• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study on freezing of liquids under static magnetic field☆

    2017-05-30 02:11:31HongxiaZhaoFengZhangHanqingHuShengLiuJitianHan

    Hongxia Zhao *,Feng Zhang Hanqing Hu Sheng Liu ,Jitian Han *

    1 School of Energy and Power Engineering,Shandong University,Jinan 250061,China

    2 Vegetable Research Center,Beijing Academy of Agriculture and Forestry Sciences,National Engineering Research Center for Vegetables,Beijing 100097,China

    1.Introduction

    Freezing is one of the most important methods to preserve food and other perishable goods[1,2].Freezing process is critical for maintaining quality and flavor of food.Taking liquid food as an example,freezing is usually divided into three stages[3],as shown in Fig.1:(1)liquid cooling period(a–b–c),at this stage the food is cooled by releasing sensible heat until it reaches the nucleation pointc.In some cases the temperature ofthe cooled liquid may be lower than its freezing temperature,and the difference between them is called degree ofsupercooling.In this supercooling period frombtoc,liquid is unstable and nucleation may occuratany time[4].The temperature atwhich nucleation starts is called nucleation temperature,i.e.,the lowest temperature of liquid state(pointc).(2)Phase transition period(d–e–f),during which latent heatis removed,nucleation happens and most ofliquid turns into solid;the temperature from pointdtoekeeps constant,and is called freezing temperature.The temperature at point f is 5°C lower than the freezing temperature.(3)Solid freezing period from pointfto pointg,during which temperature of frozen solid continues to drop and sensible heat is removed until the required temperature is reached.Freezing control is very important for preserving quality of frozen food,since the temperature course during solidification determines crystal growth and crystal structure inside frozen food[1,5].As it is known,a quick and short freezing process produces small ice crystals,which will cause less damages to cells,resulting in a better final quality after thawing of food products[5,6].

    There are many studies on the new emerging freezing technology,such as impingement freezing[7,8],superchilling technology[9,10],pressure shift food freezing[11–13],ultrasound-assisted food freezing[14,15],freezing under electric field[16,17],radiofrequency-assisted freezing[18],and Magnetic Resonance-assisted Freezing(MRAF)[1,2,15,19].The MRAF is a new technology,also called as cell alive system(CAS)technology by some researchers;it preserves food and biology samples with better quality than other methods by using both magnetic and electric fields[20,21],but detailed information has not been disclosed yet.In CAS,a very weak magnetic field(0.01 mT)is applied to affect the freezing process of biological sample, flower or plant.The weak magnetic field will prevent ice from forming inside cells.

    Magnetic field has been shown to affect particular water properties by physicists,such as heat capacity[22],refractive index[23],electrical conductivity[24],self-diffusion coefficient[25],viscosity and surface tension[26,27].It has also been applied in many fields,such as waste water treatment,crystallization,and separation.[28].However,few studies have been carried out on the effects of magnetic field to water freezing and the published research results are inconsistent.One paper reported that strong static magnetic field nucleated ice formation in 0.5 mL samples ofdistilled water,with a field strength of0.5 T causing equilibrium freezing at 0°C[29].Another paper observed that containerless 6 mm globules of water levitated in an 18 T magnetic field supercooled to?10°C before freezing[30].Wowk[31]claims that it is questionable whether if a magnetic field less than 1 mT can promote or inhibit ice nucleation.He believed that there was no in fluence for static magnetic fields on freezing of bulk water away from surfaces.Another study in Japan investigated food preservation using commercial freezers with a 0.5 mT magnetic field and found no better results[32].Moket al.[3]studied the in fluences of magnetic field alone and combination of both magnetic and electric field on the freezing process of 0.9%NaCl solution.The magnetic fields in their study are 480 mT and 50 mT.Theirresultsshowed thatmagnetic field alone can shorten phase transition time and produce uniform ice crystal patterns.Combination of magnetic field and electric field can further shorten the phase transition time and produces more round ice crystals.However,the authors did not provide the relationship between phase transition time and magnetic field flux density.In addition,the relationship between magnetic field flux density and the nucleation temperature is not provided either.

    Fig.1.Typical freezing curve of water.

    Strong magnetic field may harm cell properties and should not be used to preserve biological samples and fresh food.On the other hand,the existing study shows that very weak magnetic field(<0.5 mT)is not effective either[32].However,weak magnetic field(>1 mT),may play a significant role in food freezing and biological sample preservation,as proved by Mok[3].Weak magnetic field is also easy to obtain and cost less.Taking this into account,in this paper,the weak magnetic field is selected.

    Ethylene glycol solution is often used as a cryoprotective agent in cryobiology.It will inhibit nucleation and growth of ice crystals by forming hydrogen bonds with water molecules[33].Since magnetic field is proved to in fluence hydrogen bonds,itwillaffectfreezing behaviorofethylene glycolsolution,which may help us to improve the performance of ethylene glycol solution in cryopreservation.However,at present to the authors'knowledge,there is no research published on this aspect.

    In this paper,the study willfocus on the effectofstatic magnetic field(SMF)less than 50 mT on the freezing process of several liquids:deionized water,NaClsolution and ethylene glycolsolution.The relationships between nucleation temperature,phase transition time and different magnetic field flux densities will be sought.The aim is to be able to control freezing process by applying an appropriate magnetic field.

    2.Materials and Methods

    2.1.Experiment system

    As shown in Fig.2,the experimental system is composed of a liquid bath,a data acquisition system,thermocouples,test tubes and permanent magnets.The test tube is made of glass,18 mm×180 mm,and 5 ml liquid sample for each test.The magnetic field is produced by placing two permanent neodymium magnets(NdFeB,dimension 50 mm×50 mm×2 mm)on two sides of test tubes with opposite poles facing each other.The magnetic field flux density is adjusted by varying distance between the two magnets.The magnetic field flux density is measured by a Tesla meter(CH-1800,±0.001 mT).The temperature of the test samples and the temperature of liquid bath are measured by a K-type thermocouple(TT-K-30-SLE,±0.5 °C,Omega Engineering,Inc.,StamFord,CT).Liquid bath is obtained by circulating calcium chloride solution with a mass concentration of 25.6%through a chiller and its temperature is kept constant at?16 °C.

    Fig.2.Schematic diagram of experiment system.1—Data acquisition system,2—Liquid bath,3—Thermal Couples,4—Test tube,5—Magnets.

    2.2.Sample preparation and test procedure

    The liquid samples tested are deionized water,0.9%mass concentration NaCl solution,and 5%mass concentration water glycol solution(phase transition temperature=?1.4°C).Deionized water is bought from the market and measured by 100 ml graduate cylinder(E1 ml).The NaCl(Analytical Reagent,AR)is measured by an analytical balance(E0.0001 g,Ohaus,EX324ZH).Ethylene glycol used is AR,with purity>99.5%,measured by 5 ml graduated cylinder(E 0.1 ml).For each test,5 ml liquid sample is putinto the glass testtube.Then itis placed into a thermostat box for 2 h before experiments for temperature stabilization to make sure that the test samples are starting at the same temperature.The temperature of the thermostat box is kept at(20 ± 0.5)°C.When 2-hour stabilization period is reached,the test tube is taken out of the thermostat box quickly and immersed into the liquid bath and fixed in a sample holder.Then the freezing process starts.The temperature of the sample is measured by a K-type thermal couple placed atthe center ofthe testsample.Data is collectedviaa data acquisition system(Agilent 34970A)and transferred into a computer.The magnetic field flux density is measured before each test since it will not change during experiments.For each magnetic field flux density,at least triple tests were carried out.

    2.3.Data processing methods

    Microsoft Excel was employed for statistical analysis of experiment data.Normality testand Analysis ofVariance(ANOVA)were performed.Mean phase transition time and nucleation temperature were computed and compared.

    3.Results and Discussion

    3.1.Normality test and ANOVA

    Nucleation is a stochastic event,and nucleation temperature at which nucleation starts must follow a normal distribution.However,when magnetic field is applied,itmay deviate from the normaldistribution.In order to check on this,the cumulative probability plotvs.nucleation temperature for deionized water,0.9%NaCl and 5%glycol solution is shown in Figs.3–5 for both withoutmagnetic field and with magnetic field of 11.4 mT.The Anderson–Darling normality tests[34]were also carried out on these data and results are also presented in Figs.3–5.WhenPvalue for the Anderson–Darling normality test is greater than 0.05,normal distribution is verified.WhenPvalue equals 1,it means perfect normal distribution.

    Fig.3.Normal cumulative distribution with 95%con fidence interval(two curved lines on both sides)of nucleation temperature of deionized water frozen in test tube(a)without magnetic field,and(b)with 11.4 mT magnetic field.

    From Fig.3(a)and(b),it can be seen that nucleation temperature of deionized water fits normal distribution well with or without magnetic field.Pvalues for the Anderson–Darling normality test under these two conditions are almost equal.This means that magnetic field does not change the stochastic behavior of nucleation and it still follows normal distribution.

    From Fig.4(a)and(b),it shows that nucleation temperature of 5%NaClsolution also follows normaldistribution with or withoutmagnetic field.Pvalue for 11.4 mT magnetic field is 0.238,less than that without SMF,but is greater than 0.05 required for normal distribution test.

    Normality tests are also performed for 5%ethylene glycol solution and results are shown in Fig.5(a)and(b).Nucleation temperature of 5%ethylene glycol also follows normal distribution with or without magnetic field.

    After it is con firmed that nucleation temperature of all three liquids is normally distributed,ANOVA was carried out for these data with SMF flux density as the in fluencing factor.ANOVA results for deionized water at different SMF flux density show that there is no significant difference among different groups(Pvalue=0.106 greater than required 0.05).This means that nucleation of deionized water is not notably in fluenced by SMF in the current study.However,both 0.9%NaCl and 5%ethylene glycol were in fluenced by SMF,andPvalues are 0 and 0.041 respectively.

    Fig.4.Normal cumulative distribution with 95%con fidence interval(two curved lines on both sides)of nucleation temperature of(a)0.9%NaClsolution frozen in testtube without magnetic field,and(b)5%NaCl solution frozen in test tube with 11.4 mT magnetic field.

    3.2.Effect of magnetic field on nucleation temperature and phase transition time of deionized water

    Fig.6 exhibits thatnucleation temperature of deionized water atdifferentSMF may be loweror greaterthan thatwithout SMF.Even though Caiet al.[26]pointed out that water is more stable after magnetic treatmentwith less molecular energy and more activation energy.However,the SMF used in their study is 0.50 T.In the Monte Carlo simulation of liquid water in a magnetic field,Zhouet al.[22]concluded that a significant change in the internal energy and heat capacity occurred when a magnetic flux density about 0.2 T is applied.Their results also showed that there is no substantial changes when the SMF is less than 0.05 T.Pang and Shen[24]used 0.4 T SMF and found out that dielectric constant and resistance of water is reduced.The in fluence on hydrogen bonding between water molecules is responsible for all the changes of physical properties when SMF is present.More hydrogen bonds are formed and water clusters become larger after magnetic treatment[22,24,26].All the above studies used a much higher SMF than the current one(less than 0.05 T),which may explain that hydrogen bonding between water molecules are not affected by small SMF(less than 50 mT)applied in the currentstudy.Hence supercooling degree and energy required for water nucleation did not change either under small SMF.

    Effect of SMF on phase transition time of deionized water is not obvious,indicated by Fig.7.It agrees with the above ANOVA analyses that SMF did not make big difference on nucleation temperature of deionized water.Another point is that the lower nucleation temperature is not corresponding to the shorter phase transition time.The reason is that there are many factors except nucleation temperature which in fluences the phase transition process,such as water viscosity,thermal conductivity,heat capacity and activation energy,etc.The phase transition process,in which latent heat is released constantly and ice nucleus keeps growing,is basically a heat transfer process.Nucleation temperature only determines the starting temperature ofnucleation and the size of initial ice nucleus,but not the later phase transition.Therefore nucleation temperature alone cannot determine how the phase transition proceeds.

    Fig.5.Normal cumulative distribution with 95%con fidence interval(two curved lines on both sides)of nucleation temperature of 5%ethylene glycol solution frozen in test tube(a)without magnetic field,and(b)with 11.4 mT magnetic field.

    Fig.6.Nucleation temperature of deionized water vs.magnetic field flux density.

    Fig.7.Phase transition time of deionized water vs.magnetic field flux density.

    3.3.Effect of SMF on nucleation temperature and phase transition time of 0.9%NaCl

    Fig.8 reveals the way nucleation temperature varies with SMF for 0.9%NaClsolution.Ittells thatallthe nucleations occuratlowertemperature when SMF is applied,though the trend is not linear.The lowest nucleation temperature when SMF is applied is 3°C lower than that without SMF.This is different from deionized water for which SMF does not affect much on its nucleation temperature.The reason may be associated with ions in the NaCl solution.The mobility of ions(Na+and Cl?)is enhanced and hence the diffusion coefficient is increased when SMF is applied.The diffusion process of water molecules will hinder the formation of nucleus,and hence lower the nucleation temperature[25].

    Fig.8.Nucleation temperature of 0.9%NaCl vs.magnetic field flux density.

    Effect of SMF on phase transition time of 0.9%NaCl solution is substantial,as indicated in Fig.9.All the phase transition time at different SMF is less than that without SMF.It may attribute to the enhanced diffusion coefficient under SMF,which promotes heat transfer once nucleation starts.However,the shortened phase transition time doesnotvary with SMF flux density in a linear trend.This means thatthe way SMF affects phase transition time of0.9%NaCl solution is complex.On average,the phase transition time is shortened about 55.3%compared with no SMF.Since Na+and Cl?ions are widely existed in many foods,it is concluded that SMF will impact freezing process of these foods.

    Fig.9.Phase transition time of 0.9%NaCl vs.magnetic field flux density.

    3.4.Effectofmagnetic field on nucleation temperature and phase transition time of 5%ethylene glycol

    Fig.10 displays that nucleation temperature of 5%ethylene glycol mixture varies with magnetic field flux density.The nucleation temperature is higher when SMF is employed,compared with that without SMF.However,the change is not following the same trend as magnetic field flux increases.To the best of the authors'knowledge,no study was found on how SMF affects the nucleation temperature ofethylene glycol solution.Further theoretical studies are needed to understand this behavior.Here it is postulated that the in fluence on hydrogen bonds within ethylene glycol molecules by SMF caused this behavior.It is known that hydrogen bond is formed between two--OHs for an ethylene glycol molecule,therefore,it may be strengthened by external SMF which inhibits molecule's rotation and vibration atsupercooling stage and promotes growth of ice nucleus.Hence critical radius will be reached at higher temperature with SMF than without SMF,and the nucleation temperature is raised.This is contrary to 0.9%NaCl solution,which may come from different compositions of these two solutions,ions vs.molecules.However,similar to deionized water,the phase transition time is not directly related with nucleation temperature;i.e.,the lowest nucleation temperature is notcorresponding to the shortestphase transition time,as shown in Fig.11.The highest nucleation temperature occurs at SMF 29 mT,but the shortest phase transition occurs at SMF 43.5 mT.

    Fig.10.Nucleation temperature of 5%ethylene glycol vs.magnetic field flux density.

    Fig.11.Phase transition time of 5%ethylene glycol vs.magnetic field flux density.

    Effectof SMF on phase transition time of 5%ethylene glycol is significant,as depicted in Fig.11.Contrary to 0.9%NaCl solution,when small magnetic field is applied,the phase transition time of5%ethylene glycol shows a cyclic behavior with a decreasing amplitude.It first rises and then drops as magnetic field increases.When SMF is less than 29 mT,the phase transition time with SMF is longer than that without SMF.However,when SMF is greater than 29 mT,the phase transition time with SMF is less than that without SMF.The behavior of its phase transition time is different from its nucleation temperature(Fig.8).This again means that lower nucleation temperature not necessarily results in shorter phase transition time.There are many other factors which influence the phase transition process.More research is needed on this aspect.

    4.Conclusions

    In the present study,freezing processes of deionized water,0.9%NaCl solution and 5%ethylene glycol solution under different SMF were studied.Nucleation temperature and phase transition time were obtained.Normality tests were performed for nucleation temperature.ANOVA of nucleation temperature was carried out to check in fluences of different SMF flux densities.It was concluded that:

    ?Nucleation temperature follows normal distribution with or without

    SMF for deionized water,0.9%NaCl and 5%ethylene glycol solution.?Nucleation temperature and phase transition time of deionized water

    are not significantly in fluenced by SMF,but 0.9%NaCl solution and 5%ethylene glycol solution do.

    ?Nucleation temperature of 0.9%NaCl with SMF is lower than that without SMF,while its phase transition time is 55.4%shorter than that without SMF on average.

    ?Nucleation temperature of 5%ethylene glycol with SMF is higher than that without SMF,while its phase transition time may or may not shorter than that without SMF.

    [1]C.James,G.Purnell,S.J.James,A review of novel and innovative food freezing technologies,Food Bioprocess Technol.8(8)(2015)1616–1634.

    [2]B.Li,D.-W.Sun,Novel method for rapid freezing and thawing of foods—A review,J.Food Eng.54(2002)175–182.

    [3]J.H.Mok,W.Choi,S.H.Park,S.H.Lee,S.Jun,Emerging pulsed electric field(PEF)and static magnetic field(SMF)combination technology for food freezing,Int.J.Refrig.50(2015)137–145.

    [4]P.G.Debenedetti,H.E.Stanley,Supercooled and glassy water,Phys.Today15(6)(2003)40–46.

    [5]H.Kiani,D.-W.Sun,Water crystallization and its importance to freezing of foods:A review,Trends Food Sci.Technol.22(2011)407–426.

    [6]A.Petersen,H.Schneider,G.Rau,B.Glasmacher,A new approach for freezing of aqueous solutions under active control of the nucleation temperature,Cryobiology53(2)(2006)248–257.

    [7]A.Sarkar,N.Nitin,M.Karwe,R.P.Singh,Fluid flow and heat transfer in air jet impingement in food processing,J.Food Sci.69(4)(2004)113–122.

    [8]M.Jafari,P.Alavi,Analysis of food freezing by slot jet impingement,J.Appl.Sci.8(7)(2008)1188–1196.

    [9]L.D.Kaale,T.M.Eikevik,The development of ice crystals in food products during the superchilling process and following storage,a review,Trends Food Sci.Technol.39(2)(2014)91–103.

    [10]C.Wu,C.Yuan,X.Ye,Y.Hu,S.Chen,D.Liu,A critical review on superchilling preservation technology in aquatic product,J.Integr.Agric.13(12)(2014)2788–2806.

    [11]G.Su,H.S.Ramaswamy,S.Zhu,Y.Yu,F.Hu,M.Xu,Thermal characterization and ice crystal analysis in pressure shift freezing of different muscle(shrimp and porcine liver)versus conventional freezing method,Innov.Food Sci.Emerg.Technol.26(2014)40–50.

    [12]N.A.S.Smith,V.M.Burlakov,A.M.Ramos,Mathematical modeling of the growth and coarsening of ice particles in the context of high pressure shift freezing processes,J.Phys.Chem.B117(29)(2013)8887–8895.

    [13]L.Otero,P.Sanz,B.Guignon,P.D.Sanz,Pressure-shift nucleation:A potential tool for freeze concentration of fluid foods,Innov.Food Sci.Emerg.Technol.13(2012)86–99.[14]X.Cheng,M.Zhang,B.Xu,B.Adhikari,J.Sun,The principles of ultrasound and its application in freezing related processes of food materials:A review,Ultrason.Sonochem.27(2015)576–585.

    [15]H.Kiani,Z.Zhang,D.-W.Sun,Experimental analysis and modeling of ultrasound assisted freezing of potato spheres,Ultrason.Sonochem.26(2015)321–331.

    [16]M.W.Woo,A.S.Mujumdar,Effects of electric and magnetic field on freezing and possible relevance in freeze drying,Dry.Technol.28(4)(2010)433–443.

    [17]A.Le Bail,M.Orlowska,M.Havet,Electrostatic field assisted food freezing,in:D.W.Sun(Ed.),Handbook of Frozen Food Processing and Packaging,second ed.CRC Press,Taylor&Francis Group,Boca Raton 2012,pp.685–691.

    [18]M.Anese,L.Manzocco,A.Panozzo,P.Beraldo,M.Foschia,M.C.Nicoli,Effectof radiofrequency assisted freezing on meat microstructure and quality,Food Res.Int.46(1)(2012)50–54.

    [19]A.Kobayashi,J.L.Kirschvink,A ferromagnetic model for the action of electric and magnetic fields in cryopreservation,Cryobiology68(2)(2013)163–165.

    [20]N.Owada,S.Kurita,Super-quick freezing method and apparatus therefore,US Pat.6250087 B1(2001).

    [21]N.Owada,Highly-efficient freezing apparatus and highly efficient freezing method,US Pat.7237400 B2(2007).

    [22]K.X.Zhou,G.W.Lu,Q.C.Zhou,J.H.Song,S.T.Jiang,H.R.Xia,Monte Carlo simulation of liquid water in a magnetic field,J.Appl.Phys.88(4)(2000)1802–1805.

    [23]H.Hosoda,H.Mori,N.Sogoshi,A.Nagasawa,S.Nakabayashi,Refractive indices of water and aqueous electrolyte solutions under high magnetic fields,J.Phys.Chem.A108(9)(2004)1461–1464.

    [24]X.-F.Pang,G.-F.Shen,The changes of physical properties of water arising from the magnetic field and its mechanism,Mod.Phys.Lett.B27(31)(2013)1–9,1350228.

    [25]K.-T.Chang,C.-I.Weng,An investigation into the structure of aqueous NaCl electrolyte solutions under magnetic fields,Comput.Mater.Sci.43(4)(2008)1048–1055.

    [26]R.Cai,H.Yang,J.He,W.Zhu,The effects of magnetic fields on water molecular hydrogen bonds,J.Mol.Struct.938(1–3)(2009)15–19.

    [27]S.A.Ghauri,M.S.Ansari,Increase of water viscosity under the in fluence of magnetic field,J.Appl.Phys.100(6)(2006)1–2,066101.

    [28]N.S.Zaidi,J.Sohaili,K.Muda,M.Sillanp??,Magnetic field application and its potential in water and wastewater treatment systems,Sep.Purif.Rev.43(3)(2014)206–240.

    [29]V.D.Aleksandrov,A.A.Barannikov,N.V.Dobritsa,Effect of magnetic field on the supercooling of water drops,Inorg.Mater.36(2000)895–898.

    [30]M.Tagami,M.Hamai,I.Mogi,K.Watanabe,M.Motokawa,Solidification of levitating water in a gradient strong magnetic field,J.Cryst.Growth203(1999)594–598.

    [31]B.Wowk,Electric and magnetic fields in cryopreservation,Cryobiology64(3)(2012)301–303.

    [32]T.Suzuki,Y.Takeuchi,K.Masuda,M.Watanabe,R.Shirakashi,Y.Fukuda,T.Tsuruta,K.Yamamoto,N.Koga,N.Hiruma,J.Ichioka,K.Takai,Experimental investigation of effectiveness of magnetic field on food freezing process,Trans.Jpn.Soc.Refrig.Air Cond.Eng.26(2009)371–386.

    [33]C.Gao,G.-Y.Zhou,Y.Xu,Z.-Z.Hua,Freezing properties of EG and glycerol aqueous solutions studied by DSC,Acta Phys.-Chim.Sin.20(2)(2004)123–128.

    [34]M.A.Stephens,EDF statistics for goodness of fit and some comparisons,J.Am.Stat.Assoc.69(1974)730–737.

    亚洲av欧美aⅴ国产| 成年动漫av网址| 韩国精品一区二区三区 | 国产高清国产精品国产三级| 婷婷色综合www| 欧美丝袜亚洲另类| 国产精品人妻久久久久久| 国产高清不卡午夜福利| 国产成人免费观看mmmm| 日韩免费高清中文字幕av| 欧美成人精品欧美一级黄| 熟女av电影| 国产永久视频网站| 精品午夜福利在线看| 一区二区三区乱码不卡18| 婷婷成人精品国产| 黄色配什么色好看| 美女主播在线视频| 啦啦啦中文免费视频观看日本| 国产成人aa在线观看| 久久精品国产亚洲av天美| 午夜精品国产一区二区电影| 交换朋友夫妻互换小说| 国产男女超爽视频在线观看| 成年人免费黄色播放视频| 免费av不卡在线播放| 欧美最新免费一区二区三区| av.在线天堂| 人人妻人人澡人人爽人人夜夜| 日本-黄色视频高清免费观看| 国产精品久久久久久久电影| 亚洲欧美精品自产自拍| 成人毛片60女人毛片免费| 午夜福利网站1000一区二区三区| 22中文网久久字幕| 香蕉国产在线看| 精品一区二区三区四区五区乱码 | 男女午夜视频在线观看 | 欧美精品一区二区大全| 男的添女的下面高潮视频| 婷婷色麻豆天堂久久| 黄片无遮挡物在线观看| 欧美精品一区二区免费开放| 一区二区三区精品91| av免费观看日本| 精品一区二区三区四区五区乱码 | av一本久久久久| 老司机亚洲免费影院| av在线老鸭窝| 国产女主播在线喷水免费视频网站| av又黄又爽大尺度在线免费看| 亚洲欧美清纯卡通| 97在线人人人人妻| 宅男免费午夜| 伦理电影大哥的女人| 七月丁香在线播放| av一本久久久久| 久久综合国产亚洲精品| 国产免费一区二区三区四区乱码| 欧美 日韩 精品 国产| 在线观看免费视频网站a站| 国产在线免费精品| 永久网站在线| 日本色播在线视频| 国产精品欧美亚洲77777| 午夜老司机福利剧场| 51国产日韩欧美| 成人二区视频| 成年女人在线观看亚洲视频| 日本免费在线观看一区| 草草在线视频免费看| 精品一区在线观看国产| 综合色丁香网| 亚洲精品av麻豆狂野| 日本欧美国产在线视频| av女优亚洲男人天堂| 欧美亚洲日本最大视频资源| 老女人水多毛片| 久久av网站| 精品熟女少妇av免费看| 97在线人人人人妻| 欧美少妇被猛烈插入视频| 视频中文字幕在线观看| 精品国产国语对白av| 国产精品一区二区在线观看99| 亚洲国产精品一区三区| 国产精品三级大全| 一二三四中文在线观看免费高清| 免费日韩欧美在线观看| 亚洲成人av在线免费| 中文字幕另类日韩欧美亚洲嫩草| 天天操日日干夜夜撸| 男的添女的下面高潮视频| 亚洲精品,欧美精品| 日韩精品有码人妻一区| 亚洲国产精品专区欧美| 日本猛色少妇xxxxx猛交久久| 两个人看的免费小视频| 美女内射精品一级片tv| 久久久久国产精品人妻一区二区| 天堂俺去俺来也www色官网| 天堂俺去俺来也www色官网| 日本91视频免费播放| www.av在线官网国产| 美女大奶头黄色视频| 精品福利永久在线观看| 狠狠婷婷综合久久久久久88av| 亚洲精品乱码久久久久久按摩| 国产欧美日韩综合在线一区二区| 哪个播放器可以免费观看大片| 搡女人真爽免费视频火全软件| 制服诱惑二区| 精品一区二区三区四区五区乱码 | 欧美精品一区二区免费开放| 女人精品久久久久毛片| 久久热在线av| 国产1区2区3区精品| 五月天丁香电影| 国产亚洲av片在线观看秒播厂| 亚洲经典国产精华液单| 成人国产av品久久久| 精品久久国产蜜桃| 美女视频免费永久观看网站| 免费av不卡在线播放| 亚洲国产欧美在线一区| 欧美亚洲日本最大视频资源| 亚洲国产精品一区二区三区在线| 久久热在线av| 午夜福利视频在线观看免费| 中文欧美无线码| 日日爽夜夜爽网站| 免费人成在线观看视频色| 亚洲精品自拍成人| 亚洲婷婷狠狠爱综合网| 男女无遮挡免费网站观看| freevideosex欧美| 最后的刺客免费高清国语| 国产色婷婷99| 婷婷色综合大香蕉| 日韩欧美精品免费久久| 午夜福利乱码中文字幕| 亚洲美女视频黄频| 免费黄色在线免费观看| 99精国产麻豆久久婷婷| 久久人人爽av亚洲精品天堂| 伊人久久国产一区二区| 丝袜人妻中文字幕| 精品久久久精品久久久| 国产毛片在线视频| 国产av精品麻豆| 国产黄色免费在线视频| 日日摸夜夜添夜夜爱| 亚洲国产成人一精品久久久| 久久精品人人爽人人爽视色| 久久这里只有精品19| 9191精品国产免费久久| 精品人妻一区二区三区麻豆| 国产有黄有色有爽视频| 国产精品人妻久久久影院| av国产久精品久网站免费入址| 黄色 视频免费看| 中国美白少妇内射xxxbb| 免费高清在线观看视频在线观看| 丰满迷人的少妇在线观看| 97精品久久久久久久久久精品| 尾随美女入室| 蜜臀久久99精品久久宅男| 大片电影免费在线观看免费| 夜夜骑夜夜射夜夜干| 亚洲图色成人| 看十八女毛片水多多多| 国产精品成人在线| 亚洲欧洲日产国产| 18禁在线无遮挡免费观看视频| 麻豆乱淫一区二区| 欧美变态另类bdsm刘玥| 亚洲精品乱码久久久久久按摩| 精品久久国产蜜桃| 久久国内精品自在自线图片| 999精品在线视频| 国产日韩欧美在线精品| 伦理电影大哥的女人| 只有这里有精品99| 在线观看三级黄色| 一区二区三区乱码不卡18| 在线免费观看不下载黄p国产| av在线老鸭窝| 黄色一级大片看看| 亚洲av国产av综合av卡| 国产国拍精品亚洲av在线观看| 久久午夜福利片| 国产精品久久久久久精品古装| 考比视频在线观看| 国产女主播在线喷水免费视频网站| 色婷婷av一区二区三区视频| 久久国内精品自在自线图片| 涩涩av久久男人的天堂| 日本午夜av视频| 久久国内精品自在自线图片| 久久久久久久久久久免费av| 青春草亚洲视频在线观看| 新久久久久国产一级毛片| 一级片免费观看大全| 色哟哟·www| 国产精品国产三级国产av玫瑰| 一区在线观看完整版| 丰满乱子伦码专区| 国产免费视频播放在线视频| 99久国产av精品国产电影| av在线app专区| av视频免费观看在线观看| 高清黄色对白视频在线免费看| 美女国产视频在线观看| 9191精品国产免费久久| 狠狠精品人妻久久久久久综合| 另类亚洲欧美激情| 国产女主播在线喷水免费视频网站| 免费不卡的大黄色大毛片视频在线观看| 午夜福利视频精品| 亚洲美女搞黄在线观看| 亚洲成av片中文字幕在线观看 | 国产麻豆69| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久久久久免| 久久久久久久久久久免费av| 少妇人妻 视频| 欧美国产精品一级二级三级| 一级毛片我不卡| 麻豆乱淫一区二区| 精品视频人人做人人爽| 国产熟女欧美一区二区| 少妇人妻 视频| av卡一久久| 内地一区二区视频在线| 久久久久久久久久久免费av| 中文字幕人妻熟女乱码| 亚洲色图综合在线观看| 狠狠精品人妻久久久久久综合| 99re6热这里在线精品视频| 汤姆久久久久久久影院中文字幕| 综合色丁香网| 中文字幕免费在线视频6| 人人妻人人澡人人爽人人夜夜| 国产亚洲欧美精品永久| 精品人妻一区二区三区麻豆| 最新中文字幕久久久久| 99热这里只有是精品在线观看| 一级毛片黄色毛片免费观看视频| 在线观看免费高清a一片| 国产av一区二区精品久久| av片东京热男人的天堂| 精品99又大又爽又粗少妇毛片| 91午夜精品亚洲一区二区三区| 久久午夜福利片| 人人妻人人爽人人添夜夜欢视频| 一级a做视频免费观看| 亚洲国产精品国产精品| 看非洲黑人一级黄片| 97精品久久久久久久久久精品| 美女脱内裤让男人舔精品视频| 视频中文字幕在线观看| a级片在线免费高清观看视频| 各种免费的搞黄视频| 纯流量卡能插随身wifi吗| 国产黄色免费在线视频| 国产成人aa在线观看| 国产熟女欧美一区二区| av国产久精品久网站免费入址| 欧美人与善性xxx| 国产亚洲午夜精品一区二区久久| 在线观看一区二区三区激情| 99香蕉大伊视频| 在线免费观看不下载黄p国产| 久久人妻熟女aⅴ| 国产免费视频播放在线视频| 国产一区二区三区综合在线观看 | 精品酒店卫生间| 国产亚洲最大av| 丝袜喷水一区| 亚洲综合色惰| 久久精品国产亚洲av天美| 香蕉国产在线看| 亚洲欧美一区二区三区国产| av网站免费在线观看视频| 99九九在线精品视频| 在线精品无人区一区二区三| 丰满迷人的少妇在线观看| 成年女人在线观看亚洲视频| 亚洲综合色网址| 久久精品国产鲁丝片午夜精品| 国产 一区精品| 曰老女人黄片| 国产免费一级a男人的天堂| 久久精品国产综合久久久 | 中文字幕精品免费在线观看视频 | av女优亚洲男人天堂| 99视频精品全部免费 在线| 高清不卡的av网站| 国产一区二区三区综合在线观看 | 免费av不卡在线播放| 精品少妇久久久久久888优播| 考比视频在线观看| 一级毛片电影观看| 少妇被粗大的猛进出69影院 | 飞空精品影院首页| 国产福利在线免费观看视频| 亚洲一区二区三区欧美精品| 欧美日韩综合久久久久久| 日韩中字成人| 18禁在线无遮挡免费观看视频| 国产高清三级在线| 久久免费观看电影| 啦啦啦视频在线资源免费观看| 欧美日韩亚洲高清精品| 免费观看在线日韩| 亚洲欧洲日产国产| 国产亚洲一区二区精品| 国产欧美亚洲国产| 一本色道久久久久久精品综合| av女优亚洲男人天堂| 考比视频在线观看| 日本色播在线视频| 亚洲精品国产av成人精品| 男女无遮挡免费网站观看| 如日韩欧美国产精品一区二区三区| 亚洲成人手机| 成年女人在线观看亚洲视频| 欧美日韩视频精品一区| 国产亚洲精品久久久com| 不卡视频在线观看欧美| 日韩大片免费观看网站| 九九爱精品视频在线观看| 哪个播放器可以免费观看大片| 天堂俺去俺来也www色官网| 视频在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 男女边摸边吃奶| 热99国产精品久久久久久7| 全区人妻精品视频| 成人无遮挡网站| 亚洲成色77777| 啦啦啦中文免费视频观看日本| 人人妻人人爽人人添夜夜欢视频| 色视频在线一区二区三区| 久久亚洲国产成人精品v| 国产片内射在线| 久久久精品免费免费高清| 国产精品免费大片| 久久久精品免费免费高清| 日本猛色少妇xxxxx猛交久久| 亚洲三级黄色毛片| 多毛熟女@视频| 久久这里有精品视频免费| 国产精品免费大片| 热99久久久久精品小说推荐| 久久热在线av| 熟女av电影| 青春草亚洲视频在线观看| 亚洲精华国产精华液的使用体验| 亚洲情色 制服丝袜| 午夜视频国产福利| av天堂久久9| 亚洲国产精品国产精品| 国产精品无大码| 丰满饥渴人妻一区二区三| 边亲边吃奶的免费视频| 久久人人爽人人爽人人片va| 成年人午夜在线观看视频| 精品国产国语对白av| 国产免费又黄又爽又色| 18在线观看网站| 亚洲高清免费不卡视频| 国产午夜精品一二区理论片| av片东京热男人的天堂| 麻豆精品久久久久久蜜桃| 国产av码专区亚洲av| 国产日韩一区二区三区精品不卡| 久久久a久久爽久久v久久| 街头女战士在线观看网站| 国内精品宾馆在线| 在线天堂中文资源库| 老熟女久久久| av在线观看视频网站免费| 免费日韩欧美在线观看| 五月开心婷婷网| 亚洲欧洲精品一区二区精品久久久 | av电影中文网址| 日韩成人伦理影院| 777米奇影视久久| 天天躁夜夜躁狠狠躁躁| 亚洲精品乱码久久久久久按摩| 国产在视频线精品| 久热久热在线精品观看| 两个人免费观看高清视频| 另类亚洲欧美激情| 精品一区二区三区四区五区乱码 | 爱豆传媒免费全集在线观看| 下体分泌物呈黄色| 高清黄色对白视频在线免费看| 18禁在线无遮挡免费观看视频| 伦理电影大哥的女人| 久久97久久精品| 日韩成人伦理影院| av又黄又爽大尺度在线免费看| 中文字幕免费在线视频6| 免费观看a级毛片全部| 大香蕉97超碰在线| 亚洲,欧美精品.| 大码成人一级视频| 免费看a级黄色片| 日韩一卡2卡3卡4卡2021年| 嫩草影视91久久| 久久这里只有精品19| 自线自在国产av| 日本一区二区免费在线视频| 午夜视频精品福利| 免费看十八禁软件| 一级黄色大片毛片| 高清黄色对白视频在线免费看| 欧美性长视频在线观看| 大香蕉久久网| 窝窝影院91人妻| 一本一本久久a久久精品综合妖精| 国产亚洲欧美精品永久| 日韩成人在线观看一区二区三区| 十分钟在线观看高清视频www| 国产在线一区二区三区精| 在线观看日韩欧美| 一边摸一边做爽爽视频免费| 亚洲国产欧美一区二区综合| 不卡av一区二区三区| 成在线人永久免费视频| 9191精品国产免费久久| 天天添夜夜摸| 在线国产一区二区在线| 久久香蕉国产精品| 日日摸夜夜添夜夜添小说| 欧美日本中文国产一区发布| 久久人人爽av亚洲精品天堂| 国产精品免费一区二区三区在线 | 一区二区三区激情视频| 最近最新免费中文字幕在线| 曰老女人黄片| 狠狠狠狠99中文字幕| 国产免费男女视频| 国产亚洲精品久久久久5区| 亚洲午夜理论影院| 国产男女超爽视频在线观看| 制服人妻中文乱码| 久久香蕉国产精品| 免费av中文字幕在线| 亚洲专区中文字幕在线| 天天操日日干夜夜撸| 成年人午夜在线观看视频| 久久99一区二区三区| 女性被躁到高潮视频| 国产成人精品无人区| 女人精品久久久久毛片| 午夜免费成人在线视频| 欧美日韩一级在线毛片| 欧美亚洲日本最大视频资源| 波多野结衣一区麻豆| 欧美 日韩 精品 国产| 亚洲人成电影观看| 亚洲欧美精品综合一区二区三区| 精品福利永久在线观看| 国产亚洲精品一区二区www | 老鸭窝网址在线观看| 久久久久视频综合| www.自偷自拍.com| 国产精品 国内视频| 真人做人爱边吃奶动态| 80岁老熟妇乱子伦牲交| 校园春色视频在线观看| 自线自在国产av| 亚洲熟女精品中文字幕| 亚洲精品成人av观看孕妇| 一边摸一边抽搐一进一小说 | 99在线人妻在线中文字幕 | 中文字幕人妻丝袜一区二区| 男女高潮啪啪啪动态图| 在线视频色国产色| 免费不卡黄色视频| av线在线观看网站| 人人妻人人澡人人看| ponron亚洲| 别揉我奶头~嗯~啊~动态视频| 超碰97精品在线观看| a在线观看视频网站| 水蜜桃什么品种好| 午夜福利在线免费观看网站| 一级毛片高清免费大全| 另类亚洲欧美激情| 中出人妻视频一区二区| 久久婷婷成人综合色麻豆| 亚洲精华国产精华精| 黑人操中国人逼视频| 亚洲熟妇中文字幕五十中出 | 精品久久久久久电影网| 精品少妇一区二区三区视频日本电影| 日韩欧美免费精品| 午夜91福利影院| 亚洲精品美女久久久久99蜜臀| 久久人妻av系列| 亚洲av美国av| 淫妇啪啪啪对白视频| 精品人妻熟女毛片av久久网站| 精品一区二区三区av网在线观看| 亚洲,欧美精品.| 国产成人av激情在线播放| 亚洲男人天堂网一区| 91大片在线观看| 高清视频免费观看一区二区| 成人18禁高潮啪啪吃奶动态图| 亚洲第一av免费看| 国产欧美日韩一区二区精品| 久久久精品国产亚洲av高清涩受| 精品国产乱子伦一区二区三区| 国产精品影院久久| 在线观看日韩欧美| 天堂俺去俺来也www色官网| 国产精品成人在线| 精品一区二区三区视频在线观看免费 | 黑人猛操日本美女一级片| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人妻熟女乱码| 国产高清视频在线播放一区| 69精品国产乱码久久久| 国产高清视频在线播放一区| 18禁黄网站禁片午夜丰满| 日韩免费av在线播放| 极品人妻少妇av视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产97色在线日韩免费| 天天影视国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产野战对白在线观看| 亚洲人成电影免费在线| 一级a爱视频在线免费观看| 国产有黄有色有爽视频| 国产在线精品亚洲第一网站| 黄片小视频在线播放| 男女高潮啪啪啪动态图| 精品国产美女av久久久久小说| 成熟少妇高潮喷水视频| 国产在线观看jvid| 精品久久蜜臀av无| 欧美精品高潮呻吟av久久| 精品午夜福利视频在线观看一区| 久久国产精品男人的天堂亚洲| 一级片'在线观看视频| 久热这里只有精品99| 精品欧美一区二区三区在线| 精品国产一区二区三区四区第35| 欧美国产精品一级二级三级| 国产精品国产av在线观看| 成年女人毛片免费观看观看9 | 少妇被粗大的猛进出69影院| 熟女少妇亚洲综合色aaa.| 国产真人三级小视频在线观看| 亚洲人成伊人成综合网2020| 亚洲国产欧美日韩在线播放| 别揉我奶头~嗯~啊~动态视频| 午夜精品国产一区二区电影| 在线观看免费午夜福利视频| 亚洲国产欧美日韩在线播放| 一区在线观看完整版| 久久久精品区二区三区| 香蕉国产在线看| 好男人电影高清在线观看| 国产成人免费观看mmmm| 美女午夜性视频免费| www.熟女人妻精品国产| 80岁老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 90打野战视频偷拍视频| 咕卡用的链子| 一夜夜www| 岛国在线观看网站| 精品福利永久在线观看| 成年版毛片免费区| 国产黄色免费在线视频| 建设人人有责人人尽责人人享有的| 男人的好看免费观看在线视频 | 免费观看a级毛片全部| 动漫黄色视频在线观看| 麻豆国产av国片精品| 好男人电影高清在线观看| 免费不卡黄色视频| 丁香欧美五月| 黄色丝袜av网址大全| 欧美黑人欧美精品刺激| 亚洲中文日韩欧美视频| 免费女性裸体啪啪无遮挡网站| 水蜜桃什么品种好| 欧美精品一区二区免费开放| av线在线观看网站| 婷婷丁香在线五月| 黄片小视频在线播放| 精品高清国产在线一区| 99国产综合亚洲精品| 不卡av一区二区三区| 日韩人妻精品一区2区三区| 亚洲成人免费电影在线观看| 欧美成狂野欧美在线观看| 成人av一区二区三区在线看| 久久这里只有精品19| 国产精品久久久av美女十八| 欧美中文综合在线视频| 亚洲视频免费观看视频| 脱女人内裤的视频| 90打野战视频偷拍视频| 欧美人与性动交α欧美软件| 亚洲一区二区三区欧美精品| 久久久久久免费高清国产稀缺|