• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A comparative study on H2S removal using Mg–Al spinel(MgAl2O4)and MgO/Al2O3 nanocomposites☆

    2017-05-30 02:11:36LatifiBakhshiAzghandiSalehiradParvini

    S.M.Latifi*,J.Bakhshi Azghandi,A.Salehirad M.Parvini

    1 Department of Chemical Technology,Iranian Research Organization for Science&Technology,Tehran,Iran

    2 Chemical Engineering,Oil&Gas,Semnan University,Semnan,Iran

    1.Introduction

    Hydrogen sul fide(H2S)is found in such industries as natural gas processing,petrochemicals,coal derived gaseous production,biogas and wastewater treatment[1–4].H2S is highly toxic and corrosive[5–8]and its allowable concentration for combined cycle power plants and reducing gas are 500 and 50 μl·L-1,respectively[9].Moreover,even trace amountofH2S can be poisoning for the chemicalprocess catalysts that are mostly composed of precious metals[10].Alumina(Al2O3),as a known adsorbent,and its composites with other metal oxides have been used for the removal of H2S.Tajizadeganet al.[11]precipitated ZnO nanosheets on alumina heterogeneously,using bayerite seed particles and used the obtained composite for H2S removal of a stream with about 1 wt%H2S at 150°C.Atakulet al.[9]prepared MnO2/γAl2O3viawet impregnation for H2S uptake from fuel gas at high temperatures.Also Lianget al.synthesized Mn/γAl2O3through wet impregnation and investigated its capability and regenerability for H2S removal in high temperatures[12].Koet al.[6]synthesized various weight percents of MO/Al2O3sorbents,in which MO included Co3O4,Fe2O3,CuO,Mn2O3,CeO2and ZnO,through incipient wet impregnation route and used them for hydrogen sul fide removal from syngas at high temperatures(500–700 °C).Their results revealed that among the used metal oxides,manganese oxide presented the best performance in hydrogen sul fide sorption.Tahmankaret al.[13]fabricated mixed oxides including CuO–Al2O3(1:1 molar ratio)and CuO–Fe2O3–Al2O3(2:1:1 molar ratio)for H2S removal at high temperatures.The synthesized porous sorbents with very high pore volume showed improved performance compared to conventional H2S sorbents.Chytilet al.[14]fabricated MnxOy/γAl2O3,within 15–30 wt%Mn loading range,by wet impregnation method as sorbent for H2S uptake from a simulated dry producer gas stream(including 0.4 vol%H2S in 40 vol%H2).They used 10 vol%O2in N2for regeneration of consumed sorbents at 450°C.Chenetal.[15]prepared P-promoted aluminaviaintroducing phosphorous species by using gel-coprecipitation technique for catalyzing H2S reaction with dimethyl sul fide.Kanget al.[16]investigated the Cu–Zn–Al2O3sorbents prepared through precipitation of Cu and Zn on phosphorous-modified and unmodified alumina and found that the modified sorbents exhibited better capability in H2S removal.Junget al.[17]synthesized ZnO/Al2O3sorbent by using coprecipitation method for simultaneous removal of H2S and NH3from coal based synthesis gas and found out that the addition of such metals as cobalt,iron and nickel can promote the sorbent performance in H2S uptake.Dobrovolszkyet al.[18]prepared MoOx/Al2O3catalysts promoted by Co,Pt,Ir,Ru and Pd for the removal of radioactive H2S from H2stream.Their results revealed that only the catalysts promoted by Co and Ir exhibited more cumulative H2S uptake than MoOx/Al2O3alone.

    Literature survey indicates that few works have been done on the use of MgO/Al2O3composites or spinel for hydrogen sul fide sorption.In this work the H2S removal potential of the Mg–Al spinel in comparison with the MgO/Al2O3nanocomposites containing various Mg additions was investigated.

    2.Experimental

    2.1.Materials

    Chemical materials used in the fabrication of alumina and MgO/Al2O3composites including Al(NO3)3·9H2O,Mg(NO3)2·6H2O,NH4OH,(NH4)2CO3,Na2CO3,CH4NO2(urea)and C6H8O7(citric acid)were provided from LOBA Chem and used without further purification.

    2.2.Synthesis

    Alumina sorbents were prepared through three routes namely,sol–gel,precipitation by sodium carbonate and ammonium carbonate.In the precipitation by ammonium/sodium carbonate,at first,an aqueous solution of ammonium/sodium carbonate was added to an aqueous solution of Al(NO3)3·9H2O at pH fixed around 9.The obtained mixture was stirred at 70°C for 3 h and then filtered,washed with deionized water and alcohol and dried at 120°C for 3 h.At last,the obtained powder was calcined at 550 °C for 3 h with the rate of 10 °C·min?1.In sol–gel route Al(NO3)3·9H2O was added to a citrate solution drop-wisely at 90 °C and stirred for 8 h.The product was dried at 200 °C for 3 h and finally calcined at 800°C for 5 h.

    To synthesize MgO, firstly,an aqueous solution of urea(2.53 g in 100 ml deionized water)was stirred at 80°C for 15 min and then,an aqueous solution of Mg(NO3)2·6H2O(6.36 g in 100 ml deionized water)was added dropwise to the urea solution.The resulted mixture was stirred at 80°C for 8 h and after that,the formed precipitant was filtered and washed with water and ethanol and then dried at 120 °C for 3 h.Finally,the obtained powder was calcined at 450 °C for 5 h.

    MgO/Al2O3nanocomposites with various mass ratios(5 wt%MgO/95 wt%Al2O3,10 wt%MgO/90 wt%Al2O3and 25 wt%MgO/75 wt%Al2O3(presented by 5-Mg–Al,10-Mg–Al and 25-Mg–Al,respectively)were synthesizedviaprecipitation–impregnation route.Determined amounts of Al(NO3)3·9H2O were dissolved in deionized water and then NH4OH aqueous solution was added to the solutions drop-wisely untilthe precipitantstarted to form.The obtained mixtures were stirred at 70°C for 30 min and after that,appropriate amounts of the synthesized MgO were added to the solutions and the resultants were stirred for 3 h.The resulted mixtures were filtered,washed with deionized water and ethanol,dried at 120°C for 24 h and finally calcined at 550 °C for 5 h with the rate of 10 °C·min?1.

    The Mg–Al spinel was fabricated by ion-pair complex precursor route described in detail elsewhere[19].

    2.3.Characterization

    X-ray diffraction(XRD)was used for studying the crystalline structures of the Al2O3,MgO and MgO/Al2O3nanocomposites.XRD patterns were conducted on an Inel-3000 diffractometer using CuKα(λ =0.15418 nm)as incident radiation.The crystalline phases were identified by employing the tabulated powder diffraction files of the International Center of Diffraction Data(ICDD).To observe particle size distribution and textural morphology field emission scanning electron microscopy(FESEM,Model:Mira 3-XMU)was used.The surface area(BET)was measured by using an automated gas adsorption analyzer(Tristar 3000,Micromeritics).Temperature Programmed Desorption(CO2-TPD)was conducted by using an automatic apparatus(ChemBET-3000 TPR/TPD,Quantachrome)with thermal conductivity detector.In CO2-TPD experiments,after pretreatment at 300 C for 3 h in a He atmosphere,the samples were cooled down to ambient temperature,and then exposed in CO2for 30 min.CO2-TPD was performed with the rate of 10 °C·min?1from ambient temperature under He stream.

    Fig.1.Experimental setup for H2S removal investigation.

    2.4.H2S removal System

    H2S removal took place in a thermo well-equipped stainless steel column with an inner diameter of 2 mm.Heating power was supplied by an electrical heater coiled around the outer surface of the column and the inside temperature was controlled using a PID controller.Feed streams including 200 μl·L-1H2S in N2and pure isobutane with the flowrates of 105 ml·min?1,adjusted by a rotameter,were sent to a static mixer to become homogeneous before entering sorption column.Each run was performed for nanocomposite,spinel and alumina samples by using 0.25 g sorbents,respectively.The temperature and pressure atsorption column were keptat313 Kand 0.1 MPa,respectively.H2S concentration atthe column outletwas measured by an electrochemical sensor-based device.Fig.1 demonstrates a scheme for H2S removal system.

    3.Results and Discussion

    3.1.Samples characterization

    (at2θ=43°,62°and 79°according to JCPDS No.2-1092)are observable for 10-Mg–Al and 25-Mg–Al in Fig.2.It is obvious in Fig.2 that by increasing MgO content in the nanocomposites the intensity of MgO-related peaks increases.From line broadening of re flections and using the Scherrer equation the average crystallite size of MgO in 10-Mg–Al and 25-Mg–Al was calculated as 36.12 and 48.17 nm,respectively.

    The XRD pattern for the spinel is depicted in Fig.3[19].As can be seen in Fig.3,all the peaks are related to single phase MgAl2O4spinel with the crystallite size of 8.6 nm.

    Fig.4 shows the SEM images of MgO/Al2O3nanocomposites.As can be seen in Fig.4 the particle size distributionsin 5-Mg–Al,10-Mg–Aland 25-Mg–Al are in the ranges of 20–50,30–60,50–70 nm,respectively.This observing indicates the fact that with increasing the MgO content in the nanocomposites,the particle size and agglomeration degree increase.These findings are in agreement with XRD results that showed MgO crystallite size for 10-Mg–Al is lower than 25-Mg–Al.The SEM images exhibits the presence alumina spherical nanoparticle in the composite samples and also con firms the existence of MgO nano flakes in 10-Mg–Al and 25-Mg–Al that has not been observed in 5-Mg–Al due to low content of MgO.It should be noted that synthesis of MgO in the form of nano flakes has been reported in other works[20–22].

    Comparison of the SEM results for Mg–Al spinel[19]and the nanocomposite samples indicates narrower particle size distribution,smaller particle size and lower degree of agglomeration for the spinel sample.

    The XRDpatterns forthe MgO(5–25 wt%)/Al2O3nanocomposites are shown in Fig.2.As expected,due to low content of MgO in 5-Mg–Al the re flections attributed to MgO are notdetectable,while these diffractions

    Fig.2.XRD patterns of MgO/Al2O3 nanocomposites.

    3.2.H2S removal

    Fig.5 presents the breakthrough curves of H2S removal,as an important measure of sorbent performance,for the synthesized alumina sorbents.Breakthrough curve presents the ratio of outlet H2S concentration to inlet concentration versus time and the time outlet concentration started to rise is called breakthrough time that has a direct relationship with the sorbent capacity.As can be seen in Fig.5 the alumina sorbent fabricated from precipitation with ammonium carbonate exhibited slightly better performance in H2S removal than the other alumina samples.

    Fig.3.XRD pattern of Mg–Al spinel[20].

    As Fig.6 depicts,the capability of the MgO/Al2O3nanocomposites in H2S removal is significantly greater than the alumina sorbents as according to the breakthrough times(Figs.5 and 6)after MgO addition to the alumina,the H2S sorption capacity increases more than 10 times.This substantial augment in H2S removal is due to MgO basic property that provides more efficient active sites for interaction with acidic H2S[23].Also it can be seen in Fig.6 that by increasing the MgO addition from 5 to 10 wt%the breakthrough time enhances about 20%,while more increasing in MgO content(to 25 wt%)results in almost the same H2S uptake.The lowest sorption capacity of 5-Mg–Al is explained by the lowest MgO content in this nanocomposite.However,unchanging the sorption capacity with increasing MgO addition from 10 to 25 wt%can be justified by XRDand SEMresults.As XRD and SEMresults revealed before,increasing the MgO content from 10 wt%to 25 wt%led to increase in crystallite size and degree of agglomeration that may reduce the accessibility to the MgO sorption active sites.

    The results of H2S removal on Mg–Al spinel sorbent shown in Fig.6 indicate the superior capability of the Mg–Alspinel relative to the MgO/Al2O3nanocomposite samples,as approximately the H2S sorption ofthe Mg–Al spinel is more than severaltimes greater than those of the nanocomposites.To explain this observation,it should be mentioned that Mg–Al is a single phase in which Mg2+and Al3+coexist in one crystal lattice that supplies much more available active sites for interaction with H2S.Furthermore,the crystallite size and degree of agglomeration in the Mg–Alspinelare very low[19]thatgenerate large surface area for the H2S sorption.To investigate the basic sites in spinel and nanocomposite the TPD pro file of CO2by the spinel and 25-Mg–Al which has the closest Mg contentto the spinelamong the experimented nanocomposites,was shown in Fig.7.The appearance of desorption peaks in the experimented temperature range reveals the presence of strong basic sites for both the nanocomposite and the spinel,though desorption of CO2at higher temperatures indicates stronger basic sites[24]for the nanocomposite.On the other hand,the number of basic sites(or basic site density)has a direct relationship with the peak area of CO2desorption[25]presented in Table 1 for both samples.It can be observed from Fig.7 and Table 1 that the peak area of CO2desorption for the spinel is higher than the nanocomposite that can be attributed to the nature of spinel discussed above.This superiority in the amount of basic sites along with the higher specific surface area(Table 1)can explain the higher capability of the spinel in H2S adsorption.

    Fig.4.SEM images for(a)5-Mg–Al(b)10-Mg–Al(c)25-Mg–Al.

    The shape of breakthrough curve is in fluenced by equilibrium and kinetics(mainly mass transfer)of the process and therefore,analyzing the breakthrough curve may give some ideas about the equilibrium and kinetic behavior of sorption process[26,27].It can be seen from Fig.6 that the breakthrough curves for Mg–Al spinel and MgO/Al2O3nanocomposites(especially 10-Mg–Al and 25-Mg–Al)are steep,suggesting non-controlling mass transfer and strong sorption affinity[8,28,29]between sorbent,resulted from the MgO existence,and H2S.

    Fig.5.H2S breakthrough curves for the alumina samples at 40°C.

    Fig.6.H2S breakthrough curves of the MgO/Al2O3 nanocomposites and Mg–Al spinel at 40 °C.

    Fig.7.CO2-TPD pro files of 25-Mg–Al nanocomposite and Mg–Al spinel.

    Table 1Basic and structural properties of spinel and 25-Mg–Al composite

    4.Conclusions

    The comparison between breakthrough curves obtained from H2S sorbents including,Mg–Al spinel,MgO/Al2O3nanocomposites and alumina indicated that MgO addition plays key role in H2S removal.Furthermore,the results showed that in MgO/Al2O3nanocomposites there is an optimum addition for MgO over which the capability of the nanocomposite sorbents decreases as a resultofnanoparticle agglomeration and increasing crystallite size.Distinct superiority on H2S uptake observed for Mg–Al spinel in comparison with the other studied sorbents was ascribed to more basic site density and also favorable structural characteristics.

    [1]Z.H.Huang,G.Liu,F.Kang,Glucose-promoted Zn-based metal–organic framework/graphene oxide composites for hydrogen sul fide removal,ACS Appl.Mater.Interfaces4(9)(2012)4942–4947.

    [2]I.I.Novochinskii,C.Song,X.Ma,X.Liu,L.Shore,J.Lampert,R.J.Farrauto,Lowtemperature H2S removal from steam-containing gas mixtures with ZnO for fuel cell application.1.ZnO particles and extrudates,Energy Fuel18(2)(2004)576–583.

    [3]S.Nishimura,M.Yoda,Removal of hydrogen sul fide from an anaerobic biogas using a bio-scrubber,Water Sci.Technol.36(6)(1997)349–356.

    [4]F.Adib,A.Bagreev,T.J.Bandosz,Analysis of the relationship between H2S removal capacity and surface properties of unimpregnated activated carbons,Environ.Sci.Technol.34(4)(2000)686–692.

    [5]M.A.Shields,N.I.Dowling,P.D.Clark,Catalytic H2S conversion and SO2production over iron oxide and iron oxide/γ-Al2O3in liquid sulfur,Ind.Eng.Chem.Res.46(23)(2007)7721–7728.

    [6]T.H.Ko,H.Chu,L.K.Chaung,The sorption of hydrogen sul fide from hot syngas by metal oxides over supports,Chemosphere58(4)(2005)467–474.

    [7]T.L.Guidotti,Hydrogen sul fide advances in understanding human toxicity,Int.J.Toxicol.29(6)(2010)569–581.

    [8]J.A.Arcibar-Orozco,R.Wallace,J.K.Mitchell,T.J.Bandosz,Role of surface chemistry and morphology in the reactive adsorption of H2S on iron(Hydr)oxide/graphite oxide composites,Langmuir31(9)(2015)2730–2742.

    [9]H.Atakül,J.P.Wakker,A.W.Gerritsen,P.J.van den Berg,Removal of H2S from fuel gases at high temperatures using MnO/γ-Al2O3,Fuel74(2)(1995)187–191.

    [10]D.Montes,E.Tocuyo,E.González,D.Rodríguez,R.Solano,R.Atencio,M.A.Ramos,A.Moronta,Reactive H2S chemisorption on mesoporous silica molecular sievesupported CuO or ZnO,Microporous Mesoporous Mater.168(2013)111–120.

    [11]H.Tajizadegan,M.Rashidzadeh,M.Jafari,R.Ebrahimi-Kahrizsangi,NovelZnO–Al2O3composite particles as sorbent for low temperature H2S removal,Chin.Chem.Lett.24(2)(2013)167–169.

    [12]B.Liang,R.Korbee,A.W.Gerritsen,C.M.Van Den Bleek,Preparation of the Mn/γ-Al2O3acceptor for high temperature regenerative H2S removal,Can.J.Chem.Eng.77(3)(1999)483–488.

    [13]S.S.Tamhankar,M.Bagajewicz,G.R.Gavalas,P.K.Sharma,M.Flytzani-Stephanopoulos,Mixed-oxide sorbents for high-temperature removal of hydrogen sul fide,Ind.Eng.Chem.Process Des.Dev.25(2)(1986)429–437.

    [14]S.Chytil,M.Kure,R.L?deng,E.A.Blekkan,On the initial deactivation of MnxOy–Al2O3sorbents for high temperature removal of H2S from producer gas,Fuel Process.Technol.133(2015)183–194.

    [15]S.Chen,Y.Zhang,M.Wu,W.Fang,Y.Yang,Study on methanethiol synthesis from H2S and dimethyl sul fide over Al2O3catalysts promoted with phosphorus,Appl.Catal.A Gen.431(2012)151–156.

    [16]S.H.Kang,J.W.Bae,S.M.Kim,K.W.Jun,Effect of phosphorus modification on Cu?ZnO?Al2O3for the removal of H 2S,Energy Fuel22(4)(2008)2580–2584.

    [17]S.Y.Jung,S.J.Lee,J.J.Park,S.C.Lee,H.K.Jun,T.J.Lee,C.K.Ryu,J.C.Kim,The simultaneous removal of hydrogen sul fide and ammonia over zinc-based dry sorbent supported on alumina,Sep.Purif.Technol.63(2)(2008)297–302.

    [18]M.Dobrovolszky,Z.Paál,P.Tétényi,Uptake of hydrogen sul fide by molybdena–alumina catalysts containing group 8–10 metals,Appl.Catal.A Gen.142(1)(1996)159–174.

    [19]A.Miroliaee,A.Salehirad,A.R.Rezvani,Ion-pair complex precursor approach to fabricate high surface area nanopowders of MgAl2O4spinel,Mater.Chem.Phys.151(2015)312–317.

    [20]N.Sutradhar,A.Sinhamahapatra,S.K.Pahari,P.Pal,H.C.Bajaj,I.Mukhopadhyay,A.B.Panda,Controlled synthesis of different morphologies of MgO and their use as solid base catalysts,J.Phys.Chem.C115(25)(2011)12308–12316.

    [21]Z.Ling,M.Zheng,Q.Du,Y.Wang,J.Song,W.Dai,L.Zhang,G.Ji,J.Cao,Synthesis of mesoporous MgO nanoplate by an easy solvothermal–annealing method,Solid State Sci.13(12)(2011)2073–2079.

    [22]H.Cui,X.Wu,Y.Chen,R.I.Boughton,Synthesis and characterization of mesoporous MgO by template-free hydrothermal method,Mater.Res.Bull.50(2014)307–311.

    [23]H.A.J.Van Dijk,S.Walspurger,P.D.Cobden,R.W.Van den Brink,F.G.De Vos,Testing of hydrotalcite-based sorbents for CO2and H2S capture for use in sorption enhanced water gas shift,Int.J.Greenhouse Gas Control5(3)(2011)505–511.

    [24]A.W.Castleman,J.P.Toennies Jr.,K.Yamanouchi,W.Zinth,Springer Series in Chemical Physics,Springer,Berlin,2011.

    [25]V.K.D?ez,C.R.Apestegu?a,J.I.Di Cosimo,Effect of the chemical composition on the catalytic performance of MgyAlOxcatalysts for alcohol elimination reactions,J.Catal.215(2)(2003)220–233.

    [26]D.R.Garg,D.M.Ruthven,Theoretical prediction of breakthrough curves for molecular sieve adsorption columns—I Asymptotic solutions,Chem.Eng.Sci.28(3)(1973)791–798.

    [27]I.A.Basheer,Y.M.Najjar,Predicting dynamic response of adsorption columns with neural nets,J.Comput.Civ.Eng.10(1)(1996)31–39.

    [28]S.Ghorai,K.K.Pant,Equilibrium,kinetics and breakthrough studies for adsorption of fluoride on activated alumina,Sep.Purif.Technol.42(3)(2005)265–271.

    [29]A.T.Vu,S.Jiang,K.Ho,J.B.Lee,C.H.Lee,Mesoporous magnesium oxide and its composites:Preparation,characterization,and removal of 2-chloroethyl ethyl sul fide,Chem.Eng.J.269(2015)82–93.

    成年女人毛片免费观看观看9 | 最近最新免费中文字幕在线| 狂野欧美激情性xxxx| 国产精品电影一区二区三区 | bbb黄色大片| 两个人看的免费小视频| 又紧又爽又黄一区二区| 在线观看免费视频网站a站| 一个人免费在线观看的高清视频| 午夜老司机福利片| 啦啦啦在线免费观看视频4| 建设人人有责人人尽责人人享有的| 免费少妇av软件| 视频区欧美日本亚洲| 大香蕉久久成人网| 国产精品一区二区免费欧美| 国产99白浆流出| 精品一品国产午夜福利视频| 久久亚洲真实| 亚洲成国产人片在线观看| 色综合婷婷激情| 久久久久久人人人人人| 五月开心婷婷网| 青草久久国产| 可以免费在线观看a视频的电影网站| 亚洲综合色网址| 女警被强在线播放| 男人的好看免费观看在线视频 | 欧美精品高潮呻吟av久久| 午夜福利欧美成人| 欧美av亚洲av综合av国产av| 国产真人三级小视频在线观看| 久久精品国产清高在天天线| 黄片小视频在线播放| 国产一区二区三区综合在线观看| 国产亚洲欧美在线一区二区| 香蕉丝袜av| 色精品久久人妻99蜜桃| 夜夜爽天天搞| 99久久综合精品五月天人人| 午夜91福利影院| 91字幕亚洲| 亚洲av成人av| 成人手机av| 欧美一级毛片孕妇| 激情在线观看视频在线高清 | 777米奇影视久久| 精品久久久精品久久久| 久久久国产欧美日韩av| 欧美日韩亚洲综合一区二区三区_| 国产麻豆69| 欧美日韩av久久| 婷婷精品国产亚洲av在线 | 久久久久国产精品人妻aⅴ院 | 久久国产精品人妻蜜桃| 一级黄色大片毛片| 另类亚洲欧美激情| 国产精华一区二区三区| 一级毛片女人18水好多| ponron亚洲| 亚洲精品美女久久av网站| 亚洲五月婷婷丁香| 免费在线观看日本一区| 免费在线观看影片大全网站| 国产一区二区激情短视频| 久9热在线精品视频| 欧美久久黑人一区二区| 婷婷成人精品国产| 老汉色av国产亚洲站长工具| 久久久精品国产亚洲av高清涩受| 欧美 亚洲 国产 日韩一| 亚洲少妇的诱惑av| 国产成人精品在线电影| 久久中文字幕一级| 国产精品久久久av美女十八| 老汉色av国产亚洲站长工具| 99国产精品一区二区蜜桃av | 超碰成人久久| 每晚都被弄得嗷嗷叫到高潮| 在线视频色国产色| 80岁老熟妇乱子伦牲交| 欧美在线黄色| 91字幕亚洲| 一区福利在线观看| 亚洲熟妇中文字幕五十中出 | 欧美日韩中文字幕国产精品一区二区三区 | 岛国毛片在线播放| 亚洲性夜色夜夜综合| 狠狠狠狠99中文字幕| tocl精华| 国产精品一区二区免费欧美| 一边摸一边做爽爽视频免费| 国产野战对白在线观看| 国产一区二区三区综合在线观看| 夜夜爽天天搞| 婷婷丁香在线五月| 亚洲精品久久午夜乱码| 不卡av一区二区三区| 国产精品影院久久| 18禁国产床啪视频网站| 俄罗斯特黄特色一大片| 黄色片一级片一级黄色片| 正在播放国产对白刺激| 国产乱人伦免费视频| 韩国精品一区二区三区| 午夜福利,免费看| 亚洲av第一区精品v没综合| 国产欧美日韩综合在线一区二区| 精品一区二区三区av网在线观看| 久久精品亚洲精品国产色婷小说| 国产高清视频在线播放一区| 国产精品久久久av美女十八| 精品人妻在线不人妻| 亚洲av电影在线进入| 麻豆国产av国片精品| 午夜久久久在线观看| 王馨瑶露胸无遮挡在线观看| 999精品在线视频| 人人妻人人爽人人添夜夜欢视频| 国产精品.久久久| 国产精品自产拍在线观看55亚洲 | 在线国产一区二区在线| 亚洲午夜精品一区,二区,三区| 丰满饥渴人妻一区二区三| tube8黄色片| 色94色欧美一区二区| 欧美成狂野欧美在线观看| √禁漫天堂资源中文www| 手机成人av网站| 久久久国产欧美日韩av| 久热这里只有精品99| av视频免费观看在线观看| 精品久久久久久久毛片微露脸| 午夜福利在线免费观看网站| 国产免费av片在线观看野外av| 深夜精品福利| 午夜福利在线免费观看网站| 夜夜爽天天搞| 亚洲熟女精品中文字幕| 人人妻人人澡人人看| 黄片播放在线免费| 欧美乱码精品一区二区三区| 欧美乱码精品一区二区三区| 曰老女人黄片| 亚洲三区欧美一区| 精品电影一区二区在线| 十八禁高潮呻吟视频| 久热这里只有精品99| 人人妻人人爽人人添夜夜欢视频| 亚洲中文av在线| 欧美激情高清一区二区三区| 最近最新中文字幕大全免费视频| 欧美乱妇无乱码| 国产亚洲欧美98| 国产99久久九九免费精品| 久久久久国产精品人妻aⅴ院 | 黄频高清免费视频| 麻豆av在线久日| 精品一区二区三区四区五区乱码| 多毛熟女@视频| 国产一区二区三区综合在线观看| 午夜福利免费观看在线| 欧美亚洲 丝袜 人妻 在线| 两人在一起打扑克的视频| 亚洲色图综合在线观看| 国产精品一区二区精品视频观看| 午夜视频精品福利| 久久天堂一区二区三区四区| 极品教师在线免费播放| 午夜老司机福利片| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文日韩欧美视频| 黑人巨大精品欧美一区二区mp4| av天堂在线播放| 亚洲熟妇中文字幕五十中出 | 亚洲av第一区精品v没综合| 极品人妻少妇av视频| 国产片内射在线| 一级毛片女人18水好多| 97人妻天天添夜夜摸| 天天躁狠狠躁夜夜躁狠狠躁| 岛国毛片在线播放| 久久久久国内视频| 中文字幕色久视频| 久久精品国产综合久久久| 变态另类成人亚洲欧美熟女 | 色婷婷av一区二区三区视频| 看片在线看免费视频| 成人av一区二区三区在线看| 亚洲av成人av| 黄片大片在线免费观看| 成人影院久久| 又紧又爽又黄一区二区| 搡老岳熟女国产| 久久中文字幕一级| 欧美成狂野欧美在线观看| 欧美日韩亚洲国产一区二区在线观看 | 一边摸一边抽搐一进一小说 | 欧美性长视频在线观看| 午夜日韩欧美国产| 我的亚洲天堂| 高潮久久久久久久久久久不卡| 成年版毛片免费区| 国产精品久久久av美女十八| 大陆偷拍与自拍| 午夜福利在线观看吧| 精品久久久久久电影网| 国产日韩一区二区三区精品不卡| www日本在线高清视频| 老汉色∧v一级毛片| 日韩精品免费视频一区二区三区| 亚洲人成77777在线视频| 亚洲一区二区三区欧美精品| 啪啪无遮挡十八禁网站| 首页视频小说图片口味搜索| 91精品国产国语对白视频| 中文字幕制服av| 99国产精品免费福利视频| 在线观看午夜福利视频| 欧美中文综合在线视频| 久久国产亚洲av麻豆专区| 老司机靠b影院| 亚洲av成人av| 两性夫妻黄色片| 50天的宝宝边吃奶边哭怎么回事| 一边摸一边做爽爽视频免费| 国产精品久久久人人做人人爽| 69av精品久久久久久| 在线av久久热| 99久久99久久久精品蜜桃| 国产不卡一卡二| 欧美精品一区二区免费开放| 女性被躁到高潮视频| 捣出白浆h1v1| 欧美大码av| 伊人久久大香线蕉亚洲五| 在线看a的网站| 我的亚洲天堂| 国产主播在线观看一区二区| 久久久国产成人免费| 激情在线观看视频在线高清 | 色播在线永久视频| 日韩欧美三级三区| 国产成人免费观看mmmm| 亚洲欧美激情在线| 国产av精品麻豆| 欧美另类亚洲清纯唯美| 欧美日韩瑟瑟在线播放| 国产男靠女视频免费网站| tube8黄色片| 99国产精品免费福利视频| 久久午夜亚洲精品久久| 亚洲情色 制服丝袜| 欧美日韩精品网址| 在线永久观看黄色视频| 精品久久久久久久毛片微露脸| 在线观看日韩欧美| 欧美最黄视频在线播放免费 | 老司机亚洲免费影院| 久久精品熟女亚洲av麻豆精品| 母亲3免费完整高清在线观看| 国产精品一区二区免费欧美| 国产高清视频在线播放一区| 99国产综合亚洲精品| 狂野欧美激情性xxxx| 成年版毛片免费区| 欧美老熟妇乱子伦牲交| 大片电影免费在线观看免费| 精品久久久久久,| 一区在线观看完整版| 国产乱人伦免费视频| 老司机影院毛片| 国产日韩一区二区三区精品不卡| 日韩欧美一区视频在线观看| 亚洲一区高清亚洲精品| 亚洲 国产 在线| 麻豆av在线久日| 一本大道久久a久久精品| 高清视频免费观看一区二区| 国产精品永久免费网站| av在线播放免费不卡| 精品国产一区二区久久| 国产无遮挡羞羞视频在线观看| cao死你这个sao货| 很黄的视频免费| 精品一区二区三区视频在线观看免费 | 亚洲,欧美精品.| 中出人妻视频一区二区| 91成人精品电影| 国产精品偷伦视频观看了| 久久精品国产综合久久久| 亚洲熟妇熟女久久| 国产成人av激情在线播放| 久久精品熟女亚洲av麻豆精品| 精品久久久久久电影网| 亚洲国产欧美日韩在线播放| 啪啪无遮挡十八禁网站| 曰老女人黄片| 香蕉丝袜av| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看 | 又黄又爽又免费观看的视频| 欧美日韩乱码在线| 91在线观看av| 免费高清在线观看日韩| 窝窝影院91人妻| 欧美黄色片欧美黄色片| 国产人伦9x9x在线观看| 少妇被粗大的猛进出69影院| 夜夜夜夜夜久久久久| 女人被躁到高潮嗷嗷叫费观| 男人操女人黄网站| 国产精品久久久久久精品古装| 亚洲一区二区三区欧美精品| 变态另类成人亚洲欧美熟女 | 久久久国产精品麻豆| 人人澡人人妻人| 少妇被粗大的猛进出69影院| 欧美国产精品一级二级三级| 一区福利在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产xxxxx性猛交| 两人在一起打扑克的视频| 大型黄色视频在线免费观看| 国产精品美女特级片免费视频播放器 | 校园春色视频在线观看| 国产一区有黄有色的免费视频| 精品一区二区三区四区五区乱码| 丝瓜视频免费看黄片| 午夜精品久久久久久毛片777| 成人特级黄色片久久久久久久| 国产精品 国内视频| 757午夜福利合集在线观看| 精品国产一区二区三区久久久樱花| 国产成人免费无遮挡视频| 亚洲久久久国产精品| 国产人伦9x9x在线观看| 亚洲,欧美精品.| 国内久久婷婷六月综合欲色啪| 免费少妇av软件| 18禁裸乳无遮挡动漫免费视频| 久久人人97超碰香蕉20202| 中文欧美无线码| 中文亚洲av片在线观看爽 | 飞空精品影院首页| av福利片在线| 亚洲 国产 在线| av福利片在线| 久久人人97超碰香蕉20202| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久人人人人人| 黄色片一级片一级黄色片| 国产成人欧美| 国产欧美日韩一区二区精品| 身体一侧抽搐| 免费观看a级毛片全部| 亚洲精品在线美女| 久久午夜亚洲精品久久| 欧美日韩亚洲高清精品| 99香蕉大伊视频| 丝袜在线中文字幕| 久久香蕉激情| 老司机靠b影院| 男人操女人黄网站| 国产成人欧美| 别揉我奶头~嗯~啊~动态视频| 动漫黄色视频在线观看| 成人手机av| 一边摸一边做爽爽视频免费| 国产精品偷伦视频观看了| 久热爱精品视频在线9| а√天堂www在线а√下载 | a在线观看视频网站| av免费在线观看网站| 国产精品九九99| 久久久久国产一级毛片高清牌| 亚洲三区欧美一区| 国产免费现黄频在线看| 免费不卡黄色视频| 侵犯人妻中文字幕一二三四区| 美女高潮喷水抽搐中文字幕| 国产麻豆69| 亚洲欧美精品综合一区二区三区| 19禁男女啪啪无遮挡网站| 欧美一级毛片孕妇| 国产无遮挡羞羞视频在线观看| 男女免费视频国产| 欧美久久黑人一区二区| 午夜福利视频在线观看免费| 国产精华一区二区三区| 91在线观看av| 高清视频免费观看一区二区| 色综合欧美亚洲国产小说| 亚洲国产欧美日韩在线播放| cao死你这个sao货| 看片在线看免费视频| 久热这里只有精品99| bbb黄色大片| 曰老女人黄片| 国产成人精品在线电影| 午夜91福利影院| 国产欧美日韩一区二区三| 美女 人体艺术 gogo| 久久精品亚洲熟妇少妇任你| 国产精品二区激情视频| 亚洲精品国产一区二区精华液| 亚洲精品成人av观看孕妇| 久久久久精品人妻al黑| 可以免费在线观看a视频的电影网站| 国产精品免费视频内射| 深夜精品福利| 成年女人毛片免费观看观看9 | 国产在线观看jvid| 制服诱惑二区| www日本在线高清视频| 日韩三级视频一区二区三区| www.精华液| av线在线观看网站| 亚洲一区二区三区欧美精品| 一区二区三区国产精品乱码| 80岁老熟妇乱子伦牲交| 国产成人av教育| 国产精品免费视频内射| www.999成人在线观看| 一级片'在线观看视频| 大型黄色视频在线免费观看| 午夜福利在线观看吧| 超碰成人久久| 五月开心婷婷网| 亚洲精品国产色婷婷电影| 亚洲国产精品sss在线观看 | 这个男人来自地球电影免费观看| 亚洲欧美精品综合一区二区三区| 桃红色精品国产亚洲av| 免费在线观看影片大全网站| 无人区码免费观看不卡| 十八禁高潮呻吟视频| 女人精品久久久久毛片| 精品国产一区二区三区四区第35| 黄色丝袜av网址大全| a级片在线免费高清观看视频| 久久人妻av系列| 亚洲av成人av| 中文字幕高清在线视频| 亚洲av电影在线进入| 国产在视频线精品| 亚洲aⅴ乱码一区二区在线播放 | 自线自在国产av| 久久中文字幕一级| 岛国在线观看网站| 嫁个100分男人电影在线观看| 久久久精品区二区三区| 欧美乱妇无乱码| 大型黄色视频在线免费观看| 久久久久视频综合| 丰满的人妻完整版| 国产成人av激情在线播放| 成人免费观看视频高清| 一本大道久久a久久精品| 亚洲aⅴ乱码一区二区在线播放 | 人人妻人人爽人人添夜夜欢视频| 中文字幕高清在线视频| 国产成人精品无人区| 又黄又爽又免费观看的视频| 国产精品偷伦视频观看了| 午夜视频精品福利| 久久久国产成人精品二区 | 久久亚洲真实| 欧美日韩黄片免| 国产国语露脸激情在线看| 无遮挡黄片免费观看| √禁漫天堂资源中文www| 欧美黑人欧美精品刺激| 国产成人精品久久二区二区免费| 亚洲一码二码三码区别大吗| 在线观看www视频免费| 国产欧美日韩综合在线一区二区| 免费少妇av软件| 正在播放国产对白刺激| 国产亚洲欧美在线一区二区| 欧美精品啪啪一区二区三区| 18在线观看网站| 午夜视频精品福利| 狂野欧美激情性xxxx| 国产欧美日韩一区二区三| 日日夜夜操网爽| 中文字幕人妻丝袜制服| 亚洲专区国产一区二区| 国产欧美日韩综合在线一区二区| 国产又爽黄色视频| 两个人看的免费小视频| 黑丝袜美女国产一区| 欧美精品啪啪一区二区三区| 中文欧美无线码| 亚洲精品在线观看二区| 国产精品 欧美亚洲| 日本黄色日本黄色录像| 亚洲专区字幕在线| 日韩大码丰满熟妇| 99久久人妻综合| 午夜久久久在线观看| 一二三四社区在线视频社区8| 欧美乱码精品一区二区三区| 1024视频免费在线观看| 久久久久久久国产电影| 国产亚洲欧美精品永久| 老汉色av国产亚洲站长工具| 免费在线观看视频国产中文字幕亚洲| 午夜福利在线观看吧| 三上悠亚av全集在线观看| 精品久久蜜臀av无| 一本一本久久a久久精品综合妖精| 亚洲av成人一区二区三| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品国产精品久久久不卡| 国产精品久久久久成人av| 十八禁人妻一区二区| 伊人久久大香线蕉亚洲五| 精品欧美一区二区三区在线| 18禁国产床啪视频网站| 丝袜美足系列| 老鸭窝网址在线观看| 不卡一级毛片| 久久草成人影院| 亚洲第一青青草原| 欧美日韩国产mv在线观看视频| 交换朋友夫妻互换小说| 老熟妇仑乱视频hdxx| 成人三级做爰电影| 欧美日本中文国产一区发布| 亚洲自偷自拍图片 自拍| 一区二区三区精品91| 亚洲少妇的诱惑av| av天堂久久9| 免费高清在线观看日韩| 咕卡用的链子| 欧美日韩亚洲综合一区二区三区_| 国产成+人综合+亚洲专区| 国产精品1区2区在线观看. | 69精品国产乱码久久久| 国产日韩欧美亚洲二区| 人妻久久中文字幕网| 精品国产美女av久久久久小说| 欧美大码av| 久久中文看片网| 国产精品电影一区二区三区 | 91精品国产国语对白视频| 黄色视频,在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 免费女性裸体啪啪无遮挡网站| 欧美激情久久久久久爽电影 | 国产真人三级小视频在线观看| 精品久久蜜臀av无| 久久久精品免费免费高清| 亚洲在线自拍视频| 国产一区二区激情短视频| 看黄色毛片网站| 国产精品九九99| 在线国产一区二区在线| 黄频高清免费视频| 国产精品1区2区在线观看. | 国精品久久久久久国模美| 叶爱在线成人免费视频播放| 在线十欧美十亚洲十日本专区| 又大又爽又粗| 婷婷成人精品国产| 在线观看日韩欧美| 韩国精品一区二区三区| x7x7x7水蜜桃| av中文乱码字幕在线| 亚洲第一欧美日韩一区二区三区| 国产淫语在线视频| 伦理电影免费视频| 99国产精品免费福利视频| 在线观看免费高清a一片| 黄色视频,在线免费观看| 欧美激情久久久久久爽电影 | 涩涩av久久男人的天堂| 久久精品国产99精品国产亚洲性色 | 亚洲精品粉嫩美女一区| 亚洲欧美一区二区三区久久| 满18在线观看网站| 黄网站色视频无遮挡免费观看| 午夜精品久久久久久毛片777| 女人高潮潮喷娇喘18禁视频| 一级片'在线观看视频| 国产91精品成人一区二区三区| 久久青草综合色| 极品教师在线免费播放| 岛国在线观看网站| 一边摸一边抽搐一进一小说 | 国产成+人综合+亚洲专区| 51午夜福利影视在线观看| 曰老女人黄片| 桃红色精品国产亚洲av| 亚洲全国av大片| 久久久久视频综合| 他把我摸到了高潮在线观看| 脱女人内裤的视频| 久久中文字幕一级| 国产精品一区二区精品视频观看| 一区二区三区精品91| 老熟女久久久| 国产亚洲欧美精品永久| 亚洲av美国av| 看黄色毛片网站| 69av精品久久久久久| 99国产精品99久久久久| 欧美av亚洲av综合av国产av| 中文字幕人妻熟女乱码| 亚洲av成人不卡在线观看播放网| 自拍欧美九色日韩亚洲蝌蚪91| 欧美午夜高清在线| 国产精品电影一区二区三区 | 91老司机精品|