• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A comparative study of adsorption and regeneration with different agricultural wastes as adsorbents for the removal of methylene blue from aqueous solution

    2017-05-30 02:11:30SanaDardouriJalilaSghaier

    Sana Dardouri*,Jalila Sghaier

    Unité de Thermique et Thermodynamique des Procédés Industriels,Ecole Nationale d’Ingénieurs de Monastir,Avenue Ibn Jazzar,5019 Monastir,Tunisia

    1.Introduction

    Today,water pollution became a real threatening to mankind due to the rapid industrial development.The discharged wastewater of textile industry,which contains persistent organic dyes,is one of the most causes of water contamination.During dying and printing in textile industry,a major fraction of dye is disappearing in the water which makes discharge colored.The main environmental problem in the textile industry is the treatment of liquid waste and their chemical loads.These dyes rejected by the industry represent a threat to the environment because of its low biodegradation and its high resistivity to classic purification treatment[1].The presence of dyes in water is harmful for human health and the environment due to their toxic and mutagenic in fluence on human being[2].Several research studies have been devoted to the study of toxicity and mutagenic and carcinogenic effects of different types of dye on aquatic organisms(poison,algae,etc....).Among various commercial dyes,only basic dyes are toxic for algae[3].These textile ef fluents are dramatic sources of pollution of ecosystems and aquatic life.They present a danger of bioaccumulation which can affect humans by transport through the food chain.

    The methylene blue(MB)is one of the most popular dyes used in textile industries and in color of paper,wools,cotton,silk,etc.[4].The MB has also found use in medicalapplications.Itowns an antiseptic propriety againstbacterialinfection and itis used as an antidote for cyanide poisoning[5].Beyond its medical applications,the presence of MB in water threat human health in various manners.Because of its high water solubility dyes can move through rivers and affect the quality of water.MB as a cationic dye can readily interact with negatively charged surface cells and penetrate into the cells[6].

    In order to reduce the negative effect of dyes,many proper treatments of wastewaters have recently attracted growing scientific attention.Various techniques have been applied for dye removal from wastewaters such as adsorption[7–10],coagulation– flocculation,membrane filtration,chemical precipitation,and ion exchange.Many techniques fordye removalare proposed incorporating physical,biological and chemical treatments.The non-biodegradable nature of many dyes makes the adsorption technique as the most suitable process and a more popular method for dye removal from aqueous solutions because adsorption has the advantages of high efficiency, flexibility,design simplicity,easy handling and economic feasibility[11].Many adsorbents are used for MB removal from aqueous solutions such as activated carbon[12],clay[13],zeolite[14],sludge[15],almond gum[16],cashew nutshell[17],olive pomace[18],almond peel[19],sawdust[20],sonochemically synthesized MnWO4and MnMoO4nanomaterials[21],BaWO4[22],BaMoO4[23],CuWO4and Cu3Mo2O9[24].

    The sawdust is lignocellulosic waste materials which are available in large quantities in industry and is an abundant forestry residue and a renewable low cost adsorbent which can be used for removing pollutants from wastewater[25].The sawdust can be used as adsorbent for the removal of MB dye from aqueous solutions.The adsorption amount of dye was found to be increased with increase in initial dye concentration and in contact time.Based on the experimental results of MB adsorption into sawdust and adsorption models applied,it can be concluded that equilibrium data fitted well in the Langmuir isotherm equation[20].

    Many studies have revealed that almond shells could be effectively used to remove dye from an aqueous solution[26,19].Based on the analysis of process mechanism involved in the sorption behavior of MB in almonds shell con firms that the sorption is contolled by the particle-diffusion process[19].It was found by using batch studies that the adsorption capacity of MB with an initial concentration of 100 mg·L?1is equal experimentally and numerically to 52.35 mg·g?1and 54 mg·g?1respectively.

    Several low-cost adsorbents are reported for the removal of heavy metals,agricultural waste such as olive stones,peach stones,almond shell[27]and sheep manure waste[28].In this work,sheep manure waste(SMW)which is available in abundance are chosen as adsorbent for the removal of methylene blue.

    In this research study,adsorption/desorption of MB on almond shell,manure sheep and sawdustin a fixed bed column was investigated with the objective to(i)evaluate the adsorption capacity of adsorbents,(ii)predicts a breakthrough curve modeland(iii)evaluates the removal efficiency and the regenerability of three adsorbents.

    2.Materials and Methods

    2.1.Materials

    As low adsorbents,three materials have been used in the removal of MB from aqueous solutions:internal almond shell(IAS),sheep manure waste(SMW)and sawdust.These wastes were collected from the region of Sousse,in Tunisia.They were used directly for adsorption experiments without any treatment.The other adsorbents were dried in the air and crushed to a fine powder.

    The methylene blue used as adsorbent(basic blue 9,CI 52015)is a cationic dye with a molecular formula C16H18CIN3S·3H2O and a molar mass of 373.9 g·mol?1.The wavelength of maximum absorbance for MB is 663 nm.

    2.2.Fixed bed column sorption experiments

    The adsorption experiments were conducted using a glass column with an internal diameter of 3.25 cm and a heightof 25 cm.The column was packed with the materials—bed length of 5 cm.The MB solution with inlet concentration of 100 mg·L?1was pumped at the top of the column using a peristaltic pump(ROTHCYCLOI)ata constantvolumetric flow rate of 4 ml·min?1.Samples were collected and were analyzed by spectrophotometer UV–visible(HACH LANGE DR3900).

    2.3.Column desorption and recycling

    To evaluate the feasibility ofadsorbents forpracticaluse and its reusability,the regeneration of these adsorbents was carried out through adsorption–desorption cycle.After adsorption had taken place,the adsorbed dye was eluted using water at a flow rate of 4 ml min?1.The samples of the ef fluent were analyzed and all experiments were carried out in duplicate.After the elution time,the adsorbent was reused in a second cycle for adsorption at the same conditions than the first cycle to study the reuse of the adsorbent.

    3.Results and Discussion

    3.1.Breakthrough curves and analysis of mass transfer zone

    As shown in the obtained breakthrough curves(Fig.1),the breakthrough time increases in order sawdust<IAS<SMW(Table 1).It was observed that the breakthrough time of MB in sheep manure and almond shell was 904 min and 764 min respectively.However,compared with that in sawdust,the breakthrough time was 128 min.The breakthrough curve of sheep manure is very steep.This result convinces that the adsorption capacity of MB in manure was significantly important and indicates that the mass transfer coefficient decreased from sawdust to SMW.

    Besides the concentration,gradients in batch systems are dissimilar than that of continuous flow system[29],the experimental results obtained using the batch systems appear difficult to apply to the processing of large volumes of water[30].Continuous adsorption experiments are mostly used in several applications in chemical engineering mainly in the adsorption of the components of a fluid flowing through a bed of a porous adsorbentmaterial.This adsorption process on porous solids can be divided into four stages.(a)Transport of the adsorbate from the bulk of the solution to the exterior film encircling the adsorbentmaterial(outer diffusion),(b)movementof the adsorbate through the external liquid film boundary layer to external surface sites of adsorbents,(c)migration of the adsorbate particles within the pores of the porous adsorbent by intraparticle diffusion(inter diffusion),(d)sorption ofadsorbate atinnerand outersurfaces ofthe adsorbent[31].

    To provide more information about the adsorption process,the quantities of MB retained in the bed until the exhaustion time(qex),the height of the mass transfer zone(HMTZ),the fractional capacity(FC)and the percentage of saturation of the column(S)are determined.

    Fig.1.Breakthrough curves representing MB adsorption onto IAS(circles),SMW(squares)and sawdust(triangles).

    Table 1Adsorption capacity(q ex),fraction capacity(FC)and Height of mass transfer zone(H MTZ)for different adsorbents

    The adsorption capacity at an exhaustion time(qex)is calculated according the Geankoplis model[32]:whereCtandC0are the MB ef fluent and inlet concentration(mg·L?1);Uis the flow rate(ml·min?1),mis the mass of adsorbent(g)andtexis the exhaustion time(min).The fractional capacity represents the quantity ofMB eliminated compared to the elimination capacity ofadsorbent in the mass transfer zone:

    Eq.(3)represents the mass transferzone,which is the totalheightofthe adsorbent progressively being saturated.It can be expressed as:

    whereHMTZis the heightof the mass transfer zone(cm);His the height of the fixed bed(cm),texis the exhaustion time(min);tbis the breakthrough time(min)and FC is the fractional capacity.

    The percentage of saturation of bed column is calculated according to:

    The adsorption capacities at exhaustion time(qex)follow the order sawdust<IAS<MSW and proves the results concluded from the breakthrough curves in Fig.1.The difference in the shapes of the breakthrough curves for three adsorbents can be explained by the internal diffusion of MB from the bulk liquid to the mesopores and than the micro pores which causes slower adsorption kinetics[31]However,the more particle size decreases,the more in fluence of the external film external mass transfer on the sorption becomes much more significant.The SMWhas a low in filtration rate compared to the IAS and sawdust(Fig.2).This means that the SMW has the lower permeability coefficient,which decreases with the particle sizes.In general,the particles with small sizes have small spaces between them and it is inversely proportional to the surface area.This can explain the tailing in the breakthrough curve(Fig.1).The particle size of materials and its in filtration kinetics are related and have the same effect on the adsorption capacity ofthe material.Indeed,large pores make more contribution to transfer water in porous media than small pores which are filled.This small pore entrapped water flow as a liquid transport through weakly conductive pore medium and it accedes in the form of films to solid particle.As the in filtration kinetic increases,the ability of a material to transfer water and solutes increases.The SMW has the lower in filtration rate(Fig.2)and inhibits the water to in filtrate in its porous space which makes more contact time between adsorbate and the solid surface of SMW.This high residence time can explain the length of breakthrough time(tbk=904 min).

    During the dynamic contact of solid and liquid in bed column,the length and shape of the mass transfer zone(MTZ)provide insight about the performance of fixed bed columns.The area where the relative adsorbate concentration changes from 0.05 to 0.95 represents the region of MTZ where sorption practically takes place in fixed beds[33].The shape of the curve is used to determine the height of the mass transfer zone.If this height is small,this is indicated by the existence of faster kinetics and lower diffusion resistance in the sorption process.The height of MTZ value increases as MSW<IAS<sawdust(Table 1),thereby,the mass transfer efficiency has the opposite order,where SMW has the highest value.The same notes for fractional capacity.

    Fig.2.Cumulative in filtration versus square root of time for IAS,SMW and sawdust.

    3.2.The breakthrough curves modeling

    To betterdescribe the fixed bed column and to predictthe MB breakthrough many models are used to fitthe experimentaldata.The analysis of breakthrough curves is done using four of these modes,viz.,Thomas model,Yoon Nelson model,Wolborska model and modified-dose–response model.

    3.2.1.Thomas model

    The Thomas model assumes that a Langmuir isotherm and second order kinetic fitted well the experimental data.It was also assumed that adsorption is limited by mass transfer with no axial dispersion derived with adsorption.It allows the calculation of the adsorption rate constant.The equation of the Thomas model can be described as:

    wherekthis the Thomas rate constant(ml·min?1·mg?1),q0is the equilibrium adsorption capacity(mg·g?1),mis the mass of the adsorbent,C0andCtare the MB concentrations in the ef fluent and at timet(mg·L?1)and υ is the flow rate(ml·min?1).

    The values ofkthandq0are determined using non-linear fitting and shown in Table 2.The correlation coefficient(R2)values ranging from0.89 to 0.95 and being higher for IAS.The adsorption capacity values obtained from this modelare compared with the experimentalcapacity,noting an error of 16%,37%and 11.8%for AS,SMW and sawdust,respectively.

    Table 2Predicted parameters for,Thomas,Yoon Nelson,and Wolborska and Modified-dose response models for MB adsorption on IAS,SMW and sawdust materials

    3.2.2.Yoon Nelson model

    The Yoon Nelson model assumes that the rate of decrease in the probability of adsorption for each adsorbate molecule depends on the probability of adsorbate adsorption and the probability of an adsorbate breakthrough on the adsorbent[34].The model can be expressed by Eq.(6):

    wherekYNis the Yoon Nelson rate constant(min?1)and τ is the time required for reach 50%adsorbate breakthrough(min).

    The Yoon Nelson model is mathematically similar to the Thomas model as noted above.Therefore,the fitting results as shown in Table 2 were also good enough.For sawdust,the theoretical and experimental time required for 50%of adsorbate breakthrough corresponds accurately(average percentage errors<2%).

    3.2.3.Wolborska model

    The model developed by Wolborska[35]is based on the application of equations of mass transfer for diffusion mechanisms used for the low concentration breakthrough curve.A simplified version is given by:

    where β is the kinetic coefficientof the external mass transfer(h?1),N0is the exchange capacity(mg·L?1),B= βC0/N0;A= βZ/U.

    This modelis applied in the description of the breakthrough curve in the range of low concentration.The values of the Wolborska model parameters for three adsorbents are presented in Table 2.For sawdust,compared to Thomas model and Yoon Nelson model,the Wolborska model is the worst and does not fit the breakthrough curve acceptably especially in the first region of BTC.The Wolborska model is valid only for the concentration region up to 30 mg·L?1.

    3.2.4.Modified-dose–response model

    The modified-dose–response model is also used to predict the breakthrough behavior in column adsorption.Mainly atloweror higher time periods of the breakthrough curve,the use of this model reduces the error resulting from the use of the Thomas model.The model equation is expressed as:

    whereaandbare both the constant of the modified-dose–response model.

    Modified dose–response modelwas also used to fitthe experimental data and the parameters of this model are also shown in Table 3.The values ofR2from modified dose–response(0.93–0.97)were larger than those from other models.Compared with the fitted curves(Fig.3)from the used models at same condition, fitted curve from modified dose–response model is closer to experimental curves.

    For the models used to describe the experimental data,Modified dose–response model fitted the data from column experiments significantly better than other model for the first cycle,while in the second cycle this model cannot be applied in the fitting of SMW and it is the weakest model in the fitting of experimental data of sawdust.Thus,the modified dose–response is applied specially in the first part of breakthrough curve.

    Fig.3.Experimental and predicted breakthrough curves for MB removal based on Thomas model(a),Yoon Nelson model(b),Wolborska model(c)and modified-dose response model(d)for adsorption of MB onto IAS(circles),SMW(squares)and sawdust(triangles).

    3.3.Column regeneration

    A potential and an effective adsorbent for dye removal must have a good adsorption capacity and have also a good desorption of dye.That is why,it is necessary to investigate the desorption of MB from IAS,SMW and sawdust.

    The elution curve showed an asymmetric shape forthree adsorbents(Fig.4)which has a strong decrease at first tracking by a light decrease.The wide decrease is marked for sawdustwith an ef fluentconcentration of 1.2C/C0at the initial time,therefore in the first part of adsorption curve represent the majority of MB amount desorbed from bed.Unlike,IAS and SMWhas the maximumequalto 0.48C0and 0.12C0respectively and only SMW reached a negligible ef fluent concentration.As shown in Fig.4,the elution curve demonstrates the faster elution kinetic of sawdust compared to IAS and SMW,which need longer desorption time to reach low concentration and achieve null values.The desorption efficiency of three materials follows the order SMW<IAS<sawdust.

    Fig.4.Elution curve for MB desorption from the three adsorbents fixed-beds:Experimental data,pseudo- first and pseudo second order modeling.

    Lagergren's pseudo- first order[36]and pseudo-second order models[37]are represented by Eqs.(9)and(10),respectively,and were used in the present work to model the experimental data by nonlinear regression.

    In these expressions,qandqesymbolize the dye adsorbed amount per mass unit of adsorbent,at timet,and at equilibrium,respectively,andk1andk2are the kinetic constants.The calculated correlation coefficient values for first order and second-order kinetics were found to be greater than 0.9,which shows the applicability of both these kinetic models(Fig.4).Thus both the present pseudo- first-order and pseudosecond order kinetic expressions were tested for its consistency in predicting the amount of dye desorbed for the entire time.

    After desorption studies two cycles of adsorption are carried out and the breakthrough curves obtained for the adsorption desorption cycles are shown in Fig.5.The breakthrough curves for the first and second cycle have practically the same shape.A significant decrease of the breakthrough time(tbk)is observed from the first to the second cycle with reduction of the amount of MB sorbed per unit mass of adsorbent in the column.The decrease of breakthrough time can be caused by the losses ofdye particles during the elution step.The reduction ofsaturation of bed column from the first of the second cycle(Table 1)and the decrease of residence time caused by the increase of the external film massresistance atthe surface ofthe adsorbentsresultin a lowerremoval efficiency(Fig.6a)[38].

    Contrary to desorption efficiency,the regeneration efficiency increases as SMW<sawdust<IAS(Fig.6b).The worst regeneration efficiency is obtained with SMW despite its high adsorption capacity compared to other adsorbent,due to the difficulty of desorbing from the micropores.

    Fig.5.Breakthrough curves for MB column adsorption before and after regeneration on(a)IAS,(b)sawdust and(c)SMW.First adsorption cycle(empty symbol),second cycle after regeneration(full symbol).

    4.Conclusions

    Adsorption of MB in three different adsorbents,IAS,SMW and sawdust is studied in this work in a continuous fixed bed column,and the breakthrough curves and the adsorption parameters were determined.The adsorption capacity follows the order sawdust<IAS<MSW.Also,the sawdust has the largest mass transfer efficiency due to its high permeability and faster in filtration kinetic.Modified dose–response,Wolborska,Thomas and Yoon Nelson models were used to predict the breakthrough curves obtained from the experimental data.The four used models can be applied in the first part of the breakthrough curves,but modified dose–response is the best model in the first cycle and also the fit is the best for sawdust and IAS caused by the fast adsorption kinetics.Successive adsorption desorption cycle was carried out to evaluate the regenerability of three adsorbents.Adsorption capacity decreases after regeneration of all the adsorbents.IAS and sawdust represent the higher regenerability of 92%and 84%respectively.

    Fig.6.Comparison column capacity before and after regeneration process and regeneration efficiency for IAS,SMW and sawdust.

    [1]F.Ramade,Dictionnaire encyclopédique des popullations:les polluants:de l'environnement à l'homme,Ediscience International,2000.

    [2]V.K.Gupta,D.Mohan,S.Sharma,M.Sharma,Removal of basic dyes(rhodamine B and methylene blue)from aqueous solutions using bagasse fly ash,Sep.Sci.Technol.35(13)(2000)2097–2113.

    [3]A.Malik,Grohmann,E.(Eds.).,Environmental Protection Strategies for Sustainable Development,Springer Science&Business Media,2011.

    [4]K.V.Kumar,V.Ramamurthi,S.Sivanesan,Modeling the mechanisminvolved during the sorption of methylene blue onto fly ash,J.Colloid Interface Sci.284(1)(2005)14–21.

    [5]P.Manoj Kumar Reddy,S.Mahammadunnisa,B.Ramaraju,B.Sreedhar,C.Subrahmanyam,Low-cost adsorbents from bio-waste for the removal of dyes from aqueous solution,Environ.Sci.Pollut.Res.20(2013)4111–4124.

    [6]C.Zhou,Q.Wu,T.Lei,I.I.Negulescu,Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels,Chem.Eng.J.251(2014)17–24.

    [7]R.F.Gomes,A.C.N.de Azevedo,A.G.Pereira,E.C.Muniz,A.R.Fajardo,F.H.Rodrigues,Fast dye removal from water by starch-based nanocomposites,J.Colloid Interface Sci.454(2015)200–209.

    [8]W.J.Tseng,R.D.Lin,BiFeO3/α-Fe2O3core/shell composite particles for fast and selective removal of methyl orange dye in water,J.Colloid Interface Sci.428(2014)95–100.

    [9]M.Arshadi,A.R.Faraji,M.Mehravar,Dye removal from aqueous solution by cobaltnano particles decorated aluminum silicate:Kinetic,thermodynamic and mechanism studies,J.Colloid Interface Sci.440(2015)91–101.

    [10]G.Z.Kyzas,N.K.Lazaridis,Reactive and basic dyes removal by sorption onto chitosan derivatives,J.Colloid Interface Sci.331(1)(2009)32–39.

    [11]A.Aguedach,S.Brosillon,J.Morvan,E.K.Lhadi,Photocatalytic degradation of azodyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide,Appl.Catal.B Environ.57(2005)55–62.

    [12]M.Ghaedi,A.G.Nasab,S.Khodadoust,M.Rajabi,S.Azizian,Application of activated carbon as adsorbents for efficient removal of methylene blue:Kinetics and equilibrium study,J.Ind.Eng.Chem.20(4)(2014)2317–2324.

    [13]L.Cottet,C.A.P.Almeida,N.Naidek,M.F.Viante,M.C.Lopes,N.A.Debacher,Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media,Appl.Clay Sci.95(2014)25–31.

    [14]C.Li,H.Zhong,S.Wang,J.Xue,Z.Zhang,Removal of basic dye(methylene blue)from aqueous solution using zeolite synthesized from electrolytic manganese residue,J.Ind.Eng.Chem.23(2015)344–352.

    [15]M.A.A.Zaini,M.Zakaria,S.M.Setapar,M.A.Che-Yunus,Sludge-adsorbents from palm oil mill ef fluent for methylene blue removal,J.Environ.Chem.Eng.1(4)(2013)1091–1098.

    [16]F.Bouaziz,M.Koubaa,F.Kallel,F.Chaari,D.Driss,R.E.Ghorbel,S.E.Chaabouni,efficiency of almond gum as a low-cost adsorbent for methylene blue dye removal from aqueous solutions,Ind.Crop.Prod.74(2015)903–911.

    [17]R.Subramaniam,S.K.Ponnusamy,Novel adsorbent from agricultural waste(cashew NUT shell)for methylene blue dye removal:Optimization by response surface methodology,Water Resour.Ind.11(2015)64–70.

    [18]F.Banat,S.Al-Asheh,R.Al-Ahmad,F.Bni-Khalid,Bench-scale and packed bed sorption of methylene blue using treated olive pomace and charcoal,Bioresour.Technol.98(16)(2007)3017–3025.

    [19]H.Benaissa,In fluence of ionic strength on methylene blue removal by sorption from synthetic aqueous solution using almond peel as a sorbent material:Experimental and modelling studies,J.Taibah Univ.Sci.4(2010)31–38.

    [20]A.Ahmad,M.Rafatullah,O.Sulaiman,M.H.Ibrahim,R.Hashim,Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution,J.Hazard.Mater.170(1)(2009)357–365.

    [21]D.P.Dutta,A.Mathur,J.Ramkumar,A.K.Tyagi,Sorption of dyes and Cu(ii)ions from wastewater by sonochemically synthesized MnWO4and MnMoO4nanostructures,RSC Adv.4(70)(2014)37027–37035.

    [22]A.Singh,D.P.Dutta,J.Ramkumar,K.Bhattacharya,A.K.Tyagi,M.H.Fulekar,Serendipitous discovery of super adsorbent properties of sonochemically synthesized nano BaWO4,RSC Adv.3(44)(2013)22580–22590.

    [23]D.P.Dutta,A.Singh,J.Ramkumar,K.Bhattacharya,A.K.Tyagi,M.H.Fulekar,Exploration of sorption properties of sonochemically synthesized BaMoO4nanoparticles for hazardous cationic dye removal,Adv.Porous Mater.2(4)(2014)237–245.

    [24]D.P.Dutta,A.Rathore,A.Ballal,A.K.Tyagi,Selective sorption and subsequent photocatalytic degradation of cationic dyes by sonochemically synthesized nano CuWO4and Cu3Mo2O9,RSC Adv.5(115)(2015)94866–94878.

    [25]H.Akrout,S.Jellali,L.Bousselmi,Enhancementof methylene blue removal by anodic oxidation using BDD electrode combined with adsorption onto sawdust,C.R.Chim.18(1)(2015)110–120.

    [26]F.D.Ardejani,K.Badii,N.Y.Limaee,S.Z.Shafaei,A.R.Mirhabibi,Adsorption of direct red 80 dye from aqueous solution onto almond shells:Effectof pH,initial concentration and shell type,J.Hazard.Mater.151(2)(2008)730–737.

    [27]A.M.Ferro-Garcia,J.Rivera-Utrilla,J.Rodriguez-Gordillo,I.Bautista-Toledo,Adsorption of zinc,cadmium,and copper on activated carbons obtained from agricultural by products,Carbon26(3)(1988)363–373.

    [28]M.Kandah,Zinc adsorption from aqueous solutions using disposal sheep manure waste(SMW),Chem.Eng.J.84(3)(2001)543–549.

    [29]J.L.Sotelo,G.Ovejero,A.Rodríguez,S.álvarez,J.García,Analysis and modeling of fixed bed column operations on flumequine removal onto activated carbon:pH in fluence and desorption studies,Chem.Eng.J.228(2013)102–113.

    [30]E.D.Woumfo,J.M.Siéwé,D.Njopwouo,A fixed-bed column for phosphate removal from aqueous solutions using an andosol-bagasse mixture,J.Environ.Manag.151(2015)450–460.

    [31]K.K.Choy,D.C.Ko,C.W.Cheung,J.F.Porter,G.McKay,Film and intraparticle mass transfer during the adsorption of metal ions onto bone char,J.Colloid Interface Sci.271(2)(2004)284–295.

    [32]C.J.Geankoplis,Transport Process and Unit Operations,PTR Prentice Hall,New York,1993.

    [33]K.Nadda fi,R.Nabizadeh,R.Saeedi,A.H.Mahvi,F.Vaezi,K.Yaghmaeian,A.Ghasri,S.Nazmara,Biosorption of lead(II)and cadmium(II)by protonatedSargassum glaucescensbiomass in a continuous packed bed column,J.Hazard.Mater.147(3)(2007)785–791.

    [34]Y.H.Yoon,J.H.Nelson,Application of gas adsorption kinetics.1.A theoretical model for respirator cartridge service time,Am.Ind.Hyg.Assoc.J.45(8)(1984)509–516.

    [35]A.Wolborska,Adsorption on activated carbon of p-nitrophenol from aqueous solution,Water Res.23(1)(1989)85–91.

    [36]S.Y.Lagergren,Zur theorie der sogenannten adsorption gel?ster stoffe,Kungliga Svenska Vetenskapsakademien,Handlingar,Band24(1898)1–39.

    [37]G.Blanchard,M.Maunaye,G.Martin,Removal of heavy-metals from waters by means of natural zeolites,Water Res.18(1984)1501–1507.

    [38]R.Han,Y.Wang,X.Zhao,Y.Wang,F.Xie,J.Cheng,M.Tang,Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column:Experiments and prediction of breakthrough curves,Desalination245(1)(2009)284–297.

    亚洲七黄色美女视频| 精品一区二区三区四区五区乱码| 午夜精品一区二区三区免费看| 国产亚洲精品av在线| 日韩中文字幕欧美一区二区| 久久久久久国产a免费观看| 又大又爽又粗| 久久久久精品国产欧美久久久| 黑人操中国人逼视频| 免费在线观看影片大全网站| 亚洲18禁久久av| 男女视频在线观看网站免费 | 国产一区二区在线观看日韩 | 国产野战对白在线观看| 香蕉丝袜av| 国产成人av教育| 免费在线观看日本一区| 免费在线观看影片大全网站| 欧美一区二区国产精品久久精品 | 变态另类成人亚洲欧美熟女| 他把我摸到了高潮在线观看| a在线观看视频网站| 亚洲国产中文字幕在线视频| 欧美精品啪啪一区二区三区| 精品人妻1区二区| 国产一区二区激情短视频| 日本一二三区视频观看| 国内精品久久久久精免费| 日本成人三级电影网站| 国产免费av片在线观看野外av| 99国产精品一区二区蜜桃av| 熟女少妇亚洲综合色aaa.| 国产免费男女视频| 色噜噜av男人的天堂激情| 午夜亚洲福利在线播放| 国产成人欧美在线观看| 色老头精品视频在线观看| 成人三级黄色视频| 久久久久久久精品吃奶| 级片在线观看| 精品国产亚洲在线| 天堂√8在线中文| 国产av又大| 精品久久久久久久久久久久久| 欧美不卡视频在线免费观看 | 久久久久久久久免费视频了| 999久久久精品免费观看国产| 1024香蕉在线观看| 亚洲欧美日韩高清专用| 久久久久久久久中文| 国内少妇人妻偷人精品xxx网站 | 在线看三级毛片| 一级毛片高清免费大全| 亚洲自拍偷在线| 免费看美女性在线毛片视频| www国产在线视频色| 国产伦在线观看视频一区| 精品人妻1区二区| or卡值多少钱| 婷婷丁香在线五月| 精品少妇一区二区三区视频日本电影| 日韩欧美三级三区| 日韩有码中文字幕| 在线观看舔阴道视频| 国产男靠女视频免费网站| 亚洲狠狠婷婷综合久久图片| www国产在线视频色| 亚洲欧美日韩东京热| 亚洲国产精品sss在线观看| 精品国产乱码久久久久久男人| 99久久精品国产亚洲精品| 99久久99久久久精品蜜桃| 午夜福利在线在线| 狠狠狠狠99中文字幕| 成年女人毛片免费观看观看9| 免费在线观看视频国产中文字幕亚洲| 国产主播在线观看一区二区| 两性夫妻黄色片| 国产精品一区二区免费欧美| 久久婷婷成人综合色麻豆| 久久精品影院6| 精品熟女少妇八av免费久了| 91在线观看av| 少妇人妻一区二区三区视频| av视频在线观看入口| 精品久久久久久成人av| 日本黄色视频三级网站网址| 90打野战视频偷拍视频| 成年女人毛片免费观看观看9| 天天一区二区日本电影三级| 色噜噜av男人的天堂激情| 色精品久久人妻99蜜桃| 免费在线观看日本一区| 99国产极品粉嫩在线观看| 听说在线观看完整版免费高清| 99久久精品国产亚洲精品| 又黄又粗又硬又大视频| 久久精品aⅴ一区二区三区四区| 日本 欧美在线| 久久午夜综合久久蜜桃| 妹子高潮喷水视频| 精品久久久久久久毛片微露脸| 两人在一起打扑克的视频| 熟妇人妻久久中文字幕3abv| 五月伊人婷婷丁香| 母亲3免费完整高清在线观看| www.熟女人妻精品国产| 两个人的视频大全免费| 一夜夜www| 国产激情久久老熟女| 黄色成人免费大全| 床上黄色一级片| 国产视频内射| 欧美日韩精品网址| 亚洲熟妇中文字幕五十中出| 在线看三级毛片| 超碰成人久久| 欧美黑人精品巨大| 麻豆国产av国片精品| 一级毛片高清免费大全| 无遮挡黄片免费观看| cao死你这个sao货| 性色av乱码一区二区三区2| 久久精品国产99精品国产亚洲性色| 两性午夜刺激爽爽歪歪视频在线观看 | 精品电影一区二区在线| 亚洲七黄色美女视频| 精品久久久久久久久久久久久| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久国产a免费观看| av片东京热男人的天堂| 在线十欧美十亚洲十日本专区| 久久亚洲精品不卡| 黄色片一级片一级黄色片| 久久久久免费精品人妻一区二区| 国产精品久久久人人做人人爽| 99riav亚洲国产免费| 久久久久久久久中文| 成人三级黄色视频| 99在线视频只有这里精品首页| 两个人看的免费小视频| 久久欧美精品欧美久久欧美| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久免费视频| 国产野战对白在线观看| 欧美成狂野欧美在线观看| 一区二区三区国产精品乱码| 丰满的人妻完整版| 99在线视频只有这里精品首页| 国产成人精品久久二区二区免费| 两个人免费观看高清视频| 久久久久国内视频| 女人爽到高潮嗷嗷叫在线视频| 一级a爱片免费观看的视频| 亚洲aⅴ乱码一区二区在线播放 | 色综合站精品国产| 欧美一级毛片孕妇| 午夜视频精品福利| 香蕉丝袜av| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看影片大全网站| 国产精品久久久久久人妻精品电影| 中文在线观看免费www的网站 | 欧美日韩亚洲国产一区二区在线观看| 老熟妇仑乱视频hdxx| 精品国产乱码久久久久久男人| 老司机午夜福利在线观看视频| 日本成人三级电影网站| 亚洲av日韩精品久久久久久密| 特大巨黑吊av在线直播| 日本黄大片高清| 88av欧美| 美女 人体艺术 gogo| 国产亚洲精品一区二区www| av欧美777| 制服诱惑二区| 韩国av一区二区三区四区| avwww免费| 成年人黄色毛片网站| 在线观看舔阴道视频| 国产野战对白在线观看| 禁无遮挡网站| 亚洲午夜精品一区,二区,三区| 在线免费观看的www视频| 无人区码免费观看不卡| 全区人妻精品视频| 亚洲无线在线观看| 欧美国产日韩亚洲一区| 久久人人精品亚洲av| 日本 欧美在线| 免费一级毛片在线播放高清视频| 久久天堂一区二区三区四区| 少妇的丰满在线观看| 国产亚洲精品久久久久久毛片| 床上黄色一级片| aaaaa片日本免费| 婷婷亚洲欧美| 色综合站精品国产| www.熟女人妻精品国产| 国产三级中文精品| www.www免费av| 男男h啪啪无遮挡| 国产精品av视频在线免费观看| 真人一进一出gif抽搐免费| 中文资源天堂在线| 亚洲熟妇中文字幕五十中出| 久久久久国产一级毛片高清牌| 三级男女做爰猛烈吃奶摸视频| 99在线人妻在线中文字幕| 精品日产1卡2卡| 欧美日韩瑟瑟在线播放| 无遮挡黄片免费观看| a级毛片在线看网站| 夜夜躁狠狠躁天天躁| ponron亚洲| 久久中文看片网| 久久性视频一级片| 91在线观看av| 免费看a级黄色片| 久久天躁狠狠躁夜夜2o2o| 麻豆一二三区av精品| 一a级毛片在线观看| 最近在线观看免费完整版| 一本综合久久免费| 久久婷婷人人爽人人干人人爱| 久久久精品国产亚洲av高清涩受| 一边摸一边做爽爽视频免费| 亚洲精品中文字幕一二三四区| 久久国产精品人妻蜜桃| 欧美黑人精品巨大| av片东京热男人的天堂| 国产爱豆传媒在线观看 | 三级男女做爰猛烈吃奶摸视频| 亚洲中文av在线| 蜜桃久久精品国产亚洲av| 三级国产精品欧美在线观看 | 又爽又黄无遮挡网站| 免费无遮挡裸体视频| 他把我摸到了高潮在线观看| 欧美3d第一页| 又粗又爽又猛毛片免费看| 欧美性猛交╳xxx乱大交人| 国产区一区二久久| 亚洲在线自拍视频| 免费看日本二区| 国产黄片美女视频| 日韩三级视频一区二区三区| 好男人在线观看高清免费视频| 久久久久久久久免费视频了| 精品一区二区三区视频在线观看免费| 亚洲av日韩精品久久久久久密| 成人国语在线视频| 熟妇人妻久久中文字幕3abv| 草草在线视频免费看| 久久天堂一区二区三区四区| 久久精品综合一区二区三区| 成熟少妇高潮喷水视频| 亚洲 欧美 日韩 在线 免费| 最近视频中文字幕2019在线8| www.精华液| 人妻夜夜爽99麻豆av| www.999成人在线观看| 亚洲人与动物交配视频| 麻豆一二三区av精品| 午夜福利在线在线| 久久久久久久午夜电影| 老司机午夜十八禁免费视频| 中文字幕av在线有码专区| 成人国产一区最新在线观看| or卡值多少钱| 亚洲免费av在线视频| 亚洲专区字幕在线| 午夜福利18| 岛国在线免费视频观看| 亚洲av电影不卡..在线观看| 天天一区二区日本电影三级| 久久这里只有精品中国| 亚洲五月婷婷丁香| 成人欧美大片| 国产精品久久久久久亚洲av鲁大| 欧美日韩乱码在线| 黄色丝袜av网址大全| 成人av一区二区三区在线看| 久久午夜亚洲精品久久| 99久久精品国产亚洲精品| 一区二区三区激情视频| 免费看十八禁软件| 国产精品乱码一区二三区的特点| 久久久久久国产a免费观看| 最近最新中文字幕大全电影3| 97人妻精品一区二区三区麻豆| 热99re8久久精品国产| 亚洲电影在线观看av| 亚洲aⅴ乱码一区二区在线播放 | 日韩三级视频一区二区三区| 国产片内射在线| 国产成人系列免费观看| 久久久国产成人精品二区| 久久久久久人人人人人| 麻豆成人午夜福利视频| 亚洲精品在线美女| 免费观看人在逋| 日韩欧美在线二视频| 国产探花在线观看一区二区| 国产1区2区3区精品| 999精品在线视频| 长腿黑丝高跟| 国产精品美女特级片免费视频播放器 | 两个人视频免费观看高清| 国产精品久久电影中文字幕| 久久久久久免费高清国产稀缺| 国产亚洲欧美在线一区二区| xxxwww97欧美| 婷婷亚洲欧美| 99精品欧美一区二区三区四区| 老司机午夜十八禁免费视频| 曰老女人黄片| 亚洲男人天堂网一区| 热99re8久久精品国产| 日韩精品中文字幕看吧| 精品乱码久久久久久99久播| 国产97色在线日韩免费| 国产精品影院久久| 午夜老司机福利片| 亚洲精品在线观看二区| 日本撒尿小便嘘嘘汇集6| 18禁观看日本| 亚洲成人久久爱视频| 亚洲 欧美 日韩 在线 免费| 亚洲五月天丁香| 激情在线观看视频在线高清| 久久中文字幕人妻熟女| 国产亚洲精品一区二区www| 女生性感内裤真人,穿戴方法视频| 男女那种视频在线观看| 免费电影在线观看免费观看| 亚洲男人的天堂狠狠| 成人三级黄色视频| 成人三级做爰电影| 国内揄拍国产精品人妻在线| 亚洲欧美精品综合久久99| 亚洲乱码一区二区免费版| 无人区码免费观看不卡| 99国产极品粉嫩在线观看| 国产成人aa在线观看| 欧美绝顶高潮抽搐喷水| 亚洲熟妇中文字幕五十中出| 男女下面进入的视频免费午夜| 国产成人精品无人区| 亚洲 欧美一区二区三区| 一a级毛片在线观看| 在线观看日韩欧美| 久久久久国产精品人妻aⅴ院| 亚洲国产精品999在线| 午夜福利在线观看吧| 国产av麻豆久久久久久久| 在线观看一区二区三区| 毛片女人毛片| 亚洲自偷自拍图片 自拍| 亚洲成人国产一区在线观看| 在线观看日韩欧美| 91九色精品人成在线观看| 国产精品av视频在线免费观看| 亚洲人成电影免费在线| 亚洲自偷自拍图片 自拍| 哪里可以看免费的av片| 欧美中文日本在线观看视频| 久久精品91蜜桃| 制服丝袜大香蕉在线| 91老司机精品| 亚洲国产精品sss在线观看| 麻豆国产av国片精品| 成年版毛片免费区| 91成年电影在线观看| 色尼玛亚洲综合影院| 此物有八面人人有两片| 丝袜人妻中文字幕| 韩国av一区二区三区四区| 丰满人妻一区二区三区视频av | 黄色a级毛片大全视频| 999久久久国产精品视频| 精品久久久久久久毛片微露脸| 法律面前人人平等表现在哪些方面| 91字幕亚洲| 最近最新免费中文字幕在线| 色综合婷婷激情| 色综合亚洲欧美另类图片| 国产日本99.免费观看| 国产亚洲av高清不卡| 国产精品av久久久久免费| 亚洲av成人精品一区久久| 国产真人三级小视频在线观看| 香蕉国产在线看| 欧美性长视频在线观看| 国产一区二区激情短视频| 级片在线观看| 搡老岳熟女国产| 特大巨黑吊av在线直播| 久久精品aⅴ一区二区三区四区| 欧美国产日韩亚洲一区| 88av欧美| 一区二区三区国产精品乱码| 舔av片在线| 久久精品亚洲精品国产色婷小说| 性色av乱码一区二区三区2| 亚洲最大成人中文| 国产高清有码在线观看视频 | 亚洲中文字幕日韩| 变态另类成人亚洲欧美熟女| 国产精品一区二区三区四区久久| 99热6这里只有精品| 757午夜福利合集在线观看| 黄片小视频在线播放| 国内精品久久久久久久电影| av免费在线观看网站| 久久久久久大精品| 中文字幕最新亚洲高清| 人人妻人人澡欧美一区二区| 一级作爱视频免费观看| 亚洲中文字幕日韩| 一级片免费观看大全| 亚洲专区字幕在线| 露出奶头的视频| 成人一区二区视频在线观看| 国产主播在线观看一区二区| 欧美色欧美亚洲另类二区| 身体一侧抽搐| 一本久久中文字幕| 国产99久久九九免费精品| 91在线观看av| 久久这里只有精品中国| 国产区一区二久久| 亚洲中文字幕日韩| 69av精品久久久久久| 真人做人爱边吃奶动态| 美女黄网站色视频| 欧美成人免费av一区二区三区| 亚洲 国产 在线| 香蕉国产在线看| 黄色成人免费大全| 18禁美女被吸乳视频| netflix在线观看网站| 99热只有精品国产| 国产精品免费一区二区三区在线| 欧美一级毛片孕妇| 国产男靠女视频免费网站| 99精品久久久久人妻精品| 熟女电影av网| 亚洲aⅴ乱码一区二区在线播放 | 18禁国产床啪视频网站| 一卡2卡三卡四卡精品乱码亚洲| av天堂在线播放| 久99久视频精品免费| 国产片内射在线| 色老头精品视频在线观看| 久久精品综合一区二区三区| 日本一本二区三区精品| 黄片小视频在线播放| 特大巨黑吊av在线直播| 欧美又色又爽又黄视频| 麻豆成人午夜福利视频| 国产精品久久久久久久电影 | 成人av一区二区三区在线看| 又大又爽又粗| 国产黄片美女视频| 日本a在线网址| 亚洲欧美日韩东京热| 久久久久久久午夜电影| 国产片内射在线| 亚洲国产精品999在线| 亚洲欧美激情综合另类| 男人舔奶头视频| 精品欧美国产一区二区三| 精品一区二区三区视频在线观看免费| 禁无遮挡网站| 亚洲一区中文字幕在线| 亚洲av电影在线进入| 在线国产一区二区在线| 久久久久久大精品| 欧美中文综合在线视频| 日韩欧美一区二区三区在线观看| 成年女人毛片免费观看观看9| 亚洲国产精品sss在线观看| 国产97色在线日韩免费| 免费看a级黄色片| 国产成人av教育| 午夜福利高清视频| 久久九九热精品免费| 999精品在线视频| 国产成人影院久久av| 婷婷亚洲欧美| 国产精品自产拍在线观看55亚洲| 观看免费一级毛片| 免费高清视频大片| 中文字幕最新亚洲高清| 国产精品香港三级国产av潘金莲| 亚洲精品国产一区二区精华液| 国产一区二区在线观看日韩 | 国产精品一区二区精品视频观看| 欧美成人性av电影在线观看| netflix在线观看网站| 国产精品自产拍在线观看55亚洲| 国产av麻豆久久久久久久| 午夜福利免费观看在线| 人人妻人人看人人澡| 琪琪午夜伦伦电影理论片6080| 日日爽夜夜爽网站| 亚洲国产欧洲综合997久久,| 欧美一级毛片孕妇| 久久精品aⅴ一区二区三区四区| tocl精华| 999精品在线视频| 欧美色视频一区免费| 国产99白浆流出| 给我免费播放毛片高清在线观看| 亚洲午夜精品一区,二区,三区| 听说在线观看完整版免费高清| 看黄色毛片网站| 视频区欧美日本亚洲| 波多野结衣巨乳人妻| 亚洲国产欧洲综合997久久,| 成人精品一区二区免费| 亚洲精品国产精品久久久不卡| 国内精品久久久久精免费| 亚洲男人天堂网一区| 美女扒开内裤让男人捅视频| 丰满人妻一区二区三区视频av | 99国产极品粉嫩在线观看| 亚洲人成伊人成综合网2020| 欧美日本亚洲视频在线播放| 亚洲一区高清亚洲精品| 18禁黄网站禁片免费观看直播| 亚洲欧美精品综合久久99| 精品人妻1区二区| 欧美3d第一页| 久久国产乱子伦精品免费另类| 久久这里只有精品19| 日本五十路高清| 最新在线观看一区二区三区| 婷婷精品国产亚洲av在线| 精品无人区乱码1区二区| 欧美日本亚洲视频在线播放| 狂野欧美激情性xxxx| 一区福利在线观看| 最新美女视频免费是黄的| 亚洲精品美女久久av网站| 精品国产乱子伦一区二区三区| 19禁男女啪啪无遮挡网站| 啦啦啦观看免费观看视频高清| 久久久久久久久久黄片| 亚洲天堂国产精品一区在线| 在线免费观看的www视频| 国产精品电影一区二区三区| 国产精品日韩av在线免费观看| 91老司机精品| 免费在线观看完整版高清| 男女那种视频在线观看| 一二三四社区在线视频社区8| 亚洲av片天天在线观看| 国产黄色小视频在线观看| 白带黄色成豆腐渣| 啪啪无遮挡十八禁网站| 手机成人av网站| 色播亚洲综合网| 国产精品1区2区在线观看.| 午夜福利在线观看吧| 国产精品1区2区在线观看.| 亚洲精华国产精华精| 一边摸一边做爽爽视频免费| www.www免费av| 国产一级毛片七仙女欲春2| av福利片在线| 嫩草影视91久久| 国产成人一区二区三区免费视频网站| 日本五十路高清| 91麻豆av在线| 欧美午夜高清在线| 男女那种视频在线观看| 亚洲av美国av| 国产精品野战在线观看| 欧美性猛交黑人性爽| 搞女人的毛片| 国产成人精品久久二区二区91| 亚洲色图av天堂| 亚洲欧美日韩高清专用| 欧美+亚洲+日韩+国产| 又爽又黄无遮挡网站| 色噜噜av男人的天堂激情| 久久久久精品国产欧美久久久| www.999成人在线观看| 麻豆一二三区av精品| 天天添夜夜摸| 757午夜福利合集在线观看| 色精品久久人妻99蜜桃| 国产亚洲精品久久久久久毛片| 两性夫妻黄色片| 日韩欧美国产一区二区入口| 午夜老司机福利片| 18禁黄网站禁片免费观看直播| 亚洲第一电影网av| 国产91精品成人一区二区三区| 精品久久久久久久人妻蜜臀av| av视频在线观看入口| 亚洲电影在线观看av| 18禁黄网站禁片午夜丰满| 午夜免费成人在线视频| 精品日产1卡2卡| 亚洲av美国av| 99久久99久久久精品蜜桃| 成人午夜高清在线视频| 久久香蕉精品热| 一进一出抽搐动态| 天天躁狠狠躁夜夜躁狠狠躁| 国产av一区在线观看免费| 天堂√8在线中文|