• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new model to predict the densities of nano fluids using statistical mechanics and artificial intelligent plus principal component analysis

    2017-05-30 02:11:28YousefiAmoozandeh

    F.Youse fi*,Z.Amoozandeh

    Department of Chemistry,Yasouj University,Yasouj,75914-353,Iran

    1.Introduction

    Nano fluids are two phase mixtures consisting of solid nanoparticles with sizes varying generally from 1 to 100 nm dispersed within heat transfer liquids such as water,ethylene glycol,propylene glycol,and light oils.Thermal properties and stability of nano fluids have been a hotly discussed topic during the last two decades due to their potential for application in heat transfer[1].

    Nano fluids, firstly described by Choi[2]and other researchers,discover a new type of heat transfer fluid superior to conventional microparticle fluids in terms of thermophysical properties[2].Moreover,enhancing heat transfer eliminates problems arising from microparticle fluids.Therefore,nano fluids have valuable applications in practical heat transfer processes due to their high potential for enhancement of heat transfer.The thermophysical properties of nano fluids,such as thermal conductivity,viscosity,and density,are important in heat transfer application involving heat transfer fluid for thermal engineering[3].

    Among the various thermophysical properties of nano fluids,most attention has been dedicated to thermal conductivity and viscosity[4–8],while less attention has been paid to other properties such as density(ρ),specific heat capacity(Cp),and isentropic compressibility(Ks).Thermal conductivity and viscosity are not adequate to calculate theoretical heat transfer coefficient.Density,specific heat,and isentropic compressibility are also very significant for heat transfer computations.Therefore,these properties should perfectly determine because of their in fluence on nano fluid flow and heat transfer characteristics[9].On the other hand,experimental evaluation of nano fluids suffers from limitations such as complexities in preparing monodisperse suspensions;and methodical problems in measuring particle size,concentration,and the homogeneity of its solution.As a consequence,the ranges of the considered variables are also limited.Hence a few density measurements have been presented for various nano fluids at different situations[10],while suggesting the reported theoretical correlation for the evaluation of nano fluids density is based on simple model.

    Earlier,Ihm–Song–Mason equation of state(ISM EOS)[11]and Tao–Mason equation of state(TM EOS)[12]were extended to fluid and fluid mixtures[13–21].In addition,the applications of equation of state and artificial neural networks approaches[19,22]were studied to approximate the properties ofpure polymers.Generally,the artificialneuralnetwork(ANN)is a powerful and successful method for complex nonlinear systems due to unique advantages such as high speed,simplicity,and large capacity which reduce engineering attempt.In recent years,ANN modelling has been successfully used for predicting of thermophysical properties of pure and mixture fluids[22–26].

    This research is focused on the capability of both TM EOS(with the Pak and Cho equation)and the ANN to estimate thermodynamic properties of nano fluids in different conditions.As a final point,the efficiency of these approaches is compared with experimental data and an experimental Pak and Cho equation.

    2.Theory

    2.1.Tao–Mason equation of state

    The common equations of state are based on the van der Waals family of cubic equations,the extended family of virial equations,or equations based more strongly on the results from statistical mechanics and computer simulations[27–29].The TM EOS belongs to the latter category.Tao and Mason expressed a perturbed correction term that has an effect on the attractive forces,and combined it with the Ihm–Song–Mason(ISM)equation of state[11]to present an advanced equation ofstate(TMEOS)[12].This equation ofstate for pure materials is as follows:

    where,ω,λ,ρ,Tc,andKTare the Pitzer acentric factor,an adjustable parameter,number density,critical temperature,and usual meaning.Also,B2,α andbare the second virial coefficient,the scaling parameter,and the effective van der Waals co-volume.

    The TM EOS requires usage of the second virial coefficient(B2)in company with the parameters α,andb.It should be mentioned that knowledge of experimental second virial coefficient data is adequate to calculate values of the other two temperature-dependent parameters,if the intermolecular potential is not accessible[12].In this case,there are numerous correlation schemes,typically based on the corresponding state principal that leads to the computation of the second virial coefficient.

    Tao and Mason formulated α,and b in terms of the Boyle temperature(TB)and the Boyle volume(vB)[12].However,theB2values can be calculated from the Tsonopolous correlation[30]in the absence of sufficient experimental data.

    In this project,to attain higher accuracy,a corresponding state correlation was examined in order that TM EOS might be applied to nano fluids.In this respect,the following correlation equation forB2using a new scaling parameter with minimum input(such as molar density at the room temperature)has been extended.This correlation for second virial coefficient is presented as follows:

    where ρris density at room temperature.

    Tao and Mason's observation shows that the dimensionless quantities α/υBandb/υBas almost common functions of the reduced temperature(T/TB)can be calculated from the exponentialformulas based on a LJ(12–6)potential[12].At this point,the scaling factors(TBand υB)are the Boyle temperature and Boyle volume,which can be stated based on the room parameters.The empiricalequations given in[12]forα/υBandb/υBas,a function ofT/TBcan be rescaled by 298.15 K and ρr,temperature and density in room point,instead ofTBand υBas Eslami[31].Therefore,the inputparameter decreased,and this parameter easily obtains in contrast to Boyle parameters or boiling parameters.

    where the constantsa1,a2,c1,andc2are?0.0860,2.3988,0.5624,and 1.4267,respectively.In the previous study,TM EOS was extended to the refrigerant mixtures with following equation[19].

    TheGijterm is the pair distribution function and was calculated by Ihmet al.[11]:

    whereTcmixis the traditional pseudocritical temperature.

    In the present method,the second virial coefficient and the other two temperature-dependent parameters evaluation can be extended to mixtures using simple geometric mean of liquid density at the room temperature;i.e.,

    The adjustable parameter(λ)obtains from volumetric properties at high temperature and pressure and authorizes the whole procedure as self-correcting.

    3.ANN Modelling

    The artificial neural network(ANN)is the nonlinear mathematical method thatattracts the greatestinterestdue to its simplicity, flexibility,and availability for various training algorithms,as well as its large modelling capacity[32–34].An artificial neural network,which is derived based on the activity process of the human brain,has hitherto been employed for modelling by many scientific disciplines[33–36].Several applications and good descriptions of the artificial neural network(ANN)were presented in previous publications[37,38].

    The ANN forms the input layer(independent variables),the output layer(dependent variables),and one or more neuron layers called hidden layers can be located between them.The structure of an ANN is described by the number of its layers,the number of neurons in each layer,and the nature of learning algorithms and neurons transfer functions.The important elements of a neural network are the neurons,which are organized in input and output layers of hidden layers(Fig.1).

    3.1.Principal component analysis

    Principal component analysis(PCA)is a statistical method that changes an orthogonal transformation,to convert a set of observations ofpossibly correlated variables into a setofvalues oflinearly uncorrelated variables called principal components.It is a way of recognizing patterns in data,and expressing the data in such a way as to highlight their similarities and dissimilarities.While patterns in data can be hard to find in data of high dimension,the PCA is a great tool for analysing data.The other key bene fit of the PCA is that once you have found these patterns in the data,you can compress the data by means of reducing the number of dimensions without much loss of information.Principal components are guaranteed to be independent if the data set is jointly normally distributed.The PCA is sensitive to the relative scaling of the original variables[39].

    Finally,the PCA was used to make a classifier system more effective and it is based on the assumption that most information about classes is contained in the directions,including which the variations are the largest.The most common derivation of the PCA is in terms of a standardized linear projection,which maximizes the variance in the projected space[40].The details of the PCA are stated in[41].

    3.2.Network training and selection of the best network architecture

    The most regular neural network technique for solving difficulties is multilayerperceptrons(MLP).The MLP discovers the data pattern using algorithms known as“training”,these algorithms modify weights of the neurons according to the error between the values of actual output and target output that provide nonlinear regression between inputs and outputs variables and are extremely useful for recognizing patterns in complex data.An example of training algorithms is the backpropagation algorithm that is widely used to train ANN in various applications.

    Two transfer functions that are used in the hidden layer and output layer are “Tansig”and “Purelin”,respectively.The back propagation algorithm of Levenberg–Marquardt(trainlm)was applied to determine optimalnetstructure.The trialand error approach is mostbasic method of training a neural network.The number of hidden layers is to be selected depending on the complexity of the problem but,generally,one hidden layer is satisfactory for modelling most of the problems.In this method, firstly the number of hidden layers considered one and in the next step,in the trial and error approach,the number of neurons in the hidden layer is varied one by one to attain the desired objective function outputs.This trend is continued to find the number of neurons thatleadsto the lowesterrorforthe testing subsetand isreported asthe optimum number of neurons in the hidden layer.

    The mathematical de finition of the error criteria,including average deviation percentage(AAD)and correlation coefficient(R2)values,were given as below:

    Fig.1.The topology of a three layer MLP.

    4.Results and Discussion

    In this project,the density,specific heat capacity,and isentropic compressibility(Ks)of some nano fluids such as Sb2O5,SnO2/(EG+H2O),ZnO/(EG+H2O),Al2O3/(EG+H2O),ZnO/(PEG+H2O),ZnO/PEG,and TiO2/EG were estimated from the extended TM EOS at various temperatures and volume fractions.In addition,the artificial neural network with PCA technique has been utilized to compute the densities of the aforementioned nano fluids as a function of the temperature,volume fraction ofnanoparticle,diameter ofnanoparticle,and the densities of base fluids and ranges of input–output variables for each nano fluid are given in Table 1.

    Table 1Summary of the input–output dataset characterization

    Experimental densities for Sb2O5,SnO2/(EG +H2O),ZnO/(EG+H2O),and Al2O3/(EG+H2O)were obtained from Vajjha and Mahagaonkar[42].Furthermore,the experimental densities for ZnO/(PEG+H2O)and ZnO/PEGwere attained from[43]and the experimental densities for TiO2/EG were determined from[44].

    The equation for the density of two-phase mixtures for particles of micrometre size is available in the literature on slurry flows[45].Pak and Cho[46]adopted the same equation for nanometre sized particles,which is expressed by the formula

    wherengis the density of the nano fluid,ρpis the density of the particle,φ is the particle volume concentration,and ρbfis the density of the base fluid.Pak and Cho conducted the experiment at only one temperature(298 K)for γ-Al2O3and TiO2nano fluids up to 4.5%volume concentration to verify Eq.(4).

    As above mentioned,the experimentalevaluation ofnano fluids have many limitations,such as complexities in preparing mono-disperse suspensions,methodological problems in measuring particle size,concentration,and the homogeneity of its solution.Hence,several density measurements have been presented for various nano fluids in different situations[10].Therefore,novel approaches such as equation of state and artificial neural networks are efficient in predicting the density and other thermodynamic properties of nano fluids,based on available data.

    In this investigation,the TMequation of state was used to determine the density of base fluids.Then we replaced the density of the base fluid in the Pak and Cho[46]equation and introduced a new equation ofstate to determine the density of nano fluids for the first time.

    Extension of statistical,mechanically-based equation of state for pure and mixed liquids requires preliminary modifications of the TM EOS.In the beginning,the second virial coefficient was developed using the density of liquid at room temperature that can simply be measured in contrast to the critical parameters.Consequently,the number of input parameters in the Tsonopolous'correlation[30](critical temperature,critical pressure,and acetric factor)are reduced to one parameter,including density at room temperature(ρr).

    Besides,kin Eq.(2)isa weak function ofthe acentric factorso thatkis approximated to 1.093 andA2was estimated to 1.64[47].Then,the parameters α andbwere correlated by means of Eqs.(8)and(9),respectively.In both equations,the inputparameters(the molardensity at room temperature)are more available than the Boyle temperature and volume,and these modifications lead to a decrease in the number of input parameters of B2,α andbfrom five(including critical temperature,critical pressure,acentric factor,Boyle temperature,and Boyle volume)to one(molar density at room temperature).

    In addition,the parameter of λ for pure base fluid was adjusted by the nonlinear regression method as follow:

    where the parameters that were used for calculation of λ are listed in Table 2.After that,with these modifications using Pak and Cho's[46]equation,the densities of nano fluids can be computed.

    Table 2Coefficients in Eq.(19)

    The MLP is trained,validated,and tested at random with 70%(199 data points),15%(43 data points),and 15%(43 data points),respectively.

    At first,a set of observations are converted into a set of values of linearly uncorrelated variables with a statistical method:namely,principal component analysis(PCA).The number of principal components variable in this work is equal to the number of original variables but the variables values of linearly uncorrelated.

    In the second step ofthe training procedure,alldata points produced from PCA were scaled to the range of[0,1]as follows:

    Fig.2.Effect of the number of hidden layer neurons on AAD.

    The possibility of over-training is a problem in the ANN,and can be overcome by suitable selection of the number of neurons in the hidden layer.The numbers of hidden neurons were determined by trial and error and were begun with two neurons in the hidden layer,with the number of neurons increased regularly.The performance of the network in training phase should increase with the increase in the numberofneurons;atthe same time as the performance ofthe network in testing data phase leads to the optimumvalue ofhidden neurons(see Fig.2).In this project,the mean square error(MSE)was chosen as a compute of the performance of the neural network.The net with one hidden layer(20 neurons)and with a mean square error of 1.12 × 10–5leads to the most excellent prediction in Fig.2.Fig.3 shows the progress of training,validation,and test errors as a function ofthe numberoftraining epochs(based on an early stopping approach).

    Fig.3.Evolution of training,validation,and test errors as a function of the number of training epochs during ANN training.

    Fig.4.Modelling ability of the optimized ANN to predict the effective densities of all nano fluids suspension:(R2=0.999,AAD=0.48%).

    Fig.5.Mean absolute relative error for the train,test and validation of densities of all nano fluids with the experimental data.

    Fig.6.Deviation plot for the calculated density of TiO2/EG from TM EOS and ANN at different temperatures,pressures and two volume fractions(Fig.6a.(?=1.75%)and(Fig.6b).?=5%),compared with the experiment[44].

    Fig.8.Deviation plot for the calculated density of ZnO/PEG+H2O from TM EOS and ANN atdifferenttemperatures,volume fractions and two mole fraction of PEG(a:X PEG=0.062 and b:X PEG=0.15)compared with the experiment[43].

    Based on testing data,the optimized neural network model was used to predict the densities of nano fluids;the evaluation between predictive values and experimental values is carried out and shown in Fig.4.The results of Fig.4 demonstrate good agreement between the predicted and the experimental values of densities of mentioned nano fluids with an absolute average error,AAD%=0.48%,and high correlation coefficients,R2=0.999.

    The error analysis oftrained netover temperature variation for train,test,and validation point are presented in Fig.5.

    TM EOS was combined with Pak and Cho's equation to calculate densities of TiO2/EG nano fluids and compare with experimental data[44]at different temperatures,pressures,and two volume fractions(1.75%and 5%)(Fig.6).The results show that these models have a good level of agreementwith experimentaldata[45].The AADof densities of TiO2/EG from new EOS and the ANN with experimental data at volume fraction 1.75%are 0.58%and 0.48%,respectively.In addition,the AAD at volume fraction 5%are 1.67%and 0.58%,respectively.Fig.7 shows the deviation plot for the calculated density of ZnO/PEG from new EOS and ANNat differenttemperatures and volume fractions compared with the experiment[43],and the AAD of these models from the literature are 0.67%and 0.11%.

    The deviation plot for the calculated density of ZnO/PEG+H2O from TM EOS and ANN at different temperatures,volume fractions,and two mole fractions of PEG(0.062 and 0.15)compared with the experiment[43].The absolute average deviations ofthese models from experimental data at mole fraction of 0.062 are 0.59%and 0.14%,respectively(see Fig.8a).Also,the AAD at mole fraction of 0.15 are 1.62%and 1.05%,respectively(see Fig.8b).

    Fig.9.Deviation plot for the calculated density of Al2O3/(EG+H2O)from TM EOS,ANN and Pak&Cho at different temperatures and two volume fractions(a:?=1%and b:?=8%),compared with the experiment[42].

    Fig.10.Deviation plotfor the calculated density of Sb2O5,SnO2/(EG+H2O)from TM EOS,ANN and Pak&Cho at differenttemperatures and two volume fractions(a:?=1%and b:?=5.8%),compared with the experiment[42].

    The absolute average deviation from experimental data[42]for the predicted densities of the three systems(Al2O3/(EG+H2O),Sb2O5,SnO2/(EG+H2O);and ZnO/(EG+H2O))are calculated from new EOS,ANN,and experimental Pak and Cho,and are presented in Figs.9–11.Itshould be stated thatin the experimentalPak and Cho,densities ofbase fluids are obtained from experimental data,while in the first model the densities of base fluids are computed from TM EOS.These figures show that the ANN model is in good agreement with experimental data and is superior to others.Also,the new EOS is better than the experimental Pak and Cho.

    In this research,some thermodynamic properties such as heat capacity and isentropic compressibility of nano fluids can are predicted using the equations below:

    Fig.11.Deviation plot for the calculated density of ZnO/(EG+H2O)from TM EOS,ANN and Pak&Cho at different temperatures and two volume fractions(a:?=2%and b:?=5%),compared with the experiment[42].

    Fig.12.Deviation plotfor the calculated heatcapacity ofZnO/PEGfrom TMEOSatdifferent temperatures and volume fractions,compared with the experiment[43].

    wheredanduare density and speed of sound of nano fluids,respectively.

    The deviation plot for the calculated heat capacity of ZnO/PEG at different temperatures and volume fractions is compared with the experiment[43]in Fig.12.It can be seen from this figure that the calculated heat capacity has good agreement with literature with AAD=1.04%.

    In addition,the plot of deviation of heat capacity of ZnO/(PEG+H2O)at different temperatures,volume fractions,and mole fraction of PEG(0.06 and 0.15)is presented in Fig.13,and the absolute average deviations for these systems are 1.07%and 0.23%,respectively.

    As a final point,the calculated isentropic compressibility of ZnO/PEG from Eq.(22)at different temperatures and volume fractions,is compared with the experiment[43]and presented in Fig.14.The AAD of this system is 0.65%.

    The calculated isentropic compressibility of ZnO/PEG+H2O at different temperatures,volume fractions,and mole fraction of PEG(0.06 and 0.15)is also compared with the literature[43](see Fig.15)and the AADs are 0.70%and 0.93%,respectively.Since the values of AAD can establish the fact that the calculated values are more or less close to the experimental data,it can be claimed that the new EOS can predict the experimental density and thermodynamic properties of nano fluids with a high degree of accuracy.

    Fig.13.Deviation plotforthe calculated heatcapacity ofZnO/(PEG+H2O)from TMEOSat differenttemperatures,volume fractions and two mole fraction ofPEG(a:X PEG=0.06 and b:X PEG=0.15),compared with the experiment[43].

    Fig.14.AAD plot of the calculated isentropic compressibility of ZnO/PEG from TM EOS at different temperatures and volume fractions,compared with the experiment[43].

    Table 3 contains the AAD of the calculated molar density of all nano fluids using the EOS and ANN at various temperatures,pressures,and volume fractions.Asisclearfrom Table 3,in mostcasesthe accuracy of the calculated densities using the ANN are superior to new EOS but also that both of them are in agreement with experimental data.The AADs of new EOS and ANN are 1.11%and 0.48%,respectively.

    5.Conclusions

    In this work,the density,specific heat capacity,and isentropic compressibility(Ks)of some nano fluids such as Sb2O5,SnO2/(EG+H2O),ZnO/(EG+H2O),Al2O3/(EG+H2O),ZnO/(PEG+H2O),ZnO/PEG,and TiO2/EG were estimated from the extended TM EOS together with the Pak and Cho equation at various temperatures,pressures,and volume fractions.The TM EOS was performed using minimum input(density of room temperature).Also,the artificial neural network+PCA technique(with 20 neuron in hidden layer)was performed over the whole range of available conditions.The AADs of the calculated molar density of all nano fluids using the new EOS and ANN at various temperature,pressure,and volume fractions are 1.11%and 0.48%,respectively.In addition,the heat capacity and isentropic compressibility of the aforementioned nano fluids were predicted using obtained densities of new EOS.The results showed that these properties are in agreement with the literature.

    Fig.15.AADplotofthe calculated isentropic compressibility ofZnO/(PEG+H2O)from TM EOS at different temperatures,volume fractions and two mole fraction of PEG(a:X PEG=0.06 and b:X PEG=0.15),compared with the experiment[43].

    Table 3Result of density prediction for all mentioned nano fluids

    [1]P.D.Shima,J.Philip,B.J.Raj,Synthesis of aqueous and nonaqueous iron oxide nano fluids and study of temperature dependence on thermal conductivity and viscosity,J.Phys.Chem.C114(2010)18825–18833.

    [2]S.U.S.Choi,Development and application of non-Newtonian flows,ASME66(1995)99–106(New York).

    [3]W.Xiang-Qi,S.M.Arun,A review on nano fluids-Part I:Theoretical and numerical investigations,Braz.J.Chem.Eng.25(2008)613–630.

    [4]Y.Ren,H.Xie,A.Cai,Effective thermal conductivity of nano fluids containing spherical nanoparticles,Appl.Phys.38(2005)3958–3961.

    [5]H.A.Mintsa,G.Roy,C.T.Nguyen,D.Doucet,New temperature dependent thermal conductivity data for water-based nano fluids,Int.J.Therm.Sci.48(2009)363–371.

    [6]M.Chandrasekar,S.Suresh,B.A.Chandra,Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nano fluidExp,Exp.Thermal Fluid Sci.34(2010)210–216.

    [7]M.M.Papari,F.Youse fi,J.Moghadasi,H.Karimi,A.Campo,Modeling thermal conductivity augmentation of nano fluids using diffusion neural networks,Int.J.Therm.Sci.50(2011)44–52.

    [8]H.Karimi,F.Youse fi,M.R.Rahimi,Correlation of viscosity in nano fluids using genetic algorithm-neural network(GA-NN),Heat Mass Transf.47(2011)1417–1425.

    [9]S.E.B.Ma?ga,S.J.Palm,C.T.Nguyen,G.Roy,N.Galanis,Heat transfer enhancement by using nano fluids in forced convection flows,Int.J.Heat Fluid Flow26(2005)530–546.

    [10]M.J.Pastoriza-Gallego,C.Casanova,J.L.Legido,M.M.Pi?eiro,CuO in water nano fluid:In fluence of particle size and polydispersity on volumetric behaviour and viscosity,Fluid Phase Equilib.300(2011)188–196.

    [11]G.Ihm,Y.Song,E.A.Mason,Strong principle of corresponding states:reduction of ap-v-Tsurface to a line,Fluid Phase Equilib.75(1992)117–125.

    [12]F.M.Tao,E.A.Mason,Statistical-mechanical equation of state for nonpolar fluids:Prediction of phase boundaries,J.Chem.Phys.100(1994)9075–9084.

    [13]F.Youse fi,H.Karimi,M.Gomar,Ability of analyticaland artificial approaches forprediction of the volumetric properties of some polymer blends,Fluid Phase Equilib.355(2013)92–98.

    [14]F.Youse fi,H.Karimi,M.Gomar,Volumetric properties of polymer blends from Tao–Mason equation of state,Polym.Bull.70(2013)1445–1455.

    [15]F.Youse fi,Correlation of volumetric properties of binary mixtures of some ionic liquids with alcohols using equation of state,Ionics18(2012)769–775.

    [16]F.Youse fi,H.Karimi,M.M.Papari,Extension of Tao–Mason equation of state to heavy n-alkanes,Chin.J.Chem.Eng.21(2013)894–900.

    [17]F.Youse fi,Modeling the volumetric properties of polymer melts using equation of state,High Temp.High Press.42(2013)211–226.

    [18]F.Youse fi,H.Karimi,R.Ghafarian Shirazi,M.Gomar,Prediction of PVT properties of pure and mixture of polymer melts using modified Ihm-song-Mason equation of state,High Temp.High Press.42(2013)451–467.

    [19]F.Youse fi,H.Karimi,Application of equation of state and artificial neural network to prediction of volumetric properties of polymer melts,J.Ind.Eng.Chem.19(2013)498–507.

    [20]F.Youse fi,H.Karimi,P-V–T properties of polymer melts based on equation of state and neural network,Eur.Polym.J.48(2012)1135–1143.

    [21]F.Youse fi,H.Karimi,Z.Gandomkar,Equation of state and artificial neural network to predict the thermodynamic properties of pure and mixture of liquid alkali metals,Fluid Phase Equilib.370(2014)43–49.

    [22]Z.Zhang,K.Fried,Artificial neural networks applied to polymer composites:a review,Compos.Sci.Technol.63(2003)2029–2036.

    [23]A.Khajeh,H.Modarress,Application of adaptive Neuro fuzzy inference system for solubility prediction of carbon dioxide in polymers,Expert Syst.Appl.37(2010)3070–3074.

    [24]F.Gharagheizi,G.R.Salehib,Prediction of enthalpy of fusion of pure compounds using an artificial neural network-group contribution method,Thermochim.Acta521(2011)37–40.

    [25]A.Sencan,I.IlkeK?se,R.Selbas,Prediction of thermophysical properties of mixed refrigerants using artificial neural network,Energy Convers.Manag.52(2011)958–974.

    [26]A.Ghaedi,Simultaneous prediction of the thermodynamic properties of aqueous solution of ethylene glycol monoethyl ether using artificial neural network,J.Mol.Liq.207(2015)327–333.

    [27]J.M.H.Levelt Sengers,U.K.Deiters,U.Klask,P.Swidersky,G.M.Schneider,Application of the Taylor dispersion method in supercritical fluids,Int.J.Thermophys.14(1993)893–922.

    [28]S.I.Sandler,Chemical and Engineering Thermophysics,Wiley,New York,1989.

    [29]J.M.Prauznitz,R.N.Lichtentaler,E.G.Azevedo,Molecular Thermodynamics of Fluid Phase Equilibria,Prentice-Hall,Englewood Cliffs,NJ,1999.

    [30]C.Tsonopolous,Second virial coefficients of water pollutants,AICHE J.24(1978)1112–1127.

    [31]H.Eslami,Equation of state for nonpolar fluids:prediction from boiling point constant,Int.J.Thermophys.21(2000)1123–1136.

    [32]S.Haykin,Neural Networks:A Comprehensive Foundation,second ed.Prentice-Hall,New York,1999.

    [33]P.Xu,S.Xu,H.Yin,Application of self-organizing competitive neural network in fault diagnosis of suck rod pumping system,J.Pet.Sci.Eng.58(2007)43–48.

    [34]B.Vaferi,Y.Rahnam,P.Darvishi,A.R.Toorani,M.Lashkarbolooki,Phase equilibria estimation of binary systems containing ethanol using optimal feedforward neural network,J.Supercrit.Fluids84(2013)80–88.

    [35]B.Vaferi,M.Karimi,M.Azizi,H.Esmaeili,Comparison between the artificial neural network,SAFT and PRSV approach in obtaining the solubility of solid aromatic com-pounds in supercritical carbon dioxide,J.Supercrit.Fluids77(2013)45–51.

    [36]B.Vafaei,R.Eslamloueyan,S.Ayatollahi,Simulation of steam distillation process using neural networks,Chem.Eng.Res.Des.87(2009)997–1002.

    [37]C.Bishop,Neural Networks for Pattern Recognition,Oxford Clarendon,Oxford,1996.

    [38]B.Ripley,Pattern Recognition and Neural Networks,Cambridge University Press,Cambridge,1996.

    [39]K.Pearson,On l ines andplanes of c losest fit to s ystems of points in space,Philo-sophical Magazine2(1901)559–572,doi:10.1080/14786440109462720.

    [40]X.Wang,K.K.Paliwal,Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition,J.Pattern Recognit.Soc.36(2003)2429–2439.

    [41]Lindsa IS,A tutorial on principal components analysis,http://kybele.psych.cornell.edu/~edelman/Psych-465(Spring-2003/PCA-tutorial)(2002).

    [42]R.S.Vajjha,D.K.Das,B.M.Mahagaonkar,Density measurement of different nano fluids and their comparison with theory,Pet.Sci.Technol.27(2009)612–624.

    [43]M.T.Zaafarani-Moattar,R.Majdan-Cegincara,Effect of temperature on volumetric and transport properties of nano fluids containing ZnO nanoparticles poly(ethylene glycol)and water,J.Chem.Thermodyn.54(2012)55–67.

    [44]D.Cabaleiro,M.J.Pastoriza-Gallego,C.Gracia-Fernandez,M.M.Pineiro,L.Lugo,Rheological and volumetric properties of TiO2-ethylene glycol nano fluids,Nanoscale Res.Lett.8(2013)286–298.

    [45]N.P.Cheremisinoff,Encyclopedia of Fluid Mechanics,Slurry Flow Technology,vol.5,Gulf Publishing,Houston,TX,1986.

    [46]B.C.Pak,Y.I.Cho,Hytiodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,Exp.Heat Transfer11(1998)151–170.

    [47]M.M.Papari,M.Kiani,R.Behjatmanesh-Ardakani,J.Moghadasi,A.Campo,Equation of state andP–V–Tproperties of polymer melts based on glass transition data,J.Mol.Liq.161(2011)148–152.

    亚洲av国产av综合av卡| 中文字幕另类日韩欧美亚洲嫩草| 精品免费久久久久久久清纯 | 香蕉国产在线看| 亚洲综合色网址| 综合色丁香网| 婷婷成人精品国产| 国产精品久久久人人做人人爽| 久久国产精品大桥未久av| 日韩av不卡免费在线播放| 亚洲伊人久久精品综合| 男男h啪啪无遮挡| 老汉色∧v一级毛片| 亚洲人成网站在线观看播放| 亚洲av中文av极速乱| 99热网站在线观看| av电影中文网址| 熟妇人妻不卡中文字幕| 久久精品人人爽人人爽视色| 国产欧美日韩综合在线一区二区| 国产成人免费无遮挡视频| 在线免费观看不下载黄p国产| 天天影视国产精品| 久久99一区二区三区| 免费观看a级毛片全部| 在线观看国产h片| 欧美精品亚洲一区二区| tube8黄色片| 女人久久www免费人成看片| 国产一区二区三区av在线| 多毛熟女@视频| 色婷婷久久久亚洲欧美| 国产淫语在线视频| 亚洲国产精品一区二区三区在线| 啦啦啦在线观看免费高清www| 咕卡用的链子| www.自偷自拍.com| 老司机影院毛片| 中文字幕人妻熟女乱码| av在线播放精品| 性色av一级| 亚洲欧美成人精品一区二区| 日韩av在线免费看完整版不卡| 一边亲一边摸免费视频| 久久久久国产精品人妻一区二区| 欧美老熟妇乱子伦牲交| 91aial.com中文字幕在线观看| 国产亚洲最大av| 9热在线视频观看99| 亚洲欧美色中文字幕在线| 久久女婷五月综合色啪小说| 亚洲一级一片aⅴ在线观看| 王馨瑶露胸无遮挡在线观看| 国产成人系列免费观看| 电影成人av| 日本猛色少妇xxxxx猛交久久| 美女国产高潮福利片在线看| 欧美变态另类bdsm刘玥| 91国产中文字幕| 亚洲欧洲精品一区二区精品久久久 | 黑人欧美特级aaaaaa片| 亚洲精品国产区一区二| 女性生殖器流出的白浆| 日韩精品有码人妻一区| 99九九在线精品视频| 亚洲av成人不卡在线观看播放网 | a级片在线免费高清观看视频| 久久久久久久久久久久大奶| 午夜免费鲁丝| 久久久久久久大尺度免费视频| 在线精品无人区一区二区三| 日韩精品有码人妻一区| 超色免费av| 国产精品秋霞免费鲁丝片| 在线观看免费高清a一片| 999精品在线视频| 亚洲在久久综合| 欧美精品一区二区免费开放| 黑人欧美特级aaaaaa片| 丝瓜视频免费看黄片| 久久久久久久久久久免费av| 亚洲国产av新网站| 2021少妇久久久久久久久久久| 午夜福利视频在线观看免费| 国产女主播在线喷水免费视频网站| 一级片'在线观看视频| 热99国产精品久久久久久7| 欧美av亚洲av综合av国产av | 国产精品一二三区在线看| 国产又爽黄色视频| 亚洲av国产av综合av卡| 黄色毛片三级朝国网站| 免费黄频网站在线观看国产| 国产精品 国内视频| 多毛熟女@视频| 欧美成人午夜精品| 岛国毛片在线播放| 国产成人91sexporn| 日韩欧美精品免费久久| 久久婷婷青草| 国产熟女午夜一区二区三区| 美国免费a级毛片| 久久久国产欧美日韩av| a级毛片在线看网站| 男女高潮啪啪啪动态图| 亚洲精品在线美女| 夫妻性生交免费视频一级片| 国产成人免费观看mmmm| a 毛片基地| av视频免费观看在线观看| 又大又爽又粗| 久久青草综合色| 狠狠精品人妻久久久久久综合| 女性生殖器流出的白浆| 美女扒开内裤让男人捅视频| 免费看av在线观看网站| 亚洲中文av在线| 国产精品秋霞免费鲁丝片| 国语对白做爰xxxⅹ性视频网站| 精品亚洲成a人片在线观看| 精品国产露脸久久av麻豆| 成人国产av品久久久| 午夜福利在线免费观看网站| 亚洲精品乱久久久久久| 99热全是精品| 日韩电影二区| 19禁男女啪啪无遮挡网站| 大香蕉久久网| 电影成人av| 成人国产av品久久久| 亚洲美女视频黄频| 亚洲一级一片aⅴ在线观看| 日韩大片免费观看网站| 亚洲伊人久久精品综合| av又黄又爽大尺度在线免费看| 亚洲精品乱久久久久久| 一区二区av电影网| 国产精品三级大全| 91老司机精品| 人人妻人人添人人爽欧美一区卜| 欧美日韩精品网址| 欧美成人精品欧美一级黄| 日韩 欧美 亚洲 中文字幕| 国产不卡av网站在线观看| 久久久久久久久久久免费av| 男女下面插进去视频免费观看| 极品人妻少妇av视频| 丰满迷人的少妇在线观看| 欧美日韩精品网址| 成年av动漫网址| 日韩精品免费视频一区二区三区| 十八禁网站网址无遮挡| 久久久久久久久久久免费av| 久久精品国产亚洲av高清一级| 超色免费av| 操美女的视频在线观看| 日韩成人av中文字幕在线观看| 国产精品免费视频内射| 日韩欧美一区视频在线观看| 人人妻人人澡人人爽人人夜夜| 欧美日韩一级在线毛片| 日韩成人av中文字幕在线观看| 国产精品蜜桃在线观看| 国产探花极品一区二区| 亚洲av日韩在线播放| 国产男人的电影天堂91| 国产老妇伦熟女老妇高清| 免费黄频网站在线观看国产| 90打野战视频偷拍视频| 日本av免费视频播放| 一级毛片电影观看| a级毛片黄视频| 欧美av亚洲av综合av国产av | 啦啦啦中文免费视频观看日本| 蜜桃国产av成人99| 国产成人一区二区在线| 欧美亚洲 丝袜 人妻 在线| 日本猛色少妇xxxxx猛交久久| 亚洲欧美中文字幕日韩二区| 在线观看人妻少妇| a级片在线免费高清观看视频| 啦啦啦 在线观看视频| 亚洲精品,欧美精品| 久久久久国产一级毛片高清牌| 久久青草综合色| 青春草国产在线视频| 国产伦理片在线播放av一区| 亚洲精品视频女| 欧美另类一区| 国产精品女同一区二区软件| a 毛片基地| 天天影视国产精品| 国产伦人伦偷精品视频| 国产一区亚洲一区在线观看| 亚洲精品日本国产第一区| 久久久精品区二区三区| 国产不卡av网站在线观看| 一级片免费观看大全| 一区在线观看完整版| 日本猛色少妇xxxxx猛交久久| 国语对白做爰xxxⅹ性视频网站| 国产成人欧美| 午夜福利乱码中文字幕| 国产伦理片在线播放av一区| 亚洲av中文av极速乱| 国产精品亚洲av一区麻豆 | 亚洲精品在线美女| 男女无遮挡免费网站观看| a级片在线免费高清观看视频| 国产精品 国内视频| 久久久久精品久久久久真实原创| 国产亚洲最大av| 亚洲国产最新在线播放| 丰满少妇做爰视频| 亚洲熟女毛片儿| 十八禁高潮呻吟视频| 亚洲人成网站在线观看播放| 天堂中文最新版在线下载| 亚洲欧洲国产日韩| 国产激情久久老熟女| svipshipincom国产片| 观看美女的网站| 亚洲一区中文字幕在线| 中文字幕制服av| 久久精品aⅴ一区二区三区四区| 亚洲欧美精品自产自拍| 操出白浆在线播放| 亚洲欧美清纯卡通| 在线观看人妻少妇| 看十八女毛片水多多多| 欧美精品人与动牲交sv欧美| 女人精品久久久久毛片| 又黄又粗又硬又大视频| 巨乳人妻的诱惑在线观看| 最近最新中文字幕大全免费视频 | 国产成人啪精品午夜网站| 亚洲自偷自拍图片 自拍| 午夜精品国产一区二区电影| 久久久国产精品麻豆| 最新在线观看一区二区三区 | 亚洲综合精品二区| 成年动漫av网址| 欧美精品一区二区大全| 午夜激情久久久久久久| 亚洲综合精品二区| h视频一区二区三区| 国产 一区精品| av国产精品久久久久影院| 国产乱人偷精品视频| 国产av码专区亚洲av| 狂野欧美激情性xxxx| 日韩免费高清中文字幕av| 亚洲国产毛片av蜜桃av| 日韩大码丰满熟妇| 两个人看的免费小视频| 黄色 视频免费看| www.av在线官网国产| 亚洲精品自拍成人| 免费观看性生交大片5| 精品人妻一区二区三区麻豆| 国产精品国产三级专区第一集| 久久青草综合色| 亚洲成人免费av在线播放| 国产免费现黄频在线看| 色吧在线观看| 日韩 亚洲 欧美在线| 久久国产精品男人的天堂亚洲| 欧美日韩成人在线一区二区| 亚洲婷婷狠狠爱综合网| 天天躁狠狠躁夜夜躁狠狠躁| 美女脱内裤让男人舔精品视频| 国产97色在线日韩免费| 男人爽女人下面视频在线观看| 久久精品熟女亚洲av麻豆精品| 别揉我奶头~嗯~啊~动态视频 | av福利片在线| 免费在线观看视频国产中文字幕亚洲 | 久久久国产精品麻豆| 大片电影免费在线观看免费| 在线观看www视频免费| 成年人免费黄色播放视频| 国产成人免费观看mmmm| 午夜日韩欧美国产| 国产精品麻豆人妻色哟哟久久| 纵有疾风起免费观看全集完整版| 久久久精品94久久精品| 久久久精品区二区三区| 精品酒店卫生间| 少妇的丰满在线观看| 激情视频va一区二区三区| 黄色一级大片看看| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产国语对白av| 久久国产精品男人的天堂亚洲| 男女免费视频国产| 校园人妻丝袜中文字幕| av线在线观看网站| 亚洲中文av在线| 2018国产大陆天天弄谢| 啦啦啦啦在线视频资源| 国产男女超爽视频在线观看| 精品久久久久久电影网| 一边摸一边抽搐一进一出视频| 国产精品久久久人人做人人爽| 婷婷色麻豆天堂久久| 国产成人av激情在线播放| 婷婷成人精品国产| 亚洲成人国产一区在线观看 | 亚洲精品视频女| 香蕉国产在线看| 亚洲欧美一区二区三区久久| 尾随美女入室| avwww免费| 久久久久精品人妻al黑| 男人添女人高潮全过程视频| 欧美人与善性xxx| 香蕉国产在线看| 国产免费一区二区三区四区乱码| 国产不卡av网站在线观看| 亚洲天堂av无毛| 嫩草影院入口| 国产亚洲av片在线观看秒播厂| 麻豆av在线久日| 啦啦啦在线免费观看视频4| 日本91视频免费播放| 日韩一本色道免费dvd| 国产伦人伦偷精品视频| 一区二区三区四区激情视频| 亚洲成av片中文字幕在线观看| 国产国语露脸激情在线看| 综合色丁香网| 国产又爽黄色视频| 精品国产一区二区三区久久久樱花| av一本久久久久| 另类精品久久| av有码第一页| 激情五月婷婷亚洲| 午夜免费观看性视频| 制服诱惑二区| 久久久久国产精品人妻一区二区| 久久久国产精品麻豆| 国产99久久九九免费精品| 91成人精品电影| 久久人妻熟女aⅴ| 国产成人a∨麻豆精品| 在线观看一区二区三区激情| 少妇人妻久久综合中文| 亚洲欧美中文字幕日韩二区| 午夜福利,免费看| 男的添女的下面高潮视频| e午夜精品久久久久久久| 欧美精品av麻豆av| 一边摸一边抽搐一进一出视频| 老熟女久久久| 九草在线视频观看| 久久狼人影院| 你懂的网址亚洲精品在线观看| 亚洲av在线观看美女高潮| 免费黄频网站在线观看国产| 国产熟女欧美一区二区| 免费av中文字幕在线| 亚洲五月色婷婷综合| 国产人伦9x9x在线观看| 9191精品国产免费久久| 亚洲中文av在线| 久久久久久久大尺度免费视频| 在线亚洲精品国产二区图片欧美| 亚洲伊人色综图| 国产亚洲一区二区精品| 丝袜脚勾引网站| 97人妻天天添夜夜摸| 亚洲精品成人av观看孕妇| 99久久99久久久精品蜜桃| 国产免费一区二区三区四区乱码| 欧美乱码精品一区二区三区| 搡老乐熟女国产| 一边亲一边摸免费视频| e午夜精品久久久久久久| 国产精品亚洲av一区麻豆 | 飞空精品影院首页| 国产xxxxx性猛交| 中文字幕人妻丝袜一区二区 | 亚洲一级一片aⅴ在线观看| 男的添女的下面高潮视频| 国产av精品麻豆| 欧美日韩国产mv在线观看视频| 少妇 在线观看| 一本—道久久a久久精品蜜桃钙片| 国产av码专区亚洲av| 高清在线视频一区二区三区| 亚洲四区av| 国产精品亚洲av一区麻豆 | 午夜福利视频精品| 国产不卡av网站在线观看| 免费观看人在逋| 久久韩国三级中文字幕| www.自偷自拍.com| 日韩熟女老妇一区二区性免费视频| 欧美最新免费一区二区三区| 丰满乱子伦码专区| 日本91视频免费播放| 大香蕉久久成人网| 国产亚洲av高清不卡| 90打野战视频偷拍视频| 少妇猛男粗大的猛烈进出视频| 日韩视频在线欧美| 欧美激情高清一区二区三区 | 国产淫语在线视频| 亚洲精品乱久久久久久| 亚洲欧美激情在线| 丝袜人妻中文字幕| 女人爽到高潮嗷嗷叫在线视频| 久久精品人人爽人人爽视色| 国产视频首页在线观看| 狠狠精品人妻久久久久久综合| 国产 一区精品| av不卡在线播放| 免费观看人在逋| 亚洲精品久久午夜乱码| 99国产精品免费福利视频| 一级毛片 在线播放| 伊人久久国产一区二区| 欧美亚洲 丝袜 人妻 在线| 久久97久久精品| 日韩,欧美,国产一区二区三区| 最近最新中文字幕免费大全7| 国产乱人偷精品视频| av网站免费在线观看视频| 丁香六月欧美| 亚洲图色成人| 五月开心婷婷网| 国产成人啪精品午夜网站| 国产精品一区二区精品视频观看| 国产一区有黄有色的免费视频| 日本av免费视频播放| 黄色怎么调成土黄色| 午夜影院在线不卡| 老鸭窝网址在线观看| 日韩av免费高清视频| 纯流量卡能插随身wifi吗| 看十八女毛片水多多多| 久久热在线av| 亚洲精品国产av蜜桃| 大香蕉久久网| 欧美精品av麻豆av| 999精品在线视频| 国产成人精品无人区| 国产激情久久老熟女| 美女国产高潮福利片在线看| 亚洲av日韩精品久久久久久密 | 熟女av电影| 爱豆传媒免费全集在线观看| 国产淫语在线视频| 中文精品一卡2卡3卡4更新| 久热这里只有精品99| 亚洲伊人久久精品综合| 欧美97在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 十八禁高潮呻吟视频| 自拍欧美九色日韩亚洲蝌蚪91| 十八禁高潮呻吟视频| 只有这里有精品99| 一级黄片播放器| 亚洲精品视频女| 9色porny在线观看| 蜜桃国产av成人99| 一级毛片我不卡| 国产一级毛片在线| 亚洲精品美女久久av网站| 中文精品一卡2卡3卡4更新| 欧美成人午夜精品| 精品国产乱码久久久久久小说| 多毛熟女@视频| 亚洲欧美一区二区三区国产| 香蕉丝袜av| 少妇猛男粗大的猛烈进出视频| 成年美女黄网站色视频大全免费| 欧美日韩国产mv在线观看视频| 亚洲视频免费观看视频| 国产精品人妻久久久影院| 精品久久久精品久久久| 看免费av毛片| 亚洲av在线观看美女高潮| 久久久国产精品麻豆| 欧美日韩亚洲国产一区二区在线观看 | 国产成人啪精品午夜网站| 日韩一区二区三区影片| 国产在线视频一区二区| 中文欧美无线码| 久久99热这里只频精品6学生| 日韩制服丝袜自拍偷拍| 中文字幕人妻丝袜一区二区 | 亚洲欧洲精品一区二区精品久久久 | 永久免费av网站大全| 成人三级做爰电影| 纯流量卡能插随身wifi吗| 日本vs欧美在线观看视频| 亚洲国产成人一精品久久久| 两性夫妻黄色片| 亚洲精品一区蜜桃| 婷婷色综合大香蕉| 国产一级毛片在线| 七月丁香在线播放| 嫩草影视91久久| 久久综合国产亚洲精品| 五月开心婷婷网| av国产精品久久久久影院| 国产淫语在线视频| 免费观看性生交大片5| 99国产精品免费福利视频| 国产精品人妻久久久影院| 午夜福利,免费看| 国产高清国产精品国产三级| 国产男女超爽视频在线观看| 国产成人免费无遮挡视频| 高清视频免费观看一区二区| 亚洲国产最新在线播放| 久久精品人人爽人人爽视色| a 毛片基地| 老鸭窝网址在线观看| 久久精品亚洲熟妇少妇任你| 欧美日韩视频精品一区| 亚洲成人一二三区av| 18禁裸乳无遮挡动漫免费视频| 99久久人妻综合| 一边亲一边摸免费视频| 日韩电影二区| 亚洲国产欧美在线一区| 欧美黑人欧美精品刺激| 99久久99久久久精品蜜桃| 欧美激情高清一区二区三区 | 51午夜福利影视在线观看| 成年人免费黄色播放视频| av天堂久久9| 亚洲精品aⅴ在线观看| 天堂8中文在线网| 久久久久久久久免费视频了| 爱豆传媒免费全集在线观看| 18禁动态无遮挡网站| 美女大奶头黄色视频| 丝袜美足系列| 一区二区日韩欧美中文字幕| 国产麻豆69| 九色亚洲精品在线播放| 亚洲精品视频女| 欧美 亚洲 国产 日韩一| 成人午夜精彩视频在线观看| 久久久精品国产亚洲av高清涩受| 亚洲一区中文字幕在线| 捣出白浆h1v1| xxxhd国产人妻xxx| 亚洲欧美色中文字幕在线| 街头女战士在线观看网站| 97人妻天天添夜夜摸| 伦理电影大哥的女人| 一级片'在线观看视频| 亚洲伊人色综图| 91aial.com中文字幕在线观看| www日本在线高清视频| 男女免费视频国产| 精品一区二区三区av网在线观看 | 久久久久久人人人人人| 日本av免费视频播放| 美女国产高潮福利片在线看| 五月开心婷婷网| 国产一区亚洲一区在线观看| 91精品国产国语对白视频| 一区福利在线观看| 日韩av不卡免费在线播放| 亚洲五月色婷婷综合| 香蕉丝袜av| 黄片播放在线免费| 另类亚洲欧美激情| 视频区图区小说| 丝袜脚勾引网站| 黄片小视频在线播放| 色婷婷av一区二区三区视频| 一级黄片播放器| 中文字幕人妻丝袜制服| 曰老女人黄片| 大陆偷拍与自拍| 精品少妇久久久久久888优播| 热99久久久久精品小说推荐| 精品一区在线观看国产| 精品亚洲成a人片在线观看| 如日韩欧美国产精品一区二区三区| 国产精品嫩草影院av在线观看| 成年人免费黄色播放视频| 亚洲婷婷狠狠爱综合网| 亚洲成av片中文字幕在线观看| 国产精品一区二区在线不卡| 在线观看www视频免费| 亚洲激情五月婷婷啪啪| 婷婷色综合www| 不卡视频在线观看欧美| 多毛熟女@视频| 一区二区日韩欧美中文字幕| av天堂久久9| 国产av一区二区精品久久| 在线观看三级黄色| 伊人久久国产一区二区| 一本—道久久a久久精品蜜桃钙片| 久久久久久久精品精品| 久久人人爽人人片av| 香蕉丝袜av| 人人妻人人添人人爽欧美一区卜| 欧美av亚洲av综合av国产av | 亚洲激情五月婷婷啪啪| 国产精品一二三区在线看| 纵有疾风起免费观看全集完整版| 91精品伊人久久大香线蕉| 在线亚洲精品国产二区图片欧美| 亚洲精品aⅴ在线观看| 欧美成人午夜精品| 一级片免费观看大全|