• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis ofZSM-5 with the silica source from industrialhexa fluorosilicic acid as transalkylation catalyst☆

    2017-05-30 02:11:33FangJinXianqiaoWangTieliangLiuLinboXiaoMingYuanYangchunFan

    Fang Jin *,Xianqiao Wang #,Tieliang Liu Linbo Xiao 2,Ming Yuan Yangchun Fan

    1 Key Laboratory for Green Chemical Process of Ministry of Education,Hubei Novel Reactor&Green Chemical Technology Key Laboratory,School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology,Wuhan 430073,China

    2 Hubei SanNing Chemical Industry Joint Stock Co.,Ltd,China

    1.Introduction

    Phosphate fertilizer industries have produced mass of gaseous silicon tetra fluoride(SiF4)and it was absorbed by water to form hexa fluorosilicic acid[1,2].Hexa fluorosilicic acids are naturally hazardous for the human and creature living in the water,soil and even the air[3].However,the by-product hexa fluorosilicic acid of phosphate fertilizer industry is regarded as a major fluorine and silicon-containing source[4].Hexa fluorosilicic acid has many applications by different industrial processes[5–7].Hexa fluorosilicic acid has been reported to produce fluorine–silicate,such as sodium fluorosilicate,potassium fluorosilicate,magnesium fluorosilicate and zinc fluorosilicate for many years[8].However,the market share of these salts is very small,that is why the applications of hexa fluorosilicic acid are greatly limited.Another product from hexa fluorosilicic acid is siliceous reinforcing agent,white carbon black[9–11].However,the economic value-added of this product is very low.

    ZSM-5 zeolite with the characteristics of three-dimensional straight channel and acidity modification has been widely used in petrochemical industry as catalysts,adsorbents and others[12,13].Zeolite has been widely synthesized with silicon source ofwaterglass,silica sol,tetraethyl orthosilicate,fumed silicaetc.[14].The high cost of the silica source blocks the further industrialapplication of ZSM-5.If the hexa fluorosilicic acid can be used as silicon source for zeolite synthesis,this new method can greatly improve the economic value-added and solve the environmental problem of the phosphorus chemical industry by-product hexa fluorosilicic acid and reduce the cost of ZSM-5 production.

    Industrial C9 components from oil reforming or pyrolysis process contain trimethylbenzene,ethyl benzene,propylbenzene,indan and other aromatic components.The majority of content in C9 aromatic is trimethylbenzene.Ifthe trimethylbenzene can be efficiently transferred to benzene,toluene and xylene(BTX),this method can achieve the rational utilization of resources and bene fit maximization of the resource.The hydrodealkylation and transalkylation of trimethylbenzene to produce high value-added products BTX have aroused the attention in the domestic and foreign researchers[15].

    Here,a systemic method for ZSM-5 synthesis with the crude industrial hexa fluorosilicic acid as silicon and fluorine resources is reported.The ZSM-5 zeolite with a different SiO2/Al2O3ratio can be synthesized successfully under the optimal synthesis conditions.The obtained Mfizeolite from the process is applied as catalyst for toluene and 1,2,4-trimethylbenzene transalkylation and disproportionation.

    2.Experimental

    2.1.Preparation of materials

    Industrial hexa fluorosilicic acid(10%–25%)was provided by a phosphate fertilizer factory from the phosphoric acid of wet process.Tetrapropyl ammoniumbromide(98%)comes from Aladdin Industrial Corporation;aluminum hydroxide brought from Sinopharm Chemical Reagent Co.,Ltd.;nano fumed silica(99.8%)comes from Aladdin Industrial Corporation;ammonium hydroxide(25%–28%),ammonium nitrate(99%)and toluene(99.5%)are commercial products from Xilong Chemical Co.,Ltd.;1,2,4-trimethylbenzene(98%)comes from Aladdin Industrial Corporation.Commercial Products ZSM-5 zeolite(SiO2/Al2O3molar ratio=38)comes from Sinopec Jinling Petrochemical Corporation South Re fined Institute.

    2.2.Procedure and methods

    Two-step ammoniation method was applied to recover high-quality silica and produce ammonium fluoride from hexa fluorosilicic acid reported in[1].The recovered SiO2and NH4F are applied assilicon and fluorine source for hydrothermalsynthesis ZSM-5 zeolites.The compositions were the following molar ratio:SiO2:NH4F:Al(OH)3:TPABr:H2O=10:x:y:z:330(x=0 or 9;y=0.83,0.33,0.16 or 0.08;z=2.5,1.25,0.625 or 0.5).The reagents were mixed in the following order:NH4F solid was added to distilled water,then tetrapropyl ammonium bromide(TPABr),Al(OH)3and SiO2hydrogel from the second step of the two-step ammoniation method are added sequentially with the constant stirring in 4 h.Then the stirred mixture was transferred to a hydrothermal crystallization kettle and crystallization for 1–7 d at 443 K.Then the crystallized products are filtered,washed with 1000 mlD.I.waterand dried at333 K overnightto obtain ZSM-5 precursor.The precursor is calcined at 823 K for 7 h in the Muf fle furnace to obtain ZSM-5 zeolite that indicated asx-ZSM-5(xstand for molar ratio of SiO2/Al2O3).To comparison with thex-ZSM-5 synthesized from recovered SiO2,the commercial fumed pure silica was used to synthesize ZSM-5 with the same procedure under the condition ofNH4F or not,the synthesized samples are indicated asx-ZSM-5(f).The parentx-ZSM-5 zeolite was exchanged with 1.0 mol·L?1NH4NO3solution at re flux for 3 times(8 h),fully washed,then dried at 393 K for 12 h and calcinated at 823 K in air,at last the H-formx-HZSM-5 zeolites were obtained.After calcinations,the commercial ZSM-5 zeolite is indicated as38-ZSM-5(S).

    2.3.Catalysts characterization

    Powder X-ray diffraction(XRD)was performed using a Panalytical X'Pert automatic diffractometer.The light source is Cu targetKαradiation(X-ray wavelength 0.1541874 nm),tube current is 40 mA,tube voltage is 45 kV,the diffraction pattern is recorded in 2θ of 5°–50°.Phase and relative crystallinities of zeolite samples were judged by JADE5 software.Apparent morphology and crystal size of the zeolite were observed with S-4800 type cold field emission scanning electron microscope(SEM).FALCON type Energy Dispersive Spectrometer(EDS)produced by EDAX company of America is applied to measure the elemental composition of the sample.The machine is rated at 4 kW,with cathode maximum current 160 mA.The thermogravimetric(TG)analysis is carried out at 473 K with 30 mg sample of particle sizes 0.18–0.28 mm at atmospheric pressure.The system was quenched at 823 K for 2 h in a flow of He at 20 ml·min?1(STP),then it was performed under the same He flow with a ramp of 10 K·min?1to 1073 K.N2adsorption–desorption measurements were carried out on Micromeritics VII2390 apparatus at 77 K.Prior to the analysis,the samples were degassed at 373 K under nitrogen purging for 1 h,then at 573 K under nitrogen purging for 1 h.The specific surface area was calculated by the Brunauer–Emmett–Teller(BET)method in the 0.05–0.25P/P0range.The pore volumes and their size distributions were derived from the desorption branch of the N2isotherms using the Barrett–Joyner–Halenda(BJH)method.

    2.4.Catalytic reaction experiments

    Toluene and 1,2,4-trimethylbenzene(3:1 ratio mixed by weight)transalkylation was carried out in a fixed-bed flow reactor under 3 MPa pressure with N2as carrier gas.The catalyst was activated in a gas flow at 773 K for 1 h and cooled down to the reaction temperature of 723 K.The WHSV was 3 h?1.Reaction products were analyzed by GC using capillary column FL-INNOWAX capillary column.The toluene and 1,2,4-teimethylbenzene conversion and product selectivities are calculated by the following equations.

    3.Results and Discussion

    3.1.Hydrothermal synthesis of ZSM-5 zeolite

    3.1.1.The two-step ammoniation method for high purity SiO2recover from hexafluorosilicic acid

    The results of the two-step ammoniation with different allocation proportion of ammonia usage in the first and second ammoniation steps are shown in Table 1.According to the report of Yuet al.[1],the high-grade amorphous silica can be obtained in the second step with the two-step hexa fluorosilicic acid ammoniation method.With the increasing amount of NH3·H2O in the first step,most of the impurities,such as Fe,Mg,Ca,and Na,in the fluorosilicic acid can be deposited in the first step.Although the amount of rest produced SiO2in the second step is decreased,it is getting purer.The obtained silica of the second step is more suitable for the preparation of the zeolite.According to the yield and purity of SiO2generated in the second step,the most important condition for preparing silica hydrogel is that the molar ratio of ammonia and fluorosilicic acid in the first step and the second step is 3 and 4.2,respectively.Under this condition,the yield of amorphous silica is 42.6%and 52.5%in the first and second ammoniation steps,respectively.Moreover,the produced SiO2purity in the second step is 97.5%according to EDS analysis results.It can be seen fromAppendix A(Table A1).The element composition of this SiO2is Al 0.71 wt%,Si 49.12 wt%,Mg 0.56 wt%,F 1.81 wt%and does not detect other impurities.

    Table 1Effect of ammonia addition on the two-step ammoniation

    3.1.2.Influenceofsilicatoaluminamolarratio(SiO2/Al2O3)onthesynthesis of ZSM-5

    To investigate the in fluence of SiO2/Al2O3molar ratio on the zeolite synthesis,the ZSM-5 zeolite is hydrothermally synthesized with the SiO2/Al2O3ratio from 12 to 125 under the same reaction condition,such as reaction time stirring 4 d;SiO2/TPABr=8;SiO2/NH4F=1.11;H2O/SiO2=33.The EDS analysis results of the produced ZSM-5 are illustrated in Table 2,in which the relative crystallinity is calculated based on the XRD patterns as shown in Fig.1.

    The XRD pattern of the zeolite samples with different SiO2/Al2O3ratio is shown in Fig.1,which only contains the characterized(1 0 1),(2 0 0),(0 2 0),(3 0 1)and(5 0 3)diffraction peaks of ZSM-5.The peaks at 2θ =23.2°(5 0 1)and 2θ =24.2°(3 1 3)indicate that the ZSM-5 is orthogonal phase[16].The results in Fig.1 show that with the increase of SiO2/Al2O3ratio,the peaks in the region of 2θ=7.5°–9.5°and 2θ =22.5°–24.5°changed obviously.In order to describe the change of these two regions more clearly,the partial enlarged detail of these two diffraction regions are shown in Fig.1(B)&(C).From Fig.1(B),it can be seen that the single diffraction peak at the(2 0 0)of 2θ=8.5°has become bimodal as the growth of SiO2/Al2O3ratio.At the same time,the two diffraction peaks at the(3 3 2)and(5 0 1)crystal planes merged to form one peak at the 2θ=23.08°in Fig.1(C).These results show that the crystal phase of ZSM-5 transfers from the orthogonal crystal phase to monoclinic phase[17].

    The EDS analysis of this sample indicates that the element compositions ofthe ZSM-5 are Al1.62 wt%,Si35.17 wt%,O 63.21 wt%and do not detect other impurities.Although the silica gel from the second ammoniation step of the industrial hexa fluorosilicic acid contains the impurities of Mg ions,the metal ions are actually hard to be incorporated into the structure skeleton of ZSM-5 to replace silicon atoms.This result indicates that the impurity of Mg ions in the silica gel is hard to in fluent the synthesized zeolite.The elemental analysis results show that with the presence of the Al elements in the ZSM-5,the actual SiO2/Al2O3ratio in the zeolite is a little smaller than the theoretical ratio of hydrothermal solution as shown in Table 2.It can be deduced that the impurity Al of the silica gel can also be incorporated into the zeolite.Finally,the success ofthe synthesis ofthe ZSM-5 with different SiO2/Al2O3ratio is con firmed.

    Table 2In fluence of SiO2/Al2O3 molar ratio and crystallization time on the synthesis of ZSM-5 zeolite

    3.1.3.Influence of crystallization time on the synthesis of ZSM-5

    Under the same molar ratio of SiO2:NH4F:TPABr:Al(OH)3:H2O=10:9:1.25:0.16:330,the XRD patterns of synthesized ZSM-5 zeolites with different crystallization time are shown in Table 2.The XRD patterns in Fig.2 show the in fluence ofcrystallization time on the synthesis of ZSM-5 zeolite.They have only the characteristic structure peaks of ZSM-5 zeolite as(1 0 1),(2 0 0),(0 2 0),(3 0 1)and(5 0 3).These results indicate that only Mfizeolite crystals are formed during the hydrothermal synthesis.There are separate(5 0 1)and(3 1 3)peaks in the 2θ=23.2°and 24.2°,which are corresponding to the orthogonal phase.With the increase of hydrothermal time,the diffraction peak in the 2θ=22.5°–24.5°has great change.From the enlargement of partial diffraction of Fig.2(A)&(B),it can be seen that the intensity of the separate diffraction peak at the(5 1 1)crystal plane in 2θ=23.8°and(3 1 3)crystal plane in 2θ =24.2°decreased and merged with the increase of crystallization time.This phenomenon is corresponding to the transfer of orthogonal crystal system to monoclinic system[17].

    Fig.1.XRD patterns ofsynthesized ZSM-5 zeolite with different SiO2/Al2O3 molar ratio(a)23-ZSM-5,(b)26-ZSM-5,(c)32-ZSM-5 and(d)45-ZSM-5.(SiO2/NH4F=1.11;SiO2/TPABr=8;reaction time(stirring 4 d);H2O/SiO2=33).

    Fig.2.XRD patterns of synthesized 32-ZSM-5 zeolite under dynamic condition with different hydrothermal time(a)dynamic 1d,(b)dynamic 2 d,(c)dynamic 3 d,(d)dynamic 4 d,(e)dynamic 7 d.(SiO2/Al2O3=32;SiO2/TPABr=8;SiO2/NH4F=1.11;H2O/SiO2=33).

    3.1.4.The influence of dynamic and static hydrothermal condition on the ZSM-5 zeolite synthesis

    Fig.3.XRD patterns of synthesized ZSM-5 zeolite under different hydrothermal condition(a)dynamic 1 d and(b)static 1 d.(SiO2/Al2O3=32;SiO2/TPABr=8;SiO2/NH4F=1.11;H2O/SiO2=33).

    The XRD patterns of the ZSM-5 zeolite with dynamic or static reaction are shown in Fig.3.The zeolites synthesized both in the dynamic and static methods exhibit the ZSM-5 characteristic diffraction peaks.The intensity of the peak indicates that the ZSM-5 synthesized with dynamic method under 1 d hydrothermal treatment possesses higher crystallinity than that synthesized with static method under the same time.The detailed topography information shown in Fig.3(B)indicates that the ZSM-5 synthesized in the dynamic condition has two diffraction peaks at around 2θ =23.2°and 24.2°for the(5 0 1)and(3 1 3)crystal planes,which is corresponding to a typical orthogonal crystal system.However,these two peaks merge to a single peak at 2θ =23.5°–24°for ZSM-5 synthesized under the static reaction,which is the characteristic of the monoclinic phase[17].

    3.1.5.Influence of the molar ratio of silica to TPABr(SiO2/TPABr)on the synthesis of ZSM-5

    The synthesized ZSM-5 with the composition of SiO2:NH4F:TPABr:Al(OH)3:H2O=10:9:x:0.16:330 and different ratio of SiO2/TPABr is characterized by the thermogravimetric analysis(DTG/TG)and N2de/adsorption and shown in Table 3.The DTG/TG curves of ZSM-5 zeolite precursor with different SiO2/TPABr ratio are shown in Fig.4.There is no mass loss with the temperature lower than 373 K,which suggests that there is no adsorption water retained in the sample,because the ZSM-5 zeolite samples have been dried in the 333 K of oven for 12 h before test.The total mass loss is about 12%from 333 K to 1073 K,the organic templates are burned out between 673 and 773 K[18].The samples with the SiO2/TPABr ratio lower than 8 have almost the same mass loss for the removing surfactant during TG test.These phenomena show that the surfactant incorporated to the samples does not increase with the increase of TPABr contents in the hydrothermal solution,when the SiO2/TPABr ratio is up to 8.The maximum amount of TPABr incorporated in the sample is about 12%in the synthesized ZSM-5 precursor[19].The nitrogen sorption isotherm in Appendix Fig.A1 is typical type I isotherm and depicts that the adsorption curve rapidly rising before the relative pressure is 0.1,which is attributed to typical of microporous nature.

    Table 3The effect of the SiO2/TPABr molar ratio on the synthesis of 32-ZSM-5 zeolite

    3.1.6.Influence of the molar ratio of silica to NH4F(SiO2/NH4F)on the synthesis of ZSM-5

    The XRD patterns of synthesized ZSM-5 by the silica source from industrial hexa fluorosilicic acid are shown in Fig.5.All the32-ZSM-5 samples with NH4F and without NH4F as mining agent during hydrothermal process only contain the ZSM-5 character peaks.The detailed topography information shown in Fig.5(C)indicates that the ZSM-5 synthesized with NH4F and without NH4F has two diffraction peaks at 2θ=23.2°and 24.2°for the(5 0 1)and(3 1 3)crystal planes,which are corresponding to a typical orthogonal crystal system.However,the relative intensity of the peaks(1 0 1),(2 0 0)and(0 2 0)between 2θ=7.5°and 9.5°is different for the samples32-ZSM-5 with NH4F and without NH4F.The increased relative intensity of peak(2 0 0)and(0 2 0)to(1 0 1)for32-ZSM-5 with NH4F compared with the32-ZSM-5 without NH4F indicates that the32-ZSM-5 with NH4F has longer order structure alongboraaxis direction.These phenomena are further con firmed by SEM characterization as shown in Fig.6.The crystal structure of synthesized32-ZSM-5 with or without fluorine as mining agent during hydrothermal process is almost the same[13].It can be seen that the crystal size of the32-ZSM-5 with fluorine ions in the hydrothermal process is about 50 μm × 10 μm × 10 μm.While the crystal size of the ZSM-5 without fluorine ions in the hydrothermal process is about 10 μm × 1 μm × 0.2 μm.Therefore,the32-ZSM-5 with NH4F is thicker than that without NH4F along thebaxis direction.

    To investigate the in fluence of fluorine ions on the synthesis of the ZSM-5,the synthesized samples of32-ZSM-5(f)with NH4F and without NH4F from fumed pure SiO2are also characterized as the XRD pattern in Fig.5 and SEMpictures in Fig.6.The crystalsize ofZSM-5(f)with fluorine ions is about 50 μm × 10 μm × 10 μm.It can be seen from Figs.5&6 that under the fluorine ion hydrothermal condition the32-ZSM-5(f)synthesized fromfumed silica hasalmostthe same SEMmorphology and XRD pattern with32-ZSM-5 synthesized from recovered silica.While the XRDpattern ofsample(e)in Fig.5 shows thatwithout fluorine ion condition during the hydrothermal process,the ZSM-5 crystal structure cannotbe synthesized with the pure fumed SiO2.Therefore,itcan be deduced that the fluorine content of the recovered SiO2from H2SiF6has great in fluence on the hydrothermal process for ZSM-5 crystal structure formation,while the small amount of fluorine ion content in the recovered SiO2causes the formation of the thin disk crystal along thebaxis direction compared with32-ZSM-5 synthesis with NH4F addition.Moreover,the additional amount of fluorine ion content in the hydrothermal process can control the crystal morphology and size of synthesized ZSM-5.

    Fig.4.The thermal gravimetric analysis results of the ZSM-5 with SiO2/TPABr=(8,16,20 or 40).(SiO2/Al2O3=32;SiO2/NH4F=1.11;reaction time(stirring 4 d);H2O/SiO2=33).

    For further comparison,the commercial38-ZSM-5(S)with small particle size synthesized under the hydrothermal condition without fluorine ion content is also applied to XRD and SEM characterizations.Ithas smallcrystalparticle size and uniform morphology in 3Ddirection compared with the sample32-ZSM-5(f)hydrothermal synthesized under NH4F addition.These results are consistent with the report of Aielloet al.[20]that the addition of fluorine ion can increase the growth of zeolite crystal,because the addition of fluoride ion can promote the solution of SiO2and Al(OH)3to form the complex fluorides and speed up the crystallization rate and shorten the reaction time[21].

    Fig.5.XRD patterns of different zeolite(a)38-ZSM-5(S),(b)32-ZSM-5 with NH4F and(c)32-ZSM-5 without NH4F.(d)32-ZSM-5(f)with NH4F,(e)32-ZSM-5(f)without NH4F.(SiO2/TPABr=8;SiO2/Al2O3=32;reaction time(stirring 4 d);H2O/SiO2=33).

    3.2.Catalytic properties of different SiO2/Al2O3 molar ratio HZSM-5

    The average results of the toluene and 1,2,4-teimethylbenzene conversion and product selectivities after 8 h reactions are shown in Table 4.According to the reaction products,the possible reaction elementary steps in the transalkylation process are as Fig.7.Benzene is product from toluene disproportionation or dealkylation reaction[22].Xylene isomers can be produced from the toluene disproportionation or transalkylation of toluene and trimethylbenzene or disproportionation of trimethylbenzene.Compared with the purposed product of xylene isomers from transalkylation reaction,trimethylbenzene isomerization product selectivities are less than 10%in total product selectivity.For the synthesizedx-HZSM-5 with the increase of SiO2/Al2O3ratio,the amount of acid sites should decrease and the acid strength raised[23,24].At the same time,the toluene and 1,2,4-trimethylbenzene conversion have a clear decreasing trend with the decreased acid amount.While the sum of benzene and xylene selectivities decreases with the increase of the SiO2/Al2O3ratio,the selectivities of trimethylbenzene isomerization reactions are increased,because the strength acid sites are more favorable for trimethylbenzene isomerization,which is consistent with the phenomena reported in the literature[25].For the23-ZSM-5,toluene and 1,2,4-trimethylbenzene conversion can reach 53%and 54%,respectively.The maximum of averagep-xylene selectivity reaches 15%as shown in the Figs.8&9.

    3.3.Catalytic propertiesofdifferentparticle size and morphology ofHZSM-5

    Catalytic properties for toluene and 1,2,4-trimethylbenzene conversion of38-HZSM-5(S)and the32-HZSM-5 with or without NH4F addition during hydrothermal process are compared and shown in Table 5.For the sample32-HZSM-5 without NH4F,the average toluene and 1,2,4-trimethylbenzene conversion reach 55%and 63%,while the total xylene selectivity and benzene selectivity is 62.5%and 28%,respectively.On the other hand,the average toluene conversion and the 1,2,4-trimethylbenzene conversion are 56%and 60%,respectively,and the total xylene selectivity and benzene selectivity are 61.5%and 27.5%for38-HZSM-5(S),respectively.According to Figs.10&11,the32-HZSM-5 without NH4F has a similarcatalytic properties with38-HZSM-5(S)for the 1,2,4-trimethylbenzene and toluene conversion.

    Fig.6.SEM photographs of the different ZSM-5 zeolite:32-ZSM-5 with NH4F(A&B),32-ZSM-5 without NH4F(C&D),commercial 38-ZSM-5(S)(E&F);32-ZSM-5(f)with NH4F(G&H).(SiO2/TPABr=8,SiO2/Al2O3=32,reaction time(stirring 4 d);H2O/SiO2=33).

    Table 4The catalytic performance of different SiO2/Al2O3 molar ratio of HZSM-5 samples for transalkylation of toluene and trimethylbenzene

    Fig.7.Reaction elementary steps in transalkylation and disproportionation process of toluene and 1,2,4-trimethylbenzene.

    Fig.8.Conversion as a function of the time on stream over HZSM-5 catalysts with various SiO2/Al2O3 molar ratio(a)23-HZSM-5,(b)26-HZSM-5,(c)32-HZSM-5 and(d)45-HZSM-5 at 723 K with WHSV of 3 h?1.

    ZSM-5 zeolite possesses a uniform pore size distribution without cage,which inhibits the generation of macromolecular coke precursor deposited in the zeolite[24].Moreover,the commercial38-HZSM-5(S)has smaller particle size but with a homogeneous 3D orientation of Mfizeolite crystals.Therefore,the38-HZSM-5(S)processes a good catalytic stability.The synthesized32-ZSM-5 without NH4F is a thin circular disk alongbaxial direction with a bigger(0 1 0)crystal plane and a smaller section(1 0 0)crystal plane[26],as shown in Appendix Fig.A2.Therefore,it has relatively short straight channel along thebdirection,which is more unblocked,particularly conducive to molecule diffusion.The pore distance alongbaxis of ZSM-5 is shortened,and the diffusion of the reaction molecules in it is easier during catalytic reaction.Although,the32-ZSM-5 without NH4F has a larger size than38-HZSM-5(S),the short distance alongbaxial direction makes it a good service life as the38-HZSM-5(S).

    Fig.9.The average product selectivity during 8 h reaction over HZSM-5 catalysts with various SiO2/Al2O3 molar ratio(a)23-HZSM-5,(b)26-HZSM-5,(c)32-HZSM-5 and(d)45-HZSM-5 at 723 K with WHSV of 3 h?1.

    Table 5The average activity data of the samples 38-HZSM-5(S),32-HZSM-5 with NH4F or without NH4F

    Fig.10.Conversion as a function of the time on stream over(a)commercial 38-HZSM-5(S),(b)32-HZSM-5 without NH4F and(c)32-HZSM-5 with NH4F at 723 K with WHSV of 3 h?1.

    Although the crystal structure of synthesized ZSM-5 with or without NH4F as mining agent during hydrothermal process has similar morphology ofacplan preferred orientation growth crystal.The crystal size of ZSM-5 with NH4F is much bigger than the32-HZSM-5 without NH4F and commercial38-HZSM-5(S)[27].The larger size crystal particles own the smaller external surface area and less active center for large size molecule,i.e.,1,2,4-trimethylbenzene reaction.The diameter of the corresponding aromatic molecules is shown in Appendix Table A2.Therefore,the32-HZSM-5 with NH4F has relatively lower catalytic properties than the other two samples[28].But the32-HZSM-5 with NH4F has the highest ratio for theSxylene/Sbenzene,it is more conducive to transalkylation of toluene and 1,2,4-trimethylbenzene than other side reaction,such as disproportionation of toluene or 1,2,4-trimethylbenzene.

    Fig.11.Product selectivity as a function of the time on stream over(a)commercial 38-HZSM-5(S),(b)32-HZSM-5 with NH4F and(c)32-HZSM-5without NH4F at 723 K with WHSV of 3 h?1.

    Appendix

    Table A1The element content in high purity SiO2 recovered from hexa fluorosilicic acid

    4.Conclusions

    The two-steps ammoniation method recovered silica hydrogel from hexa fluorosilicic acid can be directly used for ZSM-5 zeolite synthesis.The optimal hydrothermal conditions of ZSM-5 synthesis are investigated.It was found that with the increase of SiO2/Al2O3ratio and reaction time,the crystal type of ZSM-5 transforms from the orthorhombic to the monoclinic phase.The EDS analysis ofthese samples indicatesthatthe elementcomposition ofZSM-5 only contains Al,Si,and Owithoutotherimpurities.The ZSM-5 synthesized with recovered SiO2has the morphology ofacplane preferred orientation growth crystal.It can be deduced that without the impurity fluorine content of the recovered SiO2from H2SiF6the ZSM-5 crystal structure cannot be produced on the hydrothermal process for our synthesis procedure.The increased fluorine ion content by adding NH4F during hydrothermal process can improve the growth of ZSM-5 crystal alongbaxis and get large size crystal,because the fluorine ions can promote the dissolution of the silica and aluminum source and shorten the hydrothermal reaction time.The catalytic performance ofZSM-5 in the transalkylation oftoluene and 1,2,4-trimethylbenzene reaction indicates that with the increase of SiO2/Al2O3ratio of ZSM-5,the toluene and 1,2,4-trimethylbenzene conversions decrease,the sum of benzene and xylene selectivities decreases,and the 1,2,3-trimethylbenzene selectivity is on the rise.The morphology character of ZSM-5 produced from recovered SiO2has relatively short straight channel along thebdirection,which shows similar catalytic activity and service life as the performance of small particle size commercial ZSM-5.The32-HZSM-5 hydrothermal synthesized with NH4F as mining agent has larger particle size and highest ratio for theSxylene/Sbenzene,which is more conducive to transalkylation oftoluene and 1,2,4-trimethylbenzene than other side reaction,such as disproportionation of toluene or 1,2,4-trimethylbenzene.

    Table A2The diameter of the aromatic molecules

    Fig.A1.N2 ad/desorption spectra of 32-ZSM-5 zeolite.(SiO2/TPABr=8;SiO2/Al2O3=32;reaction time(stirring 4d);H2O/SiO2=33).

    Fig.A2.Channel structure of ZSM-5 zeolite[24].

    [1]H.S.Yu,K.I.Rhee,C.K.Lee,D.H.Yang,Two-step ammoniation of by-product fluosilicic acid to produce high quality amorphous silica,Korean J.Chem.Eng.17(2000)401–408.

    [2]J.X.Sun,R.X.Lin,et al.,Ammonification technology of silica production by using waste fluorosilicic acid as by product of phosphate fertilizer production,Inorg.Chem.Ind.41(2009)48–50.

    [3]Y.N.Wu,J.W.Tang,Effect of template type and template silica mole ratio on the crystallinity of synthesized nanosized ZSM-5,Chem.Ind.Eng.Prog.30(2011)332–335.

    [4]H.Xu,T.An,Y.Liu,G.Li,New process of preparing anhydrous hydrogen fluoride ammonium by fluorosilicic acid,Chem.Eng.8(2014)76–78.

    [5]A.Krysztafkiewicz,B.Rager,M.Maik,Silica recovery from waste obtained in hydro fluoric acid and aluminum fluoride production from fluosilicic acid,J.Hazard.Mater.3(1996)31–49.

    [6]L.S.Du,Y.P.Li,Comprehensive utilization status and development thinking of the byproducts fluorine and silicon of phosphate fertilizer production,Phos.Comp.28(2013)66–69.

    [7]A.J.Lu,H.L.Xu,F.Y.Lu,Preparation ofhigh purity silica and ammonium fluoride from fluosilicic acid,He Nan.Chem.Ind.12(2002)17–19(in Chinese).

    [8]X.Liu,A.Lu,Y.Liu,X.Liu,A new process for producing high purity SiO2 from lf uosilicic acid and annonium hydrocarbonate,Appl.Chem.Ind.6(2002)23–25.

    [9]S.Y.Jeong,J.K.Suh,J.M.Lee,O.Y.Kwon,Preparation of silica-based mesoporous materials from fluorosilicon compounds:gelation of H2SiF6in ammonia surfactant solution,Colloid Interface Sci.192(1997)156–161.

    [10]S.R.Ying,Z.Jiang,Technology and process of high purity quartz sand produced by fluosilicic acid,Chem.Prod.Tech.20(2013)27–30.

    [11]P.B.Sarawade,J.Kim,A.Hilonga,H.T.Kim,Preparation of hydrophobic mesoporous silica powder with a high specific surface area by surface modification of a wet-get slurry and spray-drying,J.Hazard.Mater.173(2010)576–580.

    [12]J.L.Guth,L.Delmotte,M.Soulard,Synthesis of Al,Si,MFI-type zeolites in the presence of fanions:structural and physicochemical characteristics,Zeolites12(1992)929–935.

    [13]H.Jon,Y.Oumi,K.Itabashi,T.Sano,Synthesis and characterization of large beta zeolite crystals using ammonium fluoride,J.Cryst.Growth307(2007)177–184.

    [14]R.M.Mohamed,H.M.Aly,M.F.El-Shahat,I.A.Ibrahim,Effect of the silica sources on the crystallinity of nanosized ZSM-5 zeolite,Microporous Mesoporous Mater.79(2005)7–12.

    [15]O.Xu,H.Su,J.Ji,X.Jin,J.Chu,Kinetic model and simulation analysis for toluene disproportionnation and C9-aromatics transalkylation,Chin.J.Chem.Eng.15(2007)326–322.

    [16]I.Schmidt,C.Madsen,C.J.Jacobsen,Con fined space synthesis:a novel route to nanosized zeolites,Inorg.Chem.39(2000)2279–2283.

    [17]G.T.Kokotailo,L.Riekert,A.Tissler,Phase transformations and changes in lattice parameters of ZSM-5 as a function of Al content and temperature,Stud.Surf.Sci.Catal.46(1989)821–826.

    [18]O.A.Fouad,R.M.Mohamed,M.S.Hassan,I.A.Ibrahim,Effect of template type and template/silica mole ratio on the crystallinity of synthesized nanosized ZSM-5,Catal.Today116(2006)82–87.

    [19]Y.Cheng,L.Wang,J.Li,Y.Yang,X.Sun,Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template,Mater.Lett.59(2005)3427–3430.

    [20]R.Aiello,F.Crea,E.Nigro,F.Testa,R.Mostowicz,A.Fonseca,J.B.Nagy,The in fluence of alkali cation on the synthesis of ZSM-5 in fluoride medium,Microporous Mesoporous Mater.28(1999)241–259.

    [21]B.Louis,L.Kiwi-Minsker,ZSM-5 coating on stainless steel grids in one-step benzene hydroxylation to phenol by N2O:reaction kinetics study,Microporous Mesoporous Mater.74(2004)171–178.

    [22]A.Baduraig,T.Odedairo,S.Al-Khattaf,Disproportionation and methylation of toluene with methanol over zeolite catalysts,Top.Catal.53(2010)1446–1456.

    [23]L.Shirazi,E.Jamshidi,M.R.Ghasemi,The effect of Si/Al ratio of ZSM-5 zeolite on its morphology,acidity and crystal size,Cryst.Res.Technol.12(2008)1300–1306.

    [24]J.M.Berak,B.Kanik,P.Eysymontt,J.Mejsner,Deactivation of high silica zeolite by steam treatment,React.Kinet.Catal.Lett.25(1984)3–4.

    [25]Z.K.Xie,Q.L.Chen,Disproportionation of toluene and transalkylation of C9 aromatics over H-βzeolite,East China Univ.Sci.Technol.26(2000)260–264(in Chinese).

    [26]Y.Liu,X.Zhou,X.Pang,Y.Jin,X.Meng,X.Zheng,X.Gao,F.Xiao,The in fluence of alkali cations on the synthesis of ZSM-5 in fluoride medium,Chem.Cat.Chem.5(2013)1517–1523.

    [27]J.Shi,G.L.Zhao,J.W.Teng,etal.,Advances in the research of Mfizeolite morphology,Prog.Chem.26(2014)545–552.

    [28]Q.Dai,S.Bai,X.Wang,G.Lu,Facile synthesis of HZSM-5 with controlled crystalmorphology and size as efficient catalysts for chlorinated hydrocarbons oxidation and xylene isomerization,J.Porous.Mater.21(2014)1041–1049.

    91aial.com中文字幕在线观看| 亚洲精品久久午夜乱码| 搡女人真爽免费视频火全软件| 国产深夜福利视频在线观看| 在线观看美女被高潮喷水网站| 寂寞人妻少妇视频99o| 青春草视频在线免费观看| 老熟女久久久| 国产亚洲av片在线观看秒播厂| 欧美变态另类bdsm刘玥| a级毛片在线看网站| 日产精品乱码卡一卡2卡三| 最近最新中文字幕免费大全7| 在线观看国产h片| 男人爽女人下面视频在线观看| 又爽又黄a免费视频| 人人妻人人看人人澡| 寂寞人妻少妇视频99o| 女人精品久久久久毛片| 春色校园在线视频观看| 乱码一卡2卡4卡精品| 欧美+日韩+精品| a级毛片在线看网站| 国产亚洲欧美精品永久| 国语对白做爰xxxⅹ性视频网站| 一级黄片播放器| 国产淫语在线视频| 永久免费av网站大全| 七月丁香在线播放| 成人无遮挡网站| 免费看日本二区| av视频免费观看在线观看| 久久人妻熟女aⅴ| www.色视频.com| 男男h啪啪无遮挡| 久热久热在线精品观看| 欧美老熟妇乱子伦牲交| 成人毛片a级毛片在线播放| 日本午夜av视频| 青春草亚洲视频在线观看| 国产色爽女视频免费观看| 欧美激情极品国产一区二区三区 | 成年av动漫网址| 国产毛片在线视频| 日本午夜av视频| 久久久久久久精品精品| 久久久久久久大尺度免费视频| 日韩精品免费视频一区二区三区 | 黄色欧美视频在线观看| 欧美精品人与动牲交sv欧美| 色哟哟·www| 色婷婷久久久亚洲欧美| av视频免费观看在线观看| 22中文网久久字幕| 国产亚洲欧美精品永久| 天堂俺去俺来也www色官网| 国产午夜精品一二区理论片| 少妇人妻一区二区三区视频| 人人妻人人添人人爽欧美一区卜| 亚洲av不卡在线观看| 国产精品99久久久久久久久| 精品久久久久久久久亚洲| 观看美女的网站| 久久精品夜色国产| a级片在线免费高清观看视频| 成年美女黄网站色视频大全免费 | 国产免费一区二区三区四区乱码| av在线老鸭窝| 伊人亚洲综合成人网| 久久久久久久久大av| 精品少妇内射三级| 国产一级毛片在线| 免费av不卡在线播放| 插逼视频在线观看| 精品久久久久久电影网| 美女福利国产在线| av在线老鸭窝| 日产精品乱码卡一卡2卡三| 亚洲国产精品一区三区| 香蕉精品网在线| a级片在线免费高清观看视频| 免费人妻精品一区二区三区视频| 国产av国产精品国产| 欧美日韩亚洲高清精品| 一级毛片黄色毛片免费观看视频| 久久久国产一区二区| 国产精品久久久久成人av| 丝袜喷水一区| 美女大奶头黄色视频| 精品国产一区二区久久| 一级毛片我不卡| 午夜影院在线不卡| 人妻夜夜爽99麻豆av| 啦啦啦在线观看免费高清www| 下体分泌物呈黄色| 欧美老熟妇乱子伦牲交| 亚洲怡红院男人天堂| 成人无遮挡网站| 精品亚洲成国产av| 交换朋友夫妻互换小说| 激情五月婷婷亚洲| 欧美丝袜亚洲另类| 十八禁网站网址无遮挡 | 久久国产精品男人的天堂亚洲 | 女性生殖器流出的白浆| 亚洲av男天堂| 国产成人aa在线观看| 国产精品人妻久久久久久| av播播在线观看一区| 亚洲色图综合在线观看| 午夜影院在线不卡| 男女啪啪激烈高潮av片| 国产黄片视频在线免费观看| 高清毛片免费看| av天堂中文字幕网| 九色成人免费人妻av| 色婷婷久久久亚洲欧美| 久久精品国产亚洲av涩爱| 久久免费观看电影| 亚洲,一卡二卡三卡| 欧美成人精品欧美一级黄| 欧美日本中文国产一区发布| 成人国产麻豆网| 王馨瑶露胸无遮挡在线观看| 亚洲国产精品国产精品| 内射极品少妇av片p| 亚洲国产精品一区二区三区在线| 成人漫画全彩无遮挡| 亚洲精品456在线播放app| 麻豆成人av视频| 美女主播在线视频| 亚洲va在线va天堂va国产| 男女无遮挡免费网站观看| 男女啪啪激烈高潮av片| 91精品国产国语对白视频| 国产日韩欧美亚洲二区| 精品人妻偷拍中文字幕| 啦啦啦中文免费视频观看日本| 中文字幕免费在线视频6| 欧美日韩综合久久久久久| 久久人人爽人人爽人人片va| 亚洲国产最新在线播放| 成年女人在线观看亚洲视频| 国产熟女午夜一区二区三区 | 十八禁高潮呻吟视频 | 国产69精品久久久久777片| 成年女人在线观看亚洲视频| 国产欧美日韩综合在线一区二区 | 成年人免费黄色播放视频 | 特大巨黑吊av在线直播| 在线看a的网站| 我要看日韩黄色一级片| 中文字幕人妻熟人妻熟丝袜美| 欧美xxⅹ黑人| 亚洲av电影在线观看一区二区三区| 18禁动态无遮挡网站| 国产熟女欧美一区二区| 91久久精品国产一区二区三区| 亚洲av综合色区一区| 亚洲av二区三区四区| 国产成人精品婷婷| 亚洲不卡免费看| 一级毛片黄色毛片免费观看视频| 偷拍熟女少妇极品色| 伊人久久国产一区二区| 久久久亚洲精品成人影院| 狂野欧美激情性xxxx在线观看| 国产欧美日韩一区二区三区在线 | 一边亲一边摸免费视频| 国产中年淑女户外野战色| 人妻一区二区av| 日韩不卡一区二区三区视频在线| a 毛片基地| 亚洲,欧美,日韩| 国产熟女午夜一区二区三区 | 精品一区二区三卡| 成人国产麻豆网| 成年人午夜在线观看视频| 欧美老熟妇乱子伦牲交| 日韩三级伦理在线观看| 韩国高清视频一区二区三区| av福利片在线观看| 国产亚洲午夜精品一区二区久久| 免费在线观看成人毛片| 在线观看av片永久免费下载| av播播在线观看一区| 日韩中文字幕视频在线看片| 观看美女的网站| 青春草国产在线视频| h视频一区二区三区| 五月开心婷婷网| 久久精品国产a三级三级三级| 国产淫片久久久久久久久| 99九九在线精品视频 | 国产成人一区二区在线| 在线天堂最新版资源| 成年美女黄网站色视频大全免费 | 日韩中字成人| 久久精品久久久久久噜噜老黄| 久久ye,这里只有精品| 免费av中文字幕在线| 精品少妇久久久久久888优播| 国内精品宾馆在线| 超碰97精品在线观看| 黄色欧美视频在线观看| 久久久久久久久久久免费av| 成人免费观看视频高清| 欧美精品一区二区免费开放| 亚洲高清免费不卡视频| kizo精华| 九色成人免费人妻av| 纯流量卡能插随身wifi吗| 肉色欧美久久久久久久蜜桃| 青青草视频在线视频观看| 国产一区有黄有色的免费视频| 免费高清在线观看视频在线观看| 久久久久网色| 熟女电影av网| 免费观看性生交大片5| 亚洲精品一区蜜桃| 在线观看免费日韩欧美大片 | 老女人水多毛片| 国产黄频视频在线观看| 五月天丁香电影| 黄色配什么色好看| www.色视频.com| 建设人人有责人人尽责人人享有的| 久久女婷五月综合色啪小说| 国产精品一区二区在线不卡| 免费少妇av软件| 欧美日韩精品成人综合77777| 美女福利国产在线| 一个人免费看片子| 精品少妇内射三级| av在线观看视频网站免费| 少妇被粗大猛烈的视频| 国产极品粉嫩免费观看在线 | 免费看不卡的av| 制服丝袜香蕉在线| 亚洲国产av新网站| a级毛片免费高清观看在线播放| 国产黄片视频在线免费观看| 亚洲av在线观看美女高潮| 久久久精品免费免费高清| 日本免费在线观看一区| 久久久久久久久大av| 国精品久久久久久国模美| 欧美xxxx性猛交bbbb| 中文字幕久久专区| 人人妻人人爽人人添夜夜欢视频 | 国产一区亚洲一区在线观看| 国产一区亚洲一区在线观看| 啦啦啦视频在线资源免费观看| 极品教师在线视频| 国产毛片在线视频| 亚洲综合色惰| 成年人午夜在线观看视频| 久久这里有精品视频免费| 九九久久精品国产亚洲av麻豆| 久久精品夜色国产| 男的添女的下面高潮视频| 国产成人a∨麻豆精品| 国产又色又爽无遮挡免| 又粗又硬又长又爽又黄的视频| 亚洲国产成人一精品久久久| 如日韩欧美国产精品一区二区三区 | 亚洲内射少妇av| 国产爽快片一区二区三区| 蜜臀久久99精品久久宅男| 亚洲精品日本国产第一区| 亚洲av二区三区四区| 国产精品女同一区二区软件| 久久久欧美国产精品| 一本色道久久久久久精品综合| 男人狂女人下面高潮的视频| 自拍偷自拍亚洲精品老妇| 国产片特级美女逼逼视频| 三级经典国产精品| 国产黄片视频在线免费观看| 高清视频免费观看一区二区| 国产亚洲最大av| 久久久a久久爽久久v久久| 国产一区二区在线观看日韩| 久热久热在线精品观看| 欧美xxⅹ黑人| 18禁在线播放成人免费| 中文字幕免费在线视频6| 边亲边吃奶的免费视频| 亚洲国产精品一区三区| 中文字幕人妻熟人妻熟丝袜美| 精品人妻偷拍中文字幕| 国产精品三级大全| 亚洲不卡免费看| 最新的欧美精品一区二区| 99九九在线精品视频 | av一本久久久久| 亚洲图色成人| 我的老师免费观看完整版| 亚洲精品久久午夜乱码| 美女中出高潮动态图| 在线观看www视频免费| 国产男女超爽视频在线观看| 亚洲欧洲日产国产| 99热这里只有精品一区| 久久99一区二区三区| 国产av国产精品国产| 日韩欧美一区视频在线观看 | 亚洲av在线观看美女高潮| 国内少妇人妻偷人精品xxx网站| 国产精品女同一区二区软件| 国产精品麻豆人妻色哟哟久久| 久久99蜜桃精品久久| 99久久综合免费| 午夜免费男女啪啪视频观看| 少妇人妻 视频| 丝袜脚勾引网站| 在线精品无人区一区二区三| 大码成人一级视频| 男人狂女人下面高潮的视频| 天天操日日干夜夜撸| 青青草视频在线视频观看| 男人狂女人下面高潮的视频| 三级经典国产精品| 日本午夜av视频| 最近手机中文字幕大全| 新久久久久国产一级毛片| 三级经典国产精品| 国产成人免费观看mmmm| 五月天丁香电影| 欧美高清成人免费视频www| 国产真实伦视频高清在线观看| 日日爽夜夜爽网站| 丝瓜视频免费看黄片| 男的添女的下面高潮视频| 国产国拍精品亚洲av在线观看| 曰老女人黄片| 亚洲人成网站在线观看播放| 欧美日韩视频精品一区| 丝袜在线中文字幕| 26uuu在线亚洲综合色| 日本黄色片子视频| av播播在线观看一区| 韩国av在线不卡| 日韩欧美 国产精品| 免费观看的影片在线观看| 国产男女超爽视频在线观看| 精品久久久精品久久久| 夫妻性生交免费视频一级片| 18禁在线无遮挡免费观看视频| 大香蕉久久网| 亚洲高清免费不卡视频| 欧美日韩综合久久久久久| 18禁在线无遮挡免费观看视频| 精品酒店卫生间| 精品少妇久久久久久888优播| 国产伦在线观看视频一区| 亚洲精品国产色婷婷电影| 日韩精品免费视频一区二区三区 | 欧美精品一区二区大全| 乱系列少妇在线播放| 亚洲av欧美aⅴ国产| 99久国产av精品国产电影| av福利片在线观看| 亚洲欧美清纯卡通| 欧美区成人在线视频| 99九九在线精品视频 | 精品人妻熟女av久视频| 交换朋友夫妻互换小说| 午夜激情福利司机影院| 国产精品福利在线免费观看| 晚上一个人看的免费电影| 欧美精品一区二区免费开放| 欧美日韩亚洲高清精品| 亚洲国产av新网站| tube8黄色片| 黑人高潮一二区| 国产成人精品一,二区| 国产成人免费观看mmmm| 国产色婷婷99| 免费久久久久久久精品成人欧美视频 | 一级a做视频免费观看| 国产免费又黄又爽又色| 免费久久久久久久精品成人欧美视频 | www.色视频.com| 亚洲精品456在线播放app| 免费观看a级毛片全部| 在线观看www视频免费| 日本av免费视频播放| 亚洲精品第二区| 日韩av不卡免费在线播放| 亚洲精品日本国产第一区| 国产女主播在线喷水免费视频网站| 亚洲欧美中文字幕日韩二区| 美女大奶头黄色视频| 久久精品夜色国产| 欧美精品一区二区免费开放| 狠狠精品人妻久久久久久综合| 99热国产这里只有精品6| 亚洲av不卡在线观看| 人人妻人人澡人人看| 久久久久久久国产电影| 亚洲综合色惰| 男女无遮挡免费网站观看| 黑人猛操日本美女一级片| av视频免费观看在线观看| 在线观看国产h片| 欧美激情国产日韩精品一区| 校园人妻丝袜中文字幕| 国产精品一区二区在线观看99| 男男h啪啪无遮挡| 国产高清不卡午夜福利| 日韩欧美精品免费久久| 久久99一区二区三区| 国产精品99久久99久久久不卡 | 久久99热这里只频精品6学生| www.av在线官网国产| 亚洲高清免费不卡视频| 寂寞人妻少妇视频99o| 曰老女人黄片| 2022亚洲国产成人精品| 嘟嘟电影网在线观看| 日韩精品有码人妻一区| 99热这里只有是精品在线观看| 国产av码专区亚洲av| 国产亚洲精品久久久com| 欧美精品一区二区大全| 在线观看www视频免费| 精品久久久久久久久亚洲| 乱人伦中国视频| 我的女老师完整版在线观看| 夜夜爽夜夜爽视频| 男女国产视频网站| 内射极品少妇av片p| 一二三四中文在线观看免费高清| 欧美日韩综合久久久久久| 99久国产av精品国产电影| 在线观看av片永久免费下载| 成人二区视频| 亚洲欧洲国产日韩| 亚洲国产毛片av蜜桃av| 伦理电影免费视频| 亚洲国产精品999| 国产亚洲最大av| 麻豆成人av视频| 卡戴珊不雅视频在线播放| .国产精品久久| 国内精品宾馆在线| 免费高清在线观看视频在线观看| 成人影院久久| 在线观看一区二区三区激情| 免费久久久久久久精品成人欧美视频 | 成人影院久久| 成年人免费黄色播放视频 | 一本色道久久久久久精品综合| 成年女人在线观看亚洲视频| 少妇裸体淫交视频免费看高清| 看免费成人av毛片| 日韩成人av中文字幕在线观看| 大香蕉久久网| 中文字幕精品免费在线观看视频 | 黄色一级大片看看| 国产综合精华液| 大又大粗又爽又黄少妇毛片口| 欧美少妇被猛烈插入视频| 国产精品不卡视频一区二区| 亚洲精品久久午夜乱码| 夜夜看夜夜爽夜夜摸| 99久久精品国产国产毛片| 大陆偷拍与自拍| 91久久精品国产一区二区成人| 人妻一区二区av| 国产精品欧美亚洲77777| 丝袜喷水一区| 日韩精品有码人妻一区| 国产精品国产三级国产专区5o| 边亲边吃奶的免费视频| 春色校园在线视频观看| 久久国产精品大桥未久av | 久久鲁丝午夜福利片| 欧美日韩视频高清一区二区三区二| 97超碰精品成人国产| 丰满乱子伦码专区| 一个人免费看片子| 一级毛片 在线播放| 女的被弄到高潮叫床怎么办| 欧美日韩视频精品一区| 亚洲av综合色区一区| 国产精品成人在线| 在线观看www视频免费| 自拍偷自拍亚洲精品老妇| 国产精品一二三区在线看| av在线观看视频网站免费| 免费在线观看成人毛片| 日产精品乱码卡一卡2卡三| 最近2019中文字幕mv第一页| 亚洲欧美精品自产自拍| 热99国产精品久久久久久7| 午夜福利在线观看免费完整高清在| 春色校园在线视频观看| 肉色欧美久久久久久久蜜桃| 中文字幕精品免费在线观看视频 | 国产亚洲一区二区精品| 亚洲美女黄色视频免费看| 午夜精品国产一区二区电影| 一级片'在线观看视频| 亚洲,欧美,日韩| 亚洲va在线va天堂va国产| 男人舔奶头视频| 极品教师在线视频| 啦啦啦在线观看免费高清www| 欧美+日韩+精品| 最近手机中文字幕大全| 国产精品偷伦视频观看了| 极品少妇高潮喷水抽搐| 黑人猛操日本美女一级片| 五月开心婷婷网| 久久久久精品性色| 观看av在线不卡| 91成人精品电影| 亚洲av电影在线观看一区二区三区| 免费av不卡在线播放| 国产黄色视频一区二区在线观看| 成人国产麻豆网| av专区在线播放| 日日爽夜夜爽网站| av网站免费在线观看视频| 亚洲国产成人一精品久久久| 少妇的逼好多水| 黄色配什么色好看| 欧美日韩av久久| 久久精品久久久久久噜噜老黄| 日韩精品免费视频一区二区三区 | 精品久久久久久电影网| 国产成人午夜福利电影在线观看| 久久午夜福利片| 国产黄色免费在线视频| 97在线人人人人妻| 男女国产视频网站| 色网站视频免费| 三级国产精品片| 日韩制服骚丝袜av| 熟女av电影| 成人无遮挡网站| 亚洲真实伦在线观看| 91成人精品电影| 久久人人爽av亚洲精品天堂| 在线天堂最新版资源| 热re99久久精品国产66热6| 亚州av有码| 亚洲在久久综合| 高清欧美精品videossex| 国产精品无大码| 精品久久久噜噜| 午夜免费鲁丝| 天天操日日干夜夜撸| 狠狠精品人妻久久久久久综合| 夫妻午夜视频| 亚洲成人av在线免费| 午夜激情福利司机影院| 我的女老师完整版在线观看| 久久久久久久久久成人| 高清欧美精品videossex| 成人黄色视频免费在线看| 青春草视频在线免费观看| 久久国产亚洲av麻豆专区| a级毛片在线看网站| 国产乱人偷精品视频| 99九九线精品视频在线观看视频| 日本-黄色视频高清免费观看| 麻豆精品久久久久久蜜桃| 亚洲av男天堂| 精品少妇黑人巨大在线播放| 曰老女人黄片| 99久久精品热视频| 两个人免费观看高清视频 | 国产黄色免费在线视频| 国产亚洲av片在线观看秒播厂| 少妇裸体淫交视频免费看高清| 三级国产精品欧美在线观看| 成年av动漫网址| av天堂久久9| 久久人妻熟女aⅴ| 国产欧美日韩一区二区三区在线 | 丰满饥渴人妻一区二区三| 最近最新中文字幕免费大全7| 久久精品国产亚洲av涩爱| 丝袜脚勾引网站| 色婷婷av一区二区三区视频| av视频免费观看在线观看| 亚洲精品久久午夜乱码| 欧美区成人在线视频| 国产视频内射| 国产精品国产三级国产av玫瑰| 欧美高清成人免费视频www| 高清不卡的av网站| 国产熟女欧美一区二区| 亚洲精品中文字幕在线视频 | 乱码一卡2卡4卡精品| 亚洲精品久久午夜乱码| 男女啪啪激烈高潮av片| 一个人免费看片子| 91久久精品国产一区二区成人| 汤姆久久久久久久影院中文字幕| 国产亚洲av片在线观看秒播厂| 91在线精品国自产拍蜜月| 欧美精品人与动牲交sv欧美| 精品人妻一区二区三区麻豆| 黄色怎么调成土黄色| 男女边摸边吃奶| 久久久久久久亚洲中文字幕| 国产av国产精品国产| 日产精品乱码卡一卡2卡三| 欧美97在线视频| 热re99久久国产66热| 欧美日韩在线观看h|