄色大毛片视频在线观看 | 一二三四中文在线观看免费高清| 天天一区二区日本电影三级| 国产黄片视频在线免费观看| 国产精品.久久久| 日日干狠狠操夜夜爽| 国产伦在线观看视频一区| 国产视频首页在线观看| 亚洲国产日韩欧美精品在线观看| 一级毛片久久久久久久久女| 国产成人freesex在线| 在线观看美女被高潮喷水网站| 亚洲无线观看免费| 日日干狠狠操夜夜爽| 国产又色又爽无遮挡免| 高清日韩中文字幕在线| 99久国产av精品| 日韩人妻高清精品专区| 久久久精品欧美日韩精品| 日本午夜av视频| 久久精品久久精品一区二区三区| 精品久久久久久久久久久久久| 久久精品91蜜桃| 嫩草影院入口| 亚洲性久久影院| 男女边吃奶边做爰视频| av在线老鸭窝| 黄片wwwwww| 国产单亲对白刺激| 两个人的视频大全免费| 国产免费视频播放在线视频 | 国产v大片淫在线免费观看| .国产精品久久| 久久久精品欧美日韩精品| 国产成人精品一,二区| 热99在线观看视频| 国产乱来视频区| 国产高清不卡午夜福利| 一级二级三级毛片免费看| 久久久精品大字幕| 久久精品夜夜夜夜夜久久蜜豆| 麻豆av噜噜一区二区三区| 永久免费av网站大全| 亚洲欧美清纯卡通| 在线观看66精品国产| av视频在线观看入口| 亚洲欧美成人精品一区二区| 日产精品乱码卡一卡2卡三| 69av精品久久久久久| 少妇的逼水好多| 草草在线视频免费看| 热99re8久久精品国产| 亚洲电影在线观看av| av卡一久久| 熟妇人妻久久中文字幕3abv| 少妇的逼好多水| 尤物成人国产欧美一区二区三区| 两个人的视频大全免费| av在线播放精品| 国产伦精品一区二区三区四那| av免费在线看不卡| 亚洲美女搞黄在线观看| 欧美一区二区精品小视频在线| 一级毛片久久久久久久久女| 啦啦啦观看免费观看视频高清| 国产欧美另类精品又又久久亚洲欧美| 国产欧美日韩精品一区二区| 欧美一区二区亚洲| 黄色一级大片看看| 日韩欧美精品免费久久| 成人毛片60女人毛片免费| 最近的中文字幕免费完整| 日产精品乱码卡一卡2卡三| 久久精品国产99精品国产亚洲性色| 少妇被粗大猛烈的视频| 国产综合懂色| 国产国拍精品亚洲av在线观看| 亚洲人成网站在线观看播放| 在线观看美女被高潮喷水网站| 黄色一级大片看看| 国产精华一区二区三区| 日韩av在线免费看完整版不卡| 日本黄色片子视频| 日本wwww免费看| 中文在线观看免费www的网站| 亚洲18禁久久av| 久久这里有精品视频免费| 青春草亚洲视频在线观看| 亚洲中文字幕日韩| 亚洲精品色激情综合| 成人亚洲精品av一区二区| 永久免费av网站大全| 毛片女人毛片| 你懂的网址亚洲精品在线观看 | 国产黄片美女视频| 美女内射精品一级片tv| 国产精品一区二区在线观看99 | 99热网站在线观看| 干丝袜人妻中文字幕| 日本免费一区二区三区高清不卡| 一边摸一边抽搐一进一小说| 欧美一级a爱片免费观看看| 男女下面进入的视频免费午夜| 少妇人妻精品综合一区二区| 亚洲中文字幕日韩| 国产成人a∨麻豆精品| 少妇熟女aⅴ在线视频| 卡戴珊不雅视频在线播放| 国产老妇女一区| 好男人在线观看高清免费视频| 日韩av在线免费看完整版不卡| 亚洲精品456在线播放app| 菩萨蛮人人尽说江南好唐韦庄 | 99久久精品热视频| 欧美97在线视频| 国产成人精品婷婷| 成人综合一区亚洲| 国产男人的电影天堂91| 看黄色毛片网站| 成人特级av手机在线观看| 日韩视频在线欧美| 99在线人妻在线中文字幕| av在线亚洲专区| 91精品伊人久久大香线蕉| 免费观看在线日韩| 建设人人有责人人尽责人人享有的 | 午夜a级毛片| 国产综合懂色| 国产精品爽爽va在线观看网站| 亚洲最大成人中文| 国产在视频线精品| 婷婷六月久久综合丁香| 天堂影院成人在线观看| 久久久精品94久久精品| 99久久九九国产精品国产免费| 亚洲最大成人手机在线| 蜜臀久久99精品久久宅男| 99热这里只有精品一区| 国产国拍精品亚洲av在线观看| 高清视频免费观看一区二区 | 尤物成人国产欧美一区二区三区| 国产一区二区亚洲精品在线观看| 岛国毛片在线播放| 99在线视频只有这里精品首页| av播播在线观看一区| 亚洲国产精品国产精品| 欧美性猛交黑人性爽| 少妇高潮的动态图| 亚洲欧美中文字幕日韩二区| 精品久久久久久久久亚洲| 国产色爽女视频免费观看| 狂野欧美激情性xxxx在线观看| 白带黄色成豆腐渣| av女优亚洲男人天堂| 国产精品无大码| 亚洲天堂国产精品一区在线| 中文字幕熟女人妻在线| 一级黄色大片毛片| 国产麻豆成人av免费视频| 26uuu在线亚洲综合色| 日韩视频在线欧美| 最近中文字幕高清免费大全6| 熟女电影av网| 久久人人爽人人片av| 久久婷婷人人爽人人干人人爱| 免费一级毛片在线播放高清视频| 亚洲av熟女| av在线蜜桃| 国产一级毛片在线| 亚洲熟妇中文字幕五十中出| 伊人久久精品亚洲午夜| 亚洲最大成人手机在线| 美女大奶头视频| 十八禁国产超污无遮挡网站| 中国国产av一级| 亚洲av二区三区四区| 国产真实乱freesex| 少妇被粗大猛烈的视频| 成人一区二区视频在线观看| 免费观看性生交大片5| 日本-黄色视频高清免费观看| 国产69精品久久久久777片| 亚洲综合色惰| 中国美白少妇内射xxxbb| 插阴视频在线观看视频| 国产极品天堂在线| 亚洲国产精品国产精品| 青春草亚洲视频在线观看| 九九在线视频观看精品| 久久久久性生活片| 色综合亚洲欧美另类图片| 免费av观看视频| 嫩草影院入口| 2022亚洲国产成人精品| 老女人水多毛片| 舔av片在线| 国产熟女欧美一区二区| 又爽又黄无遮挡网站| 五月玫瑰六月丁香| 少妇熟女aⅴ在线视频| 麻豆成人午夜福利视频| 在线观看一区二区三区| 秋霞伦理黄片| 一个人观看的视频www高清免费观看| 天天躁夜夜躁狠狠久久av| 99久久人妻综合| 国产精品爽爽va在线观看网站| 精品国产一区二区三区久久久樱花 | 国产亚洲av片在线观看秒播厂 | 男女视频在线观看网站免费| 中文天堂在线官网| 久久精品国产亚洲av天美| 久久久久久大精品| 精品不卡国产一区二区三区| 欧美丝袜亚洲另类| 免费播放大片免费观看视频在线观看 | h日本视频在线播放| 最近2019中文字幕mv第一页| 免费av毛片视频| 免费一级毛片在线播放高清视频| 一区二区三区免费毛片| 91午夜精品亚洲一区二区三区| 九九爱精品视频在线观看| 久久久久久久午夜电影| 精品国产露脸久久av麻豆 | av黄色大香蕉| 在线观看美女被高潮喷水网站| 精品一区二区三区人妻视频| 亚洲人成网站在线播| 日韩强制内射视频| 久久精品91蜜桃| 欧美成人免费av一区二区三区| 国产一区二区亚洲精品在线观看| 成人亚洲欧美一区二区av| 啦啦啦啦在线视频资源| 99在线人妻在线中文字幕| 国产精品1区2区在线观看.| 国产视频内射| 亚洲国产欧美在线一区| 女人久久www免费人成看片 | 草草在线视频免费看| 中国美白少妇内射xxxbb| 精品欧美国产一区二区三| eeuss影院久久| 午夜免费男女啪啪视频观看| 男人的好看免费观看在线视频| 五月伊人婷婷丁香| 中文字幕av在线有码专区| 最后的刺客免费高清国语| 97人妻精品一区二区三区麻豆| 国产伦精品一区二区三区四那| 日韩高清综合在线| 五月伊人婷婷丁香| 国产又色又爽无遮挡免| 亚洲av免费高清在线观看| 亚洲欧美成人综合另类久久久 | 午夜老司机福利剧场| 亚洲精品日韩av片在线观看| 亚洲丝袜综合中文字幕| 日韩欧美精品免费久久| 五月伊人婷婷丁香| 欧美高清成人免费视频www| 春色校园在线视频观看| 国产一区二区在线观看日韩| 97超碰精品成人国产| 99在线视频只有这里精品首页|