• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of alkyl chain length on the thermophysical properties of pyridinium carboxylates

    2017-05-30 02:11:27TazienRashidChongFaiKaitThanabalanMurugesan

    Tazien Rashid ,Chong Fai Kait,Thanabalan Murugesan ,*

    1 Department of Chemical Engineering,Universiti Teknologi PETRONAS,Bandar Seri Iskandar,Tronoh 32610,Perak,Malaysia

    2 Fundamental and Applied Sciences Department,Universiti Teknologi PETRONAS,Bandar Seri Iskandar,Tronoh 32610,Perak,Malaysia

    1.Introduction

    Effective lignocellulosic biomass exploitation has significantly enhanced over the past few years.Lignin is the second most abundant biorenewable resource in nature.Lignin is rich in aromatic groups and is a good source of potential products such as;phenol,carbon fiber,aromatic stock chemicals,and polymers.However,due to its complex molecular structure formed by inter-and intra-molecular hydrogen bonding,it remains difficult to dissolve it in typical organic solvents.This con fines the broader application of lignin due to which itis primarily burnt as a low grade fuel[1,2].Due to its complex structure,it is difficult to develop a general technique to depolymerize lignin into desired aromatic feedstock and compounds.Furthermore,none of these challenges can be overcome unless efficient solvents can be synthesized/developed for effective dissolution/extraction of lignin[3].

    Recently,ionic liquids(ILs)have gained much consideration as an auxiliary solvent for lignocellulosic biomass due to their distinctive features and extensive properties[4].However,large scale industrial applications of ILs are still limited due to high production costs and complex synthesis routes with sophisticated purification steps required for their production[5,6].Recently,protic ionic liquids(PILs)have appeared as attractive replacements for ILs due to their numerous bene fits over the conventional ILs[3,7–9].The main advantage of PILs is that they can be synthesized in a one-step reaction and no further purification steps are involved[10].Furthermore,they possess low viscosity,high thermal stability,enhanced hydrogen-bonding capability,less corrosive,and have high capacity for the dissolution of lignin[3].

    Due to these advantages,PILs are considered for industrial applications in the recent few years,such as desulphurization of fuel[11],CO2capture[12],biomass processing[3,7]and in many acid–base-catalyzed organic reactions such as Knoevenagelcondensation[13].However,very little information is available on the elementary physical properties of this family of solvents,which are vital for the designing and scale up of any commercial process.In this work,pyridinium carboxylate PILs with three different alkyl chainsi.e.([C5H6N+][HCOO?]),([C5H6N+][CH3COO?]),([C5H6N+][CH3CH2COO?])were synthesized.Physical properties namely density,viscosity,refractive index and surface tension and thermal properties namely glass transition temperature and thermal decomposition temperature of these PILs have been estimated,for the better understanding of the PIL as solvents for further applications.

    2.Materials and Methods

    2.1.Chemicals

    Pyridine(purity≥99 wt%,Sigma Aldrich),formic acid,Acetic acid and Propionic acid(≥99 wt%purity,Sigma Aldrich),Karl Fischer titration calibration chemicals,Deuterated Dimethyl Sulphoxide(DMSO-d6),and lignin(Kraft lignin-Indulin AT),were used as received.Deionized water was used for the experiments.

    2.2.Synthesis of pyridinium carboxylates

    Pyridinium carboxylates are produced when a proton transfer takes place from a carboxylic acid to pyridine[3].For the present study PILs with three different alkyl chain lengthsi.e.[HCOO?],[CH3COO?]and[CH3CH2COO?]were synthesized.Initially pyridinium formate([C5H6N][HCOO])was prepared using a three necked round bottom flask containing pyridine.The flask was fitted with a dropping funnelfor the addition of formic acid.The flask was placed in an ice water bath as the reaction is exothermic and the overall temperature was maintained below 20°C.To ensure moisture free conditions in the flask dry nitrogen atmosphere was used.A magnetic stirrer was used to maintain the+?homogeneity of the reaction.Pyridine was stirred vigorously and then formic acid was added drop wise into the flask and left for overnight at room temperature.To remove the excess water present in the product,the samples were placed in the vacuum oven for 48 h at 70°C.Laboratory para film was used to seal the oven dried solvent to avoid any moisture contaminations in the solvent.Following the similar procedure([C5H6N+][CH3COO?])and([C5H6N+][CH3CH2COO?])were prepared.The characterization using1H NMR(DMSO-d6,500 MHz),Karl Fischer water content for the([C5H6N+][HCOO?]),([C5H6N+][CH3COO?]),([C5H6N+][CH3CH2COO?])revealed the subsequent results respectively;[δ=7.37(2H,d),7.77(1H,t),8.16(1H,s),8.57(2H,t),9.75(1H,s);water contents=251 μl·L?1];[δ=1.2(3H,s),6.64(2H,m),7.12(1H,t),7.05(1H,t),7.73(2H,d);water contents=262 μl·L?1];[δ =0.1445(3H,t),1.35(2H,q),6.47(2H,t),6.85(1H,t),7.57(2H,d);water contents=247 μl·L?1].

    2.3.Physicochemical properties measurement

    2.3.1.Density measurement

    The vibrating tube digitaldensity meter(ModelDMA 4500 M,Anton Paar)with a stated measuring accuracy of±5×10?4g·cm?3was used to determine the density of the prepared pyridinium carboxylates over a temperature range of 298.15 to 343.15 K.The temperature was controlled using a solid-state thermostat with an accuracy of±0.01 K.

    2.3.2.Viscosity measurement

    The viscosity was measured using a rolling-ball viscosity meter(Anton-Paar,model Lovis-2000M/ME)with a stated measuring accuracy of0.5%.The experimentaldata were measured within a temperatures range of298.15 Kto 343.15 Kwith an incrementof5 K.The temperature uncertainty of the equipment was±0.02 K.

    Since the formic acid and pyridine are the precursors for the preparation of PILs,the accuracy of the instruments was validated/compared by measuring the density and viscosity ofcommercially available formic acid and pyridine,with those of literature.

    2.3.3.Refractive index measurement

    A fully automatic refractometer(ATAGO,model RX-5000α)was used for the refractive index measurements with a stated measuring accuracy of±5× 10?5.The measurements were made at different temperatures from 293.15 K to 323.15 K with an increment of 5 K.An internal thermostat was used to control the temperature,and the uncertainty in the temperature measurements was±0.03 K.

    2.3.4.Surface tension

    Apendantdrop surface analyzer(OCA 20,Dataphysics)with a stated accuracy of±0.03 K was used for surface tension measurements.The OCA 20 surface analyzer is equipped with a six fold power zoom lens camera for integrated fine focusing.Protic ionic liquids were taken from the sealed bottles using syringe with needle.The syringe was then attached to the surface analyzer OCA 20.A drop was generated from the syringe and photographed by a CCD camera.The curvature of a liquid drop surface using the Young–Laplace equation was calculated using Dataphysics SCA 22 software.The measurements were made at different temperatures from 298.15 K to 343.15 K with an increment of 5 K.The expected uncertainty of the experiments is 0.2 mN·m?1.All measurements for density,viscosity,refractive index and surface tension were made at atmospheric pressure and the stated values are the average of the replicate experiments.

    2.3.5.Thermal decomposition temperature

    A thermal gravimetric analyzer(Model Pyris V-3.81,Perkin-Elmer)was used to determine the thermal decomposition temperature “Td”of the pyridinium carboxylates.Heating of the samples was carried out at a constant rate of 283 K min?1within a temperature range of 323 K to 473 K,under N2gas blanket flowing at a constant rate of 20–25 ml·min?1.

    2.3.6.Glass transition temperature

    The glass transition temperature “Tg”of the present synthesized pyridinium carboxylates was determined by using a differential scanning calorimeter(DSC1,Mettler Toledo).A liquid nitrogen cooling system was used to create a nitrogen rich atmosphere.Samples were placed into the aluminum pans and were hermetically sealed.The sample was first cooled in the first cycle from 298 K to 123 K and in the second cycle the samples were allowed to heat from 123 K to 373 K ata constantrate of283 K·min?1.During the third cycle,samples were cooled back from373 Kto 123 K,and lastly heated back to 373 K at a constantrate of283 K·min?1,by following the established procedure.The second programmed reheating cycle was used to evaluate the “Tg”of the samples.The uncertainty in the temperature measurements was±0.2 K.

    3.Results and Discussion

    The measured physical properties data(density and viscosity)of commercially available formic acid and pyridine at three different temperatures(298.15,303.15 and 308.15 K)are presented along with those of few literature(Table 1).Minor discrepancies in the present work and literature data could be attributed to the presence of traceamount of water contents,volatile nature of the samples,temperature control,difference of equipment and techniques adopted by the researchers.However,this minor discrepancy can also be observed among various literature data reported previously for the same standards(Table 1).

    Table 1Comparison of density(ρ)and viscosity(?)data of formic acid and pyridine used in the present work

    3.1.Density

    The values of the experimental densities of([C5H6N+][HCOO?]),([C5H6N+][CH3COO?]),([C5H6N+][CH3CH2COO?])over a temperature range of 298.15 to 343.15 K are listed in Table 2.As expected,the densities of all the present investigated PILs decreased linearly with increasing temperature which is consistent with the similar trends reported for 1-butyl-3-methylimidazolium carboxylate[27]and 1-alkyl-3-methylimidazolium hexa fluorophosphate ionic liquids[28].

    Table 2Densities(ρ)of pyridinium carboxylates at different temperatures

    The densities ofthe PILsdecreased with increasing alkylchain length in the anion containing carboxylic group(Table 2),which demonstrates that the anionic part has a significant role on the densities of PILs.With an increase in alkyl chain length,the packing efficiency of the molecules is lowered,resulting in an overallreduction in the density.This behavior is comparable to the similar behavior of ILs with different alkyl chain lengths in the anion[27,28].The following empirical relation was used to correlate the density values of the present synthesized pyridinium carboxylates:

    whereρis the density(g·cm?3),Tis the temperature(K)andA0andA1,are the correlation coefficients,and the estimated coefficients are presented in Table 3.

    Table 3Fitting parameters for Eq.(1)

    The standard deviations were calculated using the following equation:

    where,σ is the standard deviation,XexpandXcalare the experimental and calculated data andNDATAis the total number of experiments performed.The molar volume provides more information about the packing efficiency and the structure of a substance rather than density,hence the density values can be verified by another approximation method using molar volume[29].The molar volumeVMof the present PILs was calculated using the experimental density data,and molar mass of PILs,as below:

    The relation between the variation in molar(VM/cm3·mol-1)of the PILs with temperature and number of carbon atoms “Nc”in the carboxylate anion is shown in Fig.1.

    Fig.1.Linear relationship between the molar volume and temperature of the pyridinium carboxylates:(a)[C5H6N][HCOO?],(b)[C5H6N][CH3COO?],and(c)[C5H6N][CH3CH2COO?].

    It can be seen that,for a selected cation[C5H6N+],there is an increase in molar volume of the pyridinium carboxylates with an increase in alkyl chain length in anion.The molar volume was found to increase in the order as:[C5H6N+][HCOO?]<[C5H6N+][CH3COO?]<

    [C5H6N+][CH3CH2COO?](Fig.1).Based on the present data(Fig.1)the molar volume(VM)and the number of carbon atoms(Nc)could be related as:

    Eq.(4)shows that the molar volume increases by 15.80 cm3·mol?1per addition of methylene group(--CH2--)in the anion of the pyridinium carboxylates,and as a consequence,the volume occupied by the anion varies linearly with the number of carbons present in the anion.This result is in accordance with the reported values of 16 cm3·mol?1,16.9 cm3·mol?1and 16.1 cm3·mol?1per addition of--CH2--in 1-butyl-3-methylimidazolium carboxylate ILs[27],n-alcohols[30]andn-paraffins[31]respectively.

    An addition ofmethylene group(--CH2--)to the presentinvestigated pyridinium carboxylates contributes to an increase of molar volume and hence can be predicted easily.The thermodynamic considerations are essential to understand the thermal stability and nature of a substance(i.e.liquid,solid,molten salts and crystals)[32].Standard entropy is one of the thermodynamic properties which is a measure of a system's unavailability to perform work,i.e.higher the entropy more is the system's disorder.According to Glasser[32]and Yanget al.[33]the standard entropy of the PILs was calculated by using the following relation;

    whereSo/J·K-1·mol-1is the standard entropy andV/nm3is the molecular volume of the pyridinium carboxylates.The molecular volume “V”is de fined as the volume occupied by the sum of the ionic constituents(i.e.cation and anion)present in the solvent,which could be explained as:

    where,NAis Avogadro's number,(NA=6.02245×1023mol?1).Alinear relation between the standard entropy(So)and the number of carbon atoms(Nc)is;

    From Eq.(7)it can be seen that the standard entropy of PILs increased linearly with an increase in number of carbon atoms in the alkyl chain of the pyridinium carboxylate anions.The estimated slope 32.97 J·K?1·mol?1(Eq.(7))is satisfactorily comparable with the reported value of 34.63 J·K?1·mol?1for[Cnmim][BF4][32],and 32.2 J·K?1·mol?1for a comprehensive group of organic compounds[34].An addition of methylene group in the alkyl chain of the anions results in an increase of 32.97 J·K?1·mol?1in the standard entropy of the pyridinium carboxylates.Pyridinium carboxylates with higher alkyl chain length are proven to be poor solvents for lignin dissolution[3].

    The thermal expansivity or volume expansion coefficient is the reflection of the intermolecular forces and the free volume of solvents,i.e.,greater thermal expansivity corresponds to greater free volume[28].These intermolecular forces lead to a change in volume of a fluid with a change in temperature[35].The measured density values at various temperatures were used to calculate the thermal expansivity of the pyridinium carboxylates.

    where,αPis the thermal expansivity(K?1),ρ is the density(g·cm?3),Tis the temperature(K)andA0andA1are the fitting coefficients ofEq.(1)(Table 3).The thermal expansivity values of the pyridinium carboxylates can be calculated by using these coefficients.The thermalexpansivity values are found to increase with increasing alkyl chain length at a given temperature.This higher thermal expansivity with increasing alkyl chain length is related to high conformational flexibility due to increased molar volume which may result in an increase in the translational dynamics of the pyridinium carboxylates[36].

    3.2.Viscosity

    The viscosities of the pyridiniumcarboxylates were measured atdifferent temperatures from(298.15 to 343.15)K(Table 4).The viscosity considerably decreased with an increase in temperature for the present studied temperature range.The viscosity is referred as the measure of internal resistance of a fluid towards a shear stress.The decrease in viscosity at higher temperatures is due to the reduction in intensity of intermolecular forces or internal forces present between the molecules.Similar trends were reported for protic alkanolammonium ILs[37].

    The viscosities of the present pyridinium carboxylates are found to increase significantly with an increase in the alkyl chain length;this trend could be attributed to the reason that with an increase in alkyl chain length the intermolecular forces(H-bonding,π –π interaction,Coulombic forces)are increased,resulting in an increased charge delocalization and hence an increase in resistance to flow[37].Thus the anionic part has an important role on the viscosities of these PILs.The viscosity values increased in the following order([C5H6N+][HCOO?])<([C5H6N+][CH3COO?])<([C5H6N+][CH3CH2COO?]).A possible explanation can be that,the van der Waals interactions tend to be stronger at increased alkyl chain length,which results as an increase in viscosity[38].The experimental viscosities of the present synthesized pyridinium carboxylates are correlated by using the following logarithmic form of the Arrhenius equation[39]:

    Table 4Viscosities of pyridinium carboxylates at different temperatures

    where,? is the viscosity(mPa·s),Tis the temperature(K),Ris the universal gas constant(J·K?1·mol?1),η∞is the viscosity at in finite temperature(mPa·s),Eηis the activation energy for viscous flow(kJ·mol?1).For viscous flow the activation energy is considered as the maximum possible energy obstructions that must be overcome by the molecules to move freely inside the fluid.The greater the activation energy,the more difficult it is for the ions to move freely,which may be due to the reasons such as;size of the ions,complicated arrangements or the stronger interfaces which are present among the molecules in the fluids.The activation energy(Eη)and the in finite temperature viscosities η∞are the distinctive parameters and their values are obtained using the linear relation between ln?vs1/T(Fig.2)[40].The calculated activation energies(E?)and in finite temperature viscosities(?∞)for the pyridinium carboxylates are presented in Table 5.The activation energy(E?)increases with an increase in alkyl chain length which shows that the size and enlargement of the ions have an important role on the activation energy.From the standard deviation(SD)of the fit(≤0.007),it is clear that the viscosity of the present synthesized pyridinium carboxylates is satisfactorily correlated using activation energy.

    Fig.2.The relationship of ln η and reciprocal of temperature of pyridinium carboxylate PILs.

    Table 5Estimated activation energies(E?)and in finite temperature viscosities(?∞)(Eq.(9))

    On the other hand,at in finite temperature the intermolecular interactions and forces are no longer effective and the in finite temperature viscosity(?∞)is mostly ruled by the geometric symmetry of the ions[41].In general,the in finite temperature viscosity(?∞)of the pyridinium carboxylates decreases with increasing activation energy and similar trends were reported by Almeidaet al.[41,26]and Okoturo and Vander Noot[42]which shows that the structural contribution of each ion to the dynamic viscosity cannot be ignored.

    3.3.Refractive index

    The refractive index is known as the speed of light in vacuum divided by the speed of light in the working medium.Generally,it is a measure of how light propagates through that medium,therefore,the more is the refractive index of a given solvent,the higher is the light refracted through it.The refractive index provides useful information aboutthe electronic polarity ofa molecule and can be used as a measure of relative hydrogen bond donating and accepting ability,which are useful to determine solubilities,partition constants,and reaction rates[29,43].The refractive indices(nD)for the pyridinium carboxylates were determined at various temperatures from 293.15 K to 323.15 K(Table 6).The results showed that the refractive index of the studied pyridinium carboxylates decreased linearly with an increase in temperature.

    Table 6Refractive indices(nD)of PILs at different temperatures

    The temperature dependency of experimental refractive indices is similar to that for the density and can be correlated using the following equation.

    wherenDis the refractive index,Tis the temperature(K)andn0andn1are the coefficients,which were estimated by least-square analysis(Table 7).

    Table 7Fitting parameters for Eq.(10)

    The refractive indices increased linearly with an increase in alkyl chain length of anion at all the temperatures(Table 7),which might be due to the reason that at increased alkyl chain length,the electronic polarizability and dispersion forces between the molecules are increased,which causes the light to hit more molecules present in the solvent,and hence increase in refractive index,and similar findings were reported by Tariqet al.[28].

    3.4.Surface tension

    The measured surface tension values of pyridinium carboxylates are listed in Table 8.The surface tension decreases with an increase in alkyl chain length.This behavior could be attributed to the weakening of the Coulomb interactions,with increasing alkylchain,assuggested by Zhouet al.[44].

    Table 8Surface tension of pyridinium carboxylates at different temperatures

    The van der Waals forces increase with increasing size of the molecules[4],which leads to the distribution and delocalization of the ionic charge and hence to a decrease in the hydrogen bond strength[4].

    The surface tension is a measure of the most energetic interactions established between the anion and cation in a fluid such as;Coulombic interactions,hydrogen bonding and van der Waals forces which are further dependent on the alkyl chain length[4].The longer alkyl chain leads to the intensification of attractive Lennard-Jones contribution[45,46].The surface tension is less for compounds with longer alkyl chain,due to weak Coulombic forces[28,29].

    3.5.Thermal decomposition temperature

    Thermogravimetric analysis was performed for the investigated pyridinium carboxylates to estimate the thermal stability of the samples.The estimated “Tstart”(start decomposition temperature)and “Td”( final decomposition temperature)of all the studied samples are listed in Table 9,whereas their mass loss thermograms are shown in Fig.3.Among all samples,[C5H6N+][HCOO?]has the maximum decomposition temperature(Td=113°C),indicating its high thermal stability.The acetate anion is less thermally stable compared to the formate and propionate anion.The DTGA of[C5H6N+][CH3COO?]could not be generated as the “Tstart”and “Td”of acetate anion were found to be very close which is attributed to its thermal instability.The anions containing odd numberofcarbon are more thermally stable than the anions with even number of carbons[47].

    Table 9Thermal decomposition temperature and glass transition temperature of pyridinium carboxylates

    3.6.Glass transition temperature

    The glass transition temperature “Tg”is an indicative of the cohesive energy of the solvent.The cohesive energy can be decreased by repulsive Pauli forces by the overlapping of the close electron shell,while it can be increased through the van der Waals forces and hydrogen-bonding interactions.This can be achieved by the modification of the cationic and anionic components of the solvent.The viscosity and “Tg”values are significantly dependenton the type ofanion[47,48].Low“Tg”values are indicative ofthe solvent's required physicochemical properties such as reduced viscosity[47].The glass transition “Tg”of the pyridinium carboxylates was measured using DSC thermograms(Fig.4).These solvents showed only glass transition and no melting points were observed[10].

    Fig.3.Thermograms of pyridinium carboxylate PILs(a)[C5H6N+][HCOO?],(b)[C5H6N+][CH3COO?]and(c)[C5H6N+][CH3CH2COO?].

    Fig.4.DSC traces of pyridinium carboxylate PILs.

    The glass transition temperatures of the present pyridinium carboxylates are listed in Table 9.The “Tg”values of the investigated protic pyridinium carboxylates are similar to those of ammonium carboxylates reported in literature,where the stated “Tg”was in the range of?114 °C and ?44°C[10,49].Based on the previous literature no “Tg”has been reported for the present synthesized carboxylates.A shorter alkyl chain exhibits a lowerTgvalue,and was found to increase slowly with increasing alkyl chain length due to the intensification of the van der Waals forces[50].

    4.Conclusions

    The thermophysical properties of a new series of pyridinium based PILs are established in detail.All properties are found to be an inverse function of temperature irrespective of the alkyl chain length.The densities and surface tension of the pyridinium carboxylates decrease with increasing alkyl chain length while an opposite trend was observed for the viscosity and refractive index.The molar volume was calculated using experimental density data and was found to be linearly dependent per addition of--CH2--group in the anion of pyridinium carboxylates.Pyridinium carboxylates possess low glass transition temperature which is desirable for the essential physicochemical properties of a solvent such as reduced viscosity.These basic thermophysical properties of pyridinium carboxylates could be helpful for their potential large scale application towards lignin extraction from biomass.

    Acknowledgments

    The financial provision in the form of GA(Tazien Rashid)by Universiti Teknologi Petronas Malaysia is gratefully acknowledged.The instrumentation facilities provided by CORIL,Universiti Teknologi PETRONAS are thankfully acknowledged and appreciated.

    [1]Y.Zhang,H.Percival,Reviving the carbohydrate economyviamulti-product lignocellulose biore fineries,J.Ind.Microbiol.Biotechnol.35(5)(2008)367–375.

    [2]M.E.Zakrzewska,E.Bogel-?ukasik,Solubility of carbohydrates in ionic liquids,Energy Fuel24(2)(2010)737–745.

    [3]T.Rashid,C.F.Kait,I.Regupathi,T.Murugesan,Dissolution of kraft lignin using Protic Ionic Liquids and characterization,Ind.Crop.Prod.84(2016)284–293.

    [4]Freire,M.G.Carvalho,P.J.Fernandes,A.M.Marrucho,M.Isabel,Surface tensions of imidazolium based ionic liquids:Anion,cation,temperature and water effect,J.Colloid Interface Sci.314(2)(2007)621–630.

    [5]N.L.Mai,S.H.Ha,Y.M.Koo,efficient pretreatment of lignocellulose in ionic liquids/co-solvent for enzymatic hydrolysis enhancement into fermentable sugars,Process Biochem.49(7)(2014)1144–1151.

    [6]R.Rinaldi,Instantaneous dissolution of cellulose in organic electrolyte solutions,Chem.Commun.47(1)(2011)511–513.

    [7]E.C.Achinivu,R.M.Howard,G.Li,H.Gracz,W.A.Henderson,Lignin extraction from biomass with protic ionic liquids,Green Chem.16(3)(2014)1114–1119.

    [8]A.George,A.Brandt,K.Tran,S.M.Zahari,K.Marcuschamer,D.S.Ning,Design of low-cost ionic liquids for lignocellulosic biomass pretreatment,Green Chem.17(3)(2015)1728–1734.

    [9]L.Mu,Y.Shi,L.Chen,T.Ji,R.Yuan,[N-Methyl-2-pyrrolidone][C1–C4carboxylic acid]:A novel solvent system with exceptional lignin solubility,Chem.Commun.51(70)(2015)13554–13557.

    [10]T.L.Greaves,A.Weerawardena,C.Fong,I.Krodkiewska,Protic ionic liquids:Solvents with tunable phase behavior and physicochemical properties,J.Phys.Chem.B110(45)(2006)22479–22487.

    [11]Z.Li,J.Xu,D.Li,Extraction process of sulfur compounds from fuels with protic ionic liquids,RSC Adv.5(21)(2015)15892–15897.

    [12]J.Reid,N.Sullivan,L.Swift,G.Hembury,Assessing the mutagenicity of protic ionic liquids using the mini Ames test,Sustain.Chem.Process.3(1)(2015)1–5.

    [13]H.Nakamoto,M.Watanabe,Br?nsted acid–base ionic liquids for fuel cell electrolytes,Chem.Commun.2(24)(2007)2539–2541.

    [14]A.M.Cases,G.Marigliano,C.Ana,C.M.Bonatti,Density,viscosity,and refractive index offormamide,three carboxylic acids,and formamide+carboxylic acid binary mixtures,J.Chem.Eng.Data46(3)(2001)712–715.

    [15]K.M.S.Z.Sundaram,A physicochemical study of pyridine-formic acid system,Phys.Chem.Leipzig21(1965)85–90.

    [16]M.S.Bakshi,G.B.Kaur,Thermodynamic behavior of mixtures.4.Mixtures of methanol with pyridine andN,N-dimethylformamide at 25°C,J.Chem.Eng.Data42(2)(1997)298–300.

    [17]C.Yang,G.Wei,Y.Li,Densities and viscosities ofN,N-dimethylformamide+formic acid,and+acetic acid in the temperature range from(303.15 to 353.15)K,J.Chem.Eng.Data53(5)(2008)1211–1215.

    [18]J.N.Nayak,M.I.Aralaguppi,U.S.Toti,Density,viscosity,refractive index,and speed of sound in the binary mixtures oftri-n-butylamine+triethylamine,+tetrahydrofuran,+tetradecane,+tetrachloroethylene,+pyridine,or+trichloroethylene at(298.15,303.15,and 308.15)K,J.Chem.Eng.Data48(6)(2003)1483–1488.

    [19]J.Timmermans,Physico-chemical Constants of Pure Organic Compounds,Vol.11,Elsevier Publishing Company,Inc.,New York,1950 693-693.

    [20]G.S.Gokavi,J.R.Raju,T.M.Aminabhavi,R.H.Balundgi,Viscosities and densities ofbinary liquid mixtures of dimethyl sulfoxide with chlorobenzene,pyridine,and methyl ethyl ketone at 25,35,45 and 55.degree.C,J.Chem.Eng.Data31(1)(1986)15–18.

    [21]E.D.Dikio,S.M.Nelana,Density,dynamic viscosity and derived properties of binary mixtures of methanol,ethanol,n-propanol,andn-butanol with pyridine atT=(293.15,303.15,313.15 and 323.15)K,Int.J.Electrochem.Sci.7(11)(2012)11101–11122.

    [22]A.Apelblat,E.Manzurola,Excess molar volumes of formic acid+water acetic acid+water and propionic acid+water systems at 288.15,298.15 and 308.15 K,Fluid Phase Equilib.32(2)(1987)163–193.

    [23]L.Moravkova,Z.Wagner,J.Linek,Volumetric properties of pyridine,2-picoline,3-picoline,and 4-picoline at temperatures from(298.15 to 328.15)K and at pressures up to 40 MPa,J.Chem.Thermodyn.42(1)(2010)65–69.

    [24]C.Wohlfarth,Chapter 144 Viscosity of Formic Acid in Supplement to IV/18,Vol.25,Springer,Berlin Heidelberg,2009 299-299.

    [25]M.I.Aralaguppi,C.V.Jadar,T.M.Aminabhavi,Density,refractive index,viscosity,and speed of sound in binary mixtures of cyclohexanone with benzene,methylbenzene,1,4-dimethylbenzene,1,3,5-trimethylbenzene,and methoxybenzene in the temperature interval(298.15 to 308.15)K,J.Chem.Eng.Data44(3)(1999)446–450.

    [26]D.R.Lide,H.V.Kehiaian,CRC Handbook of Thermophysical and Thermochemical Data,CRC Press,Boca Raton,FL,1994 83–409.

    [27]A.Xu,J.Wang,Y.Zhang,Q.Chen,Effect of alkyl chain length in anions on thermodynamic and surface properties of 1-butyl-3-methylimidazolium carboxylate ionic liquids,Ind.Eng.Chem.Res.51(8)(2012)3458–3465.

    [28]M.Tariq,P.A.S.Forte,M.F.C.Gomes,J.N.C.Lopes,L.P.N.Rebelo,Densities and refractive indices of imidazolium-and phosphonium-based ionic liquids:effect of temperature,alkyl chain length,and anion,J.Chem.Thermodyn.41(6)(2009)790–798.

    [29]M.G.Montalban,C.L.Bolívar,F.G.Díaz Ba?os,G.J.Víllora,Effect of temperature,anion,and alkyl chain length on the density and refractive index of 1-alkyl-3-methylimidazolium-based ionic liquids,Chem.Eng.Data60(7)(2015)1986–1996.

    [30]D.W.Fang,W.Guan,J.Tong,Z.W.Wang,J.Z.Yang,Study on physicochemical properties of ionic liquids based on alanine[Cnmim][Ala](n=2,3,4,5,6),J.Phys.Chem.B112(25)(2008)7499–7505.

    [31]T.J.L.Gannon,W.George,R.C.F.Philip,First observation of molecular composition and orientation at the surface of a room-temperature ionic liquid,Langmuir15(24)(1999)8429–8434.

    [32]L.Glasser,Lattice and phase transition thermodynamics of ionic liquids,Thermochim.Acta421(1–2)(2004)87–93.

    [33]D.W.Fang,W.Guan,J.Tong,Z.W.Wang,J.Z.Yang,Study on physicochemicalproperties ofionic liquids based on alanine[Cnmim][Ala](n=2,3,4,5,6),J.Phys.Chem.B112(25)(2008)7499–7503.

    [34]G.J.Janz,Chapter 3.Thermodynamic properties of long chain hydrocarbons,Thermodynamic Properties of Organic Compounds 1967,pp.35–49.

    [35]G.Janz,Physical properties and structure of molten salts,J.Chem.Educ.39(2)(1962)59–62.

    [36]M.Rocha,F.Ribeiro,A.I.M.Ferreira,Thermophysical properties of[CN?1C1im][PF6]ionic liquids,J.Mol.Liq.188(2013)196–202.

    [37]M.G.Freire,A.R.Teles,M.A.A.Rocha,Thermophysical characterization of ionic liquids able to dissolve biomass,J.Chem.Eng.Data56(2)(2011)4813–4822.

    [38]Q.Zhang,S.Liu,Z.Li,J.Li,Z.Chen,Novel cyclic sulfonium-based ionic liquids:synthesis,characterization,and physicochemical properties,Chem.Eur.J.15(3)(2009)765–778.

    [39]R.Safdar,A.A.Omar,L.B.Ismail,Measurement and correlation of physical properties of aqueous solutions of tetrabutylammonium hydroxide,piperazine and their aqueous blends,Chin.J.Chem.Eng.23(11)(2015)1811–1818.

    [40]A.Xu,Y.Zhang,Z.Li,J.Wang,Viscosities and conductivities of 1-butyl-3-methylimidazolium carboxylates ionic liquids at different temperatures,J.Chem.Eng.Data57(11)(2012)3102–3108.

    [41]H.Almeida,H.Passos,Lopes-da-Silva,Thermophysical properties of five acetatebased ionic liquids,J.Chem.Eng.Data57(11)(2012)3005–3013.

    [42]O.O.Okoturo,T.J.Vander Noot,Temperature dependence of viscosity for room temperature ionic liquids,J.Electroanal.Chem.568(2004)167–181.

    [43]J.Huddleston,A.Visser,W.Reichert,H.Willauer,Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation,Green Chem.3(4)(2001)156–164.

    [44]Z.B.Zhou,H.Matsumoto,K.Tatsumi,Structure and properties of new ionic liquids based on alkyl-and alkenyltri fluoroborates,Chem.Phys.Chem.6(5)(2005)1324–1332.

    [45]S.V.Dzyuba,R.A.Bartsch,In fluence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexa fluorophosphates and bis(tri fluoromethylsulfonyl)imides on physical properties of the ionic liquids,Chem.Phys.Chem.3(2)(2002)161–166.

    [46]C.Kolbeck,J.Lehmann,K.R.J.Lovelock,T.Cremer,N.Paape,Density and surface tension of ionic liquids,J.Phys.Chem.B114(51)(2010)17025–17036.

    [47]A.Pinkert,K.N.Marsh,S.Pang,Ionic liquids and their interaction with cellulose,Chem.Rev.109(12)(2009)6712–6728.

    [48]S.Carda-Broch,A.Berthod,D.Armstrong,Solvent properties of the 1-butyl-3-methylimidazolium hexa fluorophosphate ionic liquid,Anal.Bioanal.Chem.375(2)(2003)191–199.

    [49]J.P.Belieres,C.A.Angell,Protic ionic liquids:Preparation,characterization,and proton free energy level representation,J.Phys.Chem.B111(18)(2007)4926–4937.

    [50]A.S.M.C.Rodrigues,L.M.N.B.F.Santos,Nanostructuration effect on the thermal behavior of ionic liquids,ChemPhysChem17(2)(2016)1512–1517.

    国语对白做爰xxxⅹ性视频网站| 欧美日韩综合久久久久久| 91在线精品国自产拍蜜月| av福利片在线观看| 国产成人精品福利久久| 人人妻人人看人人澡| 国产精品精品国产色婷婷| 亚洲在久久综合| 国语对白做爰xxxⅹ性视频网站| 寂寞人妻少妇视频99o| 青春草国产在线视频| 丰满乱子伦码专区| 老司机影院毛片| 最近手机中文字幕大全| 天堂俺去俺来也www色官网| av网站免费在线观看视频| 亚洲欧美一区二区三区国产| 22中文网久久字幕| 国产亚洲精品久久久com| 久久久久久九九精品二区国产| 免费看av在线观看网站| 久久久久久久久大av| 亚洲人成网站在线观看播放| 久久青草综合色| 黄色一级大片看看| 日本欧美国产在线视频| 国产精品成人在线| 九九爱精品视频在线观看| 久久人人爽人人爽人人片va| 久久久久久久久久成人| 美女cb高潮喷水在线观看| 免费人妻精品一区二区三区视频| 国产欧美日韩一区二区三区在线 | 国产精品欧美亚洲77777| 午夜免费男女啪啪视频观看| 欧美日韩国产mv在线观看视频 | 国产成人a∨麻豆精品| 国产乱人视频| 国产亚洲av片在线观看秒播厂| 欧美另类一区| 五月开心婷婷网| 国产淫片久久久久久久久| 少妇人妻 视频| 成人一区二区视频在线观看| 亚洲久久久国产精品| 久久精品国产亚洲网站| 一本—道久久a久久精品蜜桃钙片| 日韩人妻高清精品专区| 国产精品偷伦视频观看了| 亚洲精品乱码久久久久久按摩| 美女主播在线视频| 欧美bdsm另类| 99久久精品热视频| 青春草亚洲视频在线观看| 国产免费一区二区三区四区乱码| 久久人人爽人人爽人人片va| 国产精品三级大全| 十分钟在线观看高清视频www | 国产免费福利视频在线观看| 黄片无遮挡物在线观看| 亚州av有码| 91久久精品国产一区二区三区| 男女国产视频网站| 草草在线视频免费看| 在线观看三级黄色| 色婷婷av一区二区三区视频| 国产精品国产三级国产av玫瑰| xxx大片免费视频| 亚洲av男天堂| 最新中文字幕久久久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美一区二区三区黑人 | 一级毛片aaaaaa免费看小| 免费看不卡的av| 99热这里只有精品一区| 国产大屁股一区二区在线视频| 成年女人在线观看亚洲视频| 亚洲av不卡在线观看| 国产成人a区在线观看| 网址你懂的国产日韩在线| 日本色播在线视频| 免费观看无遮挡的男女| 男人爽女人下面视频在线观看| 国产中年淑女户外野战色| 午夜激情福利司机影院| a级毛色黄片| 精品亚洲成a人片在线观看 | 麻豆成人午夜福利视频| 国产精品不卡视频一区二区| 男女边摸边吃奶| 午夜福利在线观看免费完整高清在| 精华霜和精华液先用哪个| 日韩成人av中文字幕在线观看| 久久精品夜色国产| 亚洲久久久国产精品| 国产免费福利视频在线观看| 黑人高潮一二区| 日本一二三区视频观看| a级一级毛片免费在线观看| 你懂的网址亚洲精品在线观看| 两个人的视频大全免费| 一边亲一边摸免费视频| 三级国产精品片| 97在线人人人人妻| 午夜免费观看性视频| 亚洲精华国产精华液的使用体验| 男女啪啪激烈高潮av片| 欧美一区二区亚洲| 亚洲国产成人一精品久久久| 久久国产精品男人的天堂亚洲 | 国产精品熟女久久久久浪| 黄色视频在线播放观看不卡| 观看免费一级毛片| 在线看a的网站| 七月丁香在线播放| 亚洲,一卡二卡三卡| 亚洲欧美日韩另类电影网站 | 日日撸夜夜添| 亚洲精品国产av成人精品| 极品少妇高潮喷水抽搐| 黑丝袜美女国产一区| 中文天堂在线官网| 久久人人爽人人爽人人片va| 建设人人有责人人尽责人人享有的 | 中文天堂在线官网| 日本wwww免费看| 91久久精品国产一区二区三区| 99热全是精品| 国产精品99久久久久久久久| 亚洲综合色惰| 少妇 在线观看| 欧美变态另类bdsm刘玥| 视频区图区小说| 男女边吃奶边做爰视频| 国产亚洲一区二区精品| 国产成人一区二区在线| 看非洲黑人一级黄片| 久久韩国三级中文字幕| 夜夜爽夜夜爽视频| 欧美激情极品国产一区二区三区 | 成人综合一区亚洲| 汤姆久久久久久久影院中文字幕| 精品久久久久久久久av| 天堂俺去俺来也www色官网| 一级爰片在线观看| 大香蕉久久网| 日韩三级伦理在线观看| 99热全是精品| av福利片在线观看| 亚洲精品色激情综合| 成年人午夜在线观看视频| 在线亚洲精品国产二区图片欧美 | 18+在线观看网站| 免费观看a级毛片全部| 毛片一级片免费看久久久久| 99久久精品一区二区三区| 国产乱人视频| 久久国产亚洲av麻豆专区| 成年人午夜在线观看视频| 国产淫语在线视频| 成人毛片a级毛片在线播放| 一级片'在线观看视频| 欧美xxxx黑人xx丫x性爽| tube8黄色片| 人妻制服诱惑在线中文字幕| 国产精品秋霞免费鲁丝片| 一级毛片电影观看| 超碰av人人做人人爽久久| av免费在线看不卡| 看非洲黑人一级黄片| 美女内射精品一级片tv| av不卡在线播放| 黄色视频在线播放观看不卡| 亚洲四区av| av线在线观看网站| 亚洲精品456在线播放app| 亚洲av中文字字幕乱码综合| 亚洲国产日韩一区二区| 久久鲁丝午夜福利片| 男女边摸边吃奶| 搡女人真爽免费视频火全软件| 伦理电影免费视频| 偷拍熟女少妇极品色| 毛片女人毛片| 亚洲国产精品999| 成年美女黄网站色视频大全免费 | av在线蜜桃| 欧美少妇被猛烈插入视频| 97热精品久久久久久| av专区在线播放| 国产精品偷伦视频观看了| 搡女人真爽免费视频火全软件| 免费观看的影片在线观看| 亚洲人成网站高清观看| 欧美精品一区二区免费开放| 免费观看性生交大片5| 热re99久久精品国产66热6| 日韩一区二区视频免费看| 在线观看免费日韩欧美大片 | 久久久久人妻精品一区果冻| 午夜福利视频精品| 亚州av有码| 汤姆久久久久久久影院中文字幕| 日本黄大片高清| 国产 一区精品| 精品久久久久久久久av| 中文字幕精品免费在线观看视频 | av在线app专区| 精品一品国产午夜福利视频| .国产精品久久| 美女主播在线视频| 日韩强制内射视频| 蜜桃久久精品国产亚洲av| 伦理电影免费视频| 国产精品熟女久久久久浪| 一级爰片在线观看| 街头女战士在线观看网站| 一级毛片电影观看| 欧美3d第一页| 久久国产精品大桥未久av | 亚洲人与动物交配视频| 欧美激情国产日韩精品一区| 亚洲内射少妇av| 欧美日韩亚洲高清精品| 欧美人与善性xxx| 精品久久久久久电影网| 在线观看免费高清a一片| 亚洲av不卡在线观看| 天堂中文最新版在线下载| 成人国产麻豆网| 一本一本综合久久| 大香蕉久久网| 国产亚洲午夜精品一区二区久久| 高清欧美精品videossex| 久久精品国产鲁丝片午夜精品| 日本黄大片高清| 一级毛片久久久久久久久女| 国产日韩欧美亚洲二区| 99视频精品全部免费 在线| 日韩av免费高清视频| 久久久久国产精品人妻一区二区| 人人妻人人看人人澡| 亚洲欧美成人综合另类久久久| 在线观看免费高清a一片| 国产精品蜜桃在线观看| 亚洲,欧美,日韩| 最黄视频免费看| 日本爱情动作片www.在线观看| 中文字幕人妻熟人妻熟丝袜美| 国内少妇人妻偷人精品xxx网站| 一区二区三区四区激情视频| 亚洲第一av免费看| 亚洲精品久久久久久婷婷小说| 97在线视频观看| 国产久久久一区二区三区| 亚洲av中文av极速乱| 大片免费播放器 马上看| 久久久久久久国产电影| 国产永久视频网站| 美女内射精品一级片tv| 不卡视频在线观看欧美| 丰满乱子伦码专区| 在线观看免费视频网站a站| 2022亚洲国产成人精品| 18禁在线无遮挡免费观看视频| 国产伦在线观看视频一区| 又粗又硬又长又爽又黄的视频| 免费在线观看成人毛片| 成人毛片60女人毛片免费| 欧美zozozo另类| 久久毛片免费看一区二区三区| 91aial.com中文字幕在线观看| 免费观看的影片在线观看| 五月开心婷婷网| 丰满人妻一区二区三区视频av| 麻豆乱淫一区二区| 边亲边吃奶的免费视频| 一区二区三区免费毛片| 亚洲在久久综合| 一级a做视频免费观看| 免费黄色在线免费观看| 熟女电影av网| 久久 成人 亚洲| 丝瓜视频免费看黄片| 久久精品人妻少妇| av女优亚洲男人天堂| 日韩,欧美,国产一区二区三区| 精品久久久久久电影网| 美女cb高潮喷水在线观看| 国产精品99久久久久久久久| 搡老乐熟女国产| 亚洲国产成人一精品久久久| 男人舔奶头视频| 插阴视频在线观看视频| 国产高清不卡午夜福利| 久久久久久久精品精品| 国产精品麻豆人妻色哟哟久久| 99视频精品全部免费 在线| 国产亚洲午夜精品一区二区久久| 丰满乱子伦码专区| 日日啪夜夜撸| a级毛片免费高清观看在线播放| 一本久久精品| 免费少妇av软件| 国产在线男女| 亚洲av国产av综合av卡| 99久久中文字幕三级久久日本| 国产精品嫩草影院av在线观看| 精品一品国产午夜福利视频| 五月开心婷婷网| av免费观看日本| 日本av手机在线免费观看| 亚洲国产成人一精品久久久| 日本欧美视频一区| 高清午夜精品一区二区三区| 国产精品成人在线| 自拍欧美九色日韩亚洲蝌蚪91 | 国产91av在线免费观看| 欧美日韩精品成人综合77777| 亚洲人与动物交配视频| 亚洲精品aⅴ在线观看| 男女国产视频网站| 国产精品一二三区在线看| 最近中文字幕2019免费版| 亚洲国产精品专区欧美| 热re99久久精品国产66热6| 久久人妻熟女aⅴ| 国产精品免费大片| 久久精品国产a三级三级三级| 天天躁夜夜躁狠狠久久av| 亚洲va在线va天堂va国产| 大香蕉久久网| 久久 成人 亚洲| 亚洲三级黄色毛片| 国产精品一及| 日日啪夜夜爽| 两个人的视频大全免费| a 毛片基地| 少妇的逼水好多| 日韩av免费高清视频| 国产成人aa在线观看| 精品一品国产午夜福利视频| 高清欧美精品videossex| 日本一二三区视频观看| av黄色大香蕉| 人妻夜夜爽99麻豆av| 国产精品一区二区在线不卡| 亚洲国产最新在线播放| 欧美成人精品欧美一级黄| 黑丝袜美女国产一区| 日韩伦理黄色片| 成人影院久久| 久久久久国产精品人妻一区二区| 中国美白少妇内射xxxbb| 又大又黄又爽视频免费| 一区二区三区乱码不卡18| 免费看光身美女| 九色成人免费人妻av| 91aial.com中文字幕在线观看| 国产人妻一区二区三区在| 免费观看在线日韩| 日韩免费高清中文字幕av| 亚洲丝袜综合中文字幕| 国产国拍精品亚洲av在线观看| av黄色大香蕉| 99热网站在线观看| 尤物成人国产欧美一区二区三区| 亚洲伊人久久精品综合| 建设人人有责人人尽责人人享有的 | 婷婷色麻豆天堂久久| 日本av手机在线免费观看| 亚洲国产精品999| 日本vs欧美在线观看视频 | 性高湖久久久久久久久免费观看| 一边亲一边摸免费视频| 午夜免费观看性视频| 3wmmmm亚洲av在线观看| 熟妇人妻不卡中文字幕| 亚洲激情五月婷婷啪啪| 少妇 在线观看| 性高湖久久久久久久久免费观看| 激情 狠狠 欧美| 久久精品熟女亚洲av麻豆精品| 久久99热这里只有精品18| 嘟嘟电影网在线观看| 国产极品天堂在线| 久久久久性生活片| 亚洲精品久久久久久婷婷小说| 欧美xxxx黑人xx丫x性爽| 国产成人freesex在线| 久久人人爽av亚洲精品天堂 | 好男人视频免费观看在线| 欧美激情国产日韩精品一区| 久久6这里有精品| 人妻一区二区av| 亚洲综合色惰| 又爽又黄a免费视频| 久久久成人免费电影| 熟妇人妻不卡中文字幕| 人妻夜夜爽99麻豆av| 99久国产av精品国产电影| 全区人妻精品视频| 国内精品宾馆在线| 欧美xxⅹ黑人| 国产精品女同一区二区软件| 久久av网站| 99久久中文字幕三级久久日本| 在线观看人妻少妇| 一区二区av电影网| 极品教师在线视频| 免费观看a级毛片全部| 亚洲精品中文字幕在线视频 | 免费播放大片免费观看视频在线观看| 最近2019中文字幕mv第一页| 中文字幕av成人在线电影| 中文乱码字字幕精品一区二区三区| 三级经典国产精品| av国产久精品久网站免费入址| 免费看不卡的av| 亚洲av成人精品一二三区| 女的被弄到高潮叫床怎么办| 免费观看a级毛片全部| 久久久久久久大尺度免费视频| 中文字幕av成人在线电影| 国产精品99久久99久久久不卡 | 日本黄色日本黄色录像| 国产国拍精品亚洲av在线观看| 日韩一区二区视频免费看| 久久久国产一区二区| 欧美成人精品欧美一级黄| 精品人妻视频免费看| 久久精品国产亚洲网站| 国产精品无大码| 国产欧美日韩一区二区三区在线 | 大话2 男鬼变身卡| 久久国产亚洲av麻豆专区| 欧美激情国产日韩精品一区| 亚洲欧美日韩卡通动漫| 女人久久www免费人成看片| 亚洲国产欧美在线一区| 国产精品国产av在线观看| 各种免费的搞黄视频| 成人二区视频| 日韩精品有码人妻一区| 新久久久久国产一级毛片| 日本色播在线视频| 高清在线视频一区二区三区| 日韩精品有码人妻一区| 亚洲国产毛片av蜜桃av| 大片电影免费在线观看免费| 欧美极品一区二区三区四区| 亚洲av二区三区四区| 国产精品久久久久久久电影| 精品久久久久久久末码| 全区人妻精品视频| 成年人午夜在线观看视频| 看免费成人av毛片| 日本爱情动作片www.在线观看| 人妻制服诱惑在线中文字幕| 国产免费一区二区三区四区乱码| 亚洲欧美成人精品一区二区| 超碰av人人做人人爽久久| 国产探花极品一区二区| 午夜福利视频精品| 亚洲国产日韩一区二区| 卡戴珊不雅视频在线播放| 99视频精品全部免费 在线| 五月天丁香电影| 一个人看的www免费观看视频| 18禁裸乳无遮挡免费网站照片| 欧美三级亚洲精品| 五月天丁香电影| 你懂的网址亚洲精品在线观看| 日韩免费高清中文字幕av| 女人久久www免费人成看片| 日韩av免费高清视频| 久久久久久人妻| 精品国产乱码久久久久久小说| 韩国av在线不卡| 国产黄频视频在线观看| 国产亚洲一区二区精品| 久久热精品热| 免费在线观看成人毛片| 美女主播在线视频| 超碰97精品在线观看| 欧美亚洲 丝袜 人妻 在线| 色视频www国产| 3wmmmm亚洲av在线观看| videos熟女内射| 3wmmmm亚洲av在线观看| 又黄又爽又刺激的免费视频.| 亚洲内射少妇av| 国产精品不卡视频一区二区| 欧美zozozo另类| 亚洲电影在线观看av| 下体分泌物呈黄色| 欧美xxⅹ黑人| 人妻少妇偷人精品九色| 欧美日韩视频精品一区| 色视频www国产| 日本色播在线视频| 一级黄片播放器| 永久网站在线| 国内少妇人妻偷人精品xxx网站| 青春草亚洲视频在线观看| 日本欧美视频一区| 身体一侧抽搐| 91久久精品国产一区二区成人| 伦精品一区二区三区| 亚洲av电影在线观看一区二区三区| 妹子高潮喷水视频| 国产有黄有色有爽视频| 成人国产av品久久久| a级毛片免费高清观看在线播放| 成人美女网站在线观看视频| 国产亚洲欧美精品永久| 免费看光身美女| 亚洲,一卡二卡三卡| 国产伦理片在线播放av一区| 亚洲av福利一区| 久久久a久久爽久久v久久| 中文精品一卡2卡3卡4更新| 人人妻人人看人人澡| 国产高清有码在线观看视频| 欧美最新免费一区二区三区| 国产精品久久久久久精品电影小说 | 美女福利国产在线 | 亚洲国产精品一区三区| 中文资源天堂在线| 能在线免费看毛片的网站| 成人毛片a级毛片在线播放| 亚洲av综合色区一区| 少妇丰满av| 中文字幕久久专区| 欧美少妇被猛烈插入视频| 久久国产精品男人的天堂亚洲 | 不卡视频在线观看欧美| videossex国产| 欧美精品人与动牲交sv欧美| 国产精品99久久99久久久不卡 | 欧美精品人与动牲交sv欧美| 五月天丁香电影| 国产女主播在线喷水免费视频网站| 国产成人aa在线观看| 91aial.com中文字幕在线观看| 乱码一卡2卡4卡精品| 成人特级av手机在线观看| 黄色一级大片看看| 亚洲av免费高清在线观看| 亚洲av中文av极速乱| 99久久人妻综合| a级毛片免费高清观看在线播放| 岛国毛片在线播放| 国产人妻一区二区三区在| 久久精品国产自在天天线| av在线老鸭窝| 国产视频首页在线观看| 亚洲经典国产精华液单| 久久久久性生活片| 亚洲欧洲国产日韩| 亚洲三级黄色毛片| 日日摸夜夜添夜夜爱| 三级国产精品欧美在线观看| 久久99热6这里只有精品| 日本wwww免费看| 国产久久久一区二区三区| 精品久久国产蜜桃| 亚洲欧美日韩东京热| 99久国产av精品国产电影| 黄片无遮挡物在线观看| 在线观看人妻少妇| 啦啦啦在线观看免费高清www| 亚洲国产毛片av蜜桃av| 成人特级av手机在线观看| 亚洲国产日韩一区二区| 国模一区二区三区四区视频| 只有这里有精品99| 黄色欧美视频在线观看| 久久人人爽av亚洲精品天堂 | 99热全是精品| 亚洲av成人精品一二三区| 乱码一卡2卡4卡精品| 免费大片18禁| 你懂的网址亚洲精品在线观看| 一本一本综合久久| 少妇人妻一区二区三区视频| 国产日韩欧美在线精品| 黄色怎么调成土黄色| 亚洲色图av天堂| 免费黄色在线免费观看| 亚洲av成人精品一二三区| 久久99热6这里只有精品| 国产欧美另类精品又又久久亚洲欧美| 夜夜爽夜夜爽视频| 国产成人精品婷婷| 国产欧美亚洲国产| 国语对白做爰xxxⅹ性视频网站| 亚洲第一区二区三区不卡| 国产中年淑女户外野战色| 日本vs欧美在线观看视频 | 免费人妻精品一区二区三区视频| 亚洲成人一二三区av| 久久久久久伊人网av| 人人妻人人看人人澡| 婷婷色综合www| 久久精品人妻少妇| 内地一区二区视频在线| 色哟哟·www| 国产白丝娇喘喷水9色精品| 欧美精品亚洲一区二区| 国产永久视频网站| 黄色视频在线播放观看不卡| 精品人妻视频免费看| 日韩视频在线欧美| 亚洲aⅴ乱码一区二区在线播放|