• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature

    2017-05-30 02:11:21MohammadMesbahEbrahimSoroushMashallahRezakazemi

    Mohammad Mesbah *,Ebrahim Soroush ,Mashallah Rezakazemi

    1 Young Researchers and Elites Club,Science and Research Branch,Islamic Azad University,Tehran,Iran

    2 Young Researchers and Elites Club,Ahvaz Branch,Islamic Azad University,Ahvaz,Iran

    3 Department of Chemical Engineering,Shahrood University of Technology,Shahrood,Iran

    1.Introduction

    As water is always present during the production of reservoir fluids,the formation of hydrate is very likely[1,2].The occurrence of hydrates in wellheads,multiphase transfer pipelines,and surface facilities is a common problem.Plugging of pipelines because of hydrate formation can sometimes result in production stoppages even for months[1].

    Hydrates are crystalline compounds that in its structure a small gas molecule is trapped in the cage of water molecules joined by hydrogen bonding[3–6].Under low-temperatures and high pressures,hydrate formation is very probable.There are three forms of hydrate structures,sI,sII,andSH[1].

    Finding hydrate formation temperature(HFT)for any precise gas composition through experimental methods seems impractical.In this manner,itis crucialto find a methodicalsystemfor exactprognostication of hydrate formation.Many hydrate formation prediction correlations could be found in literature,including:Hammerschmidt[7],Katz gravity and K-value methods[8,9],Baillie and Wichert[10],Mann[11],Makogon[12],Berg[13],Kobayashi[14],Motiee[15],?stergaard[4],Towler and Mokhatab[16],Bahadori and Vuthaluru[17]Safamirzaei[18],and Salufu[19].All the mentioned correlations suffer from,not distinguishing between different types of hydrates.The existence of even a very slight amount ofsIIstructure hydrate former results in predominance ofsIIstructure in the hydrate phase.This is while structural difference,have a very significant effect on HFT.It may be the key reason,in the failure of these correlations in predicting HFT for natural gas mixtures[4].

    Although,it is not appropriate for industrial applications,groundwork of thermodynamic based models is van der Waals and Platteeuw's work[3,4,20–22].Later Parrish and Prausnitz suggested a thermodynamic model that suits engineering accuracy[20].A thermodynamic model was presented by Ng and Robinson that could predict HFT when liquid hydrocarbon was present.In addition,Holderet al.,John and Holder,Johnet al.,and Chen and Guo[22–25]suggested different adjustments of van der Waals and Platteeuw.These thermodynamic models assume water activity coefficient of unity.

    Sour gas generally denotes naturalgas,which contains H2S.Ifa large amount of carbon dioxide is also contained,it should be referred to as acid gas.The high solubility of CO2and H2S causes reaction with water molecules and thus the activity coefficient could not be unity[3].Sun and Chen coupled their method with Chen and Guo to resolve this problem[25].Nevertheless,these thermodynamic models require numerous parameter adjustments and are tedious.

    Recently,due to increasing development in artificial intelligence,predicting HFT has found fascinating alternatives.Particularly,artificial neural networks(ANN)have been in spotlight in predicting hydrate formation[2,26–32].However,because of random initialization and variation of the stopping criteria during the optimization of the model parameters,using ANNs for external prognostications is not a good choice[33].

    For having an efficient process and developing a strong model,accurate and reliable data are required.So the quality of experimental data should examine through a general method which be appropriate for different experimental techniques.

    In this study,we are intended to propose a novel approach based on the least squares support vector machine(LSSVM)method for prediction of hydrate formation temperature(HFT)of a gas mixture(sweet or sour).This general model will predict the HFT based on the chemical properties and types of hydrate structure that each species,which may be present in natural gas will form.This approach is followed in the hope that the proposed model has the ability of precise prediction of both sour and sweet gases.The statistically based Leverage approach is used for avoiding doubtful data.The validity and sensitivity of the model will be checked through statistical parameters.At the end,the model will be compared with existing correlations and thermodynamic models for HFT.

    2.Modeling

    2.1.LSSVM model

    Support vector machine(SVM)is a non-probabilistic binary linear classifier,which has been developed by the machine learning community[34–36].This robust mathematical tool can be used for solving verity of complex problems from nonlinear function approximation to pattern classification.By projecting the input spectra to a higher/in finite dimension in a nonlinear manner,the algorithm tries to find an optimum hyper-plane with minimum distance from actual data[37].This algorithm assures a quick solution and converging to universal optimum.The topology ofthe network willbe identified during the training procedure automatically,there is less probable chance for over fitting and no need for multiple adjustable parameters[34,35].Nevertheless,the use of SVM algorithm for solving regression problems requires convex optimization with an inequality constraint to find the support vectors.In other words,using SVM method for solving regression problems requires a high computational load to solve the inequality constraint.Consequently,the use of SVM algorithm with large-scale data is not recommended[38].

    A modified version of support vector machine,known as least squares support vector machine(LSSVM),is introduced by Suykens and Vandewalle[35].This method has all the bene fits of the conventional SVM but by solving a group of linear equations instead of a quadratic programming problem,or in other words,changing the inequality constraint to equality constraint,the algorithm can handle large data sets with acceptable accuracy[35,38,39].

    The regression error,which is the difference between experimental and predicted value,is used as an additional constraint in LSSVM algorithm.In conventional SVM the value of error optimized during calculation steps,but the in LSSVM the error is mathematically de fined[35,39,40].

    2.2.Equations

    Assuming a dataset with the form of Eq.(1),which shall be approximated by a nonlinear function of Eq.(2):

    Here,w∈Rnhis the weight vector in the initial weight space,g(?):Rn→Rnhis the nonlinear mapping function that projects the inputs to a higher dimensional feature space where linear regression is conducted;bindicates the bias term.The dimensionnhof this space is covertly de fined;in other words,it can be in finite dimensional.The optimization problem in LSSVM algorithm is de fined as follows[35]:

    Here T denotes the transpose of the weight matrix,μ≥0 signifies regularization constant,and the symbolekindicates error variables.Joining the linear constraint Eq.(4)into the optimization problem in Eq.(3)gives:

    Where Lagrangian multipliers βk∈R.The following conditions are required for optimization due to Lagrangian multipliers:

    Assuming a liner regression relation between dependent and independent variables of the LSSVM,it can be written:

    Which stands only for linear regression problems.The Kernel function should be inserted in Eq.(7)to extend its applicability for nonlinear regression problems:

    The Kernel function ofK(xi,x)could be presented as inner product of vectors g(x)and g(xi):

    Many Kernel functions could be used in LSSVM algorithm;but RBF function(Eq.(10))and polynomial function(Eq.(11))are generally used in LSSVM models.

    Here the symbol σ2represents squared bandwidth that optimize during the optimization step ofthe learning process anddshows the degree of polynomial.

    2.3.Computation procedure

    The intention of this paper is to propose an intelligent model,with satisfactory performance in predicting HFT of a wide range of natural gas mixtures.A set of 279 experimental data points,from both sweet and sour gases was collected from open literature[9,41–48].Randomly a set of 223 data was chosen for training and a set of 56 for testing.For having a solid model which could support a wide range of natural gas mixtures,input variables are de fined upon the type of hydrate structure they form.The summation of methane and ethane mole percent forms the first input variables.These two light hydrocarbons formsIhydrate structure[3].The second variable is the total mole percent of threesIIformers;propane,butane and nitrogen[3].The third variable isC5+mole percentwhich are non-hydrate formers[4].Mostnaturalgascompounds are hydrophobic,but CO2and H2S are water soluble acid gases,this difference in chemical nature is stipulated by Jeffrey and McMullan[49].So although CO2and H2S both aresIformers[3]butdue to their different chemical nature from other hydrate formers,their composition was each taken as a separate variable.The reason for taking each of their compositions as a separate variable is because of H2S behavior,forming hydrates under rather low pressures and rather high temperatures[25,47].This means thateven a very little amountofH2S presentin a gas mixture,its effect on the hydrate formation behavior of system is significant.The sixth input parameter represents a ratio of acid gases presented in the gas mixture over other components.This variable simply helps the model to have more accurate predictions for sour gases.Gas specific gravity and pressure are the last two variables and HFT is the output of the model.Range and statistical parameters of these variables could be found in Table 1.

    Table 1Ranges and corresponding statistical parameters of the input/output data used to construct LSSVM model

    Tuning parameters are found by using a combination of Coupled Simulated Annealing(CSA)and a standard simplex method.First,CSA finds good starting values and these are passed to the simplex method in order to fine tune the result[50].LSSMV optimum values of parameters σ2and γ have been evaluated 273.6766 and 110,212.7226,respectively.A typical schematic diagram for the CSA-LSSVM algorithm is shown in Fig.1.

    2.4.Leverage approach

    A necessity for developing a mathematical model is outlier diagnostics[51,52].Through this process individual data(or groups of data)which may extravagate from the bulk of population in data set will be recognized[51,52].The main causes of outliers are experimental errors.These doubtful data may harm the mathematical model through introduction of some uncertainties and lower the prediction accuracy.Leverage approach is one of the most effectual and authoritative statistical based algorithms for outlier diagnostics[52,53].This model depends on a matrix,known as Hat matrix.Its elements represent the deviation of predicted values,found through a correlation(or a model)from experimental data[51,52].Leverage or Hat indices are de fined as follows[51,52]:

    Fig.1.CSA-LSSVM algorithm schematic.

    Here X is a two dimensional matrix built fromnrows(number of data)andkcolumns(parameters of the model).In this de finition T denotes transpose matrix.H matrix diagonal elements are the Hat values in the feasible region of the problem.

    The correlation of hat indices and standardized cross-validation residuals(R)is shown by Williams plot which is used for graphical identification of dubious data[51,52].With the help of Eq.(12)for evaluatingHvalues the Williams plot could be sketched.Warning Leverage value(H)is generally found through the de finition 3p/nwherenis the number of training points andpis the number of correlation input parameters[51,52].Commonly the acceptable “cut off”value of Leverage is 3[51,52]so the points within the standard deviation range of?3 are accepted.Existence of the majority of the data points within the range of 0<H<H*and?3<R<3,con firms the model's statistical validity.Good high Leverage points are located in the range ofH≤H*and?3<R<3 which are represented as the ones that the model could not predict at all.The points located in the range ofR<?3 orR>3 are outliers or bad high Leverage and can be considered as the doubtful data.

    3.Result and Discussion

    3.1.Accuracy of the model

    Statistical parameters of the intelligent model,including squared correlation coefficients(R2),average absolute relative deviations(AARDs)and root mean square errors(RMSE)are shown in Table 2.A comparison between the calculated HFT data and the experimentalvalues of train data set and test data are illustrated in Figs.2 and 3 and the figures are evidence of excellent agreement between predictions of LSSMV and experimental data.

    Table 2Statistical parameters of the develop LSSVM model to determine hydrate formation temperature(HFT)

    Fig.2.Comparison between the results of the developed model for train data set and the data base values(Train pressure range(MPa)0.5820–62.8500).(a)Scatter plot,(b)relative deviation plot,and(c)results of the developed model for train data set and the data base values versus the number of data.

    For evaluating the model's performance,the same data sets were also used to evaluate the accuracy of the most popular empirical correlations that were used for hydrate formation temperature prediction.These correlations are Motiee[15],Towler and Mokhatab[16],Berge[13],Baillie-Wichert[10],Mann[11]Safamirzaei[18],and Salufu[19].The correlations of Mannet al.and Baillie-Wichert which are used in this study are the version implemented in the software package Hydrate Plus from FlowPhase Inc.Fig.4 is demonstrating the degree ofagreement between experimentaldata and predicted values by correlations and the LSSVM model through correlation coefficient(R2).The relative deviation and comparison between the experimental data and results of model and correlations are depicted in Figs.5 and 6,respectively.In addition,statistical parameters of the LSSVM model and correlations could be found in Table 3.These results demonstrate the fact that LSSVM model surpasses all correlations in prediction accuracy.

    Fig.3.Comparison between the results of the developed model for test data set and the data base values(Test pressure range(MPa)0.7580–27.3200).(a)Scatter plot,(b)relative deviation plot,and(c)results of the developed model for train data set and the data base values versus the number of data.

    Fig.4.Comparison between the results of the developed model and other correlations.(a)LSSVM model,(b)Motiee[15]correlation,(c)Towler and Mokhatab[16]correlation(d)Berge[13]correlation(e)Hydrate Plus Software(Baillie-Wichert Method[10])(f)Hydrate Plus Software(Mann Method[11])(g)Safamirzaei[18]correlation(h)Salufu et al.[19]correlation.

    Fig.5.Comparison between relative error deviations for(a)LSSVMmodel,(b)Motiee[15]correlation,(c)Towlerand Mokhatab[16]correlation(d)Berge[13]correlation(e)Hydrate Plus Software(Baillie-Wichert Method[10])(f)Hydrate Plus Software(Mann Method[11])(g)Safamirzaei[18]correlation(h)Salufu et al.[19]correlation.

    The applicability of the LSSVM approach for sour gas mixture is examined through a data set of 50[47],covering a wide range of H2S concentrations(i.e.6.78 mol%to 26.62 mol%).Due to H2S characteristics,forming hydrates under rather low pressures and rather high temperatures,a comprehensive study of the model for sour gas data needs a wide range of H2S concentration.Through former correlations and also two thermodynamic base models for sour gas hydrate prediction,Chen-Guo[24],Sun-Chen[25]the performance of the LSSVM model is examined.The results are shown in Table 4.The first point,as it can be seen,is that Motiee,Towler and Mokhatab and Berge correlations have serious deviations from experimental data.The reason is maybe because these correlations are based on gas gravity not composition.The second and more important point is that in low H2S concentrations the accuracy ofthe Mannetal.,Baillie-Wichert,Chen-Guo and Sun-Chen methods is not much different than LSSVM model,but in high H2S concentrations,despite LSSVM excellent accuracy,both correlations and thermodynamic models fail to show acceptable results.

    3.2.Outlier detection

    From Table 2 it is clear that the deviations of predicted values with LSSVM model from the corresponding experimental data,are almost suited to be used for Leverage approach.Through Eq.(12),theHvalues have been found and warning Leverage(H*)values were found from 3p/nfor the total data set.Finally Williams plots have been sketched in Fig.7.

    The cluster of data points between the ranges of 0≤H≤H*and?3≤R≤3 is a sign of statistical validity of LSSVM model for prediction of these experimental values.The figures suggest that,except for two points(one in the sweet gas data set and one in the sour gas data set),in Fig.7,the whole HFT data points are in the applicability domain of proposed LSSVM model.The quality of treated data is different as the data with the lower absolute valuesR(nearR=0 line)and lowerHvalues may be identified as more reliable experimental data.

    3.3.Sensitivity analysis

    In order to extend our understanding of hydrate formation,a sensitivity analysis was conducted through LSSVM model by Pearson technique.The global effect of each independent parameter on hydrate formation temperature was examined through relevancy factor with directionality.The Pearson correlation is de fined as[54]:

    Table 4LSSVM model accuracy in comparison with thermodynamic based models and existing correlations for predicting sour gas HFT

    Fig.8.Sensitivity impact analysis of hydrate formation temperature.

    For a better visualassessmenton the effectof pressure,using LSSVM model,a data set with 50 data points[47]was used.Fig.9 clearly shows thatthe HFT willincrease by increasing pressure.In addition,in order to gain a more sensible understanding of H2S effect,an imaginary mixture of methane and hydrogen sul fide was presented to the LSSVM model at two constant pressures(3 and 4 MPa).As it could be seen in Fig.10,the model predicted that increasing H2S content of the mixture would increase the hydrate formation temperature.

    Fig.10.Graphical illustration of sensitivity impact analysis performed based on H2S content.

    4.Conclusions

    In this work a mathematical-based method of least square support vector machine was developed for the HFT prediction of natural gas mixtures.The inputparameterswere de fined on the basisofthe hydrate structure type thateach naturalgas componentwas forming.The statisticalparameters revealed thatthe LSSVMalgorithm could prognosticate HFT for both sweetand sour gases.In addition,the proposed modelperformed with an outstanding accuracy in comparison to conventional correlations and thermodynamic models.Especially in the case of sour gases with high H2S concentrations where both correlations and thermodynamic models fail to show any acceptable accuracy while LSSVM model was rigorous.

    In an attempt to evaluate the quality of experimental data,outlier detection and finding the applicability range of the LSSVM model,a mathematical algorithm based on Leverage approach was used.This algorithm showed that the applied LSSVM model,for predicting HFT of gas mixtures is statistically valid and correct as well as whole experimentaldata points exceptone were in the applicability domain of the model.

    Fig.9.Graphical illustration of sensitivity impact analysis performed based on pressure.

    In order to assess the effect of each input variable on the HFT,a sensitivity analysis was conducted.The pressure had the largest effect among the parameters on the HFT.The result showed that increasing pressure could drastically increase the HFT.In addition the results revealed that among hydrate formers,hydrogen sul fide has the biggest effect on HFT.

    Nomenclature

    AARD average absolute relative deviation,%

    blinear regression intercept of the model

    ekregression error

    H hat matrix

    K(x,xk) Kernel function

    Pc,icritical pressure of componenti

    RBF radial basis function

    R2correlation coefficient

    T transpose matrix

    Tr,ireduced temperature of componenti

    wregression weight

    xkinput vector

    ykoutput vector

    αiLagrange multipliers

    γrelative weight of the summation of the regression errors σ2squared bandwidth

    φfeature map

    ωiacentric factor of componenti

    Appendix A

    Correlation factor(R2):

    Average absolute relative deviation(AARD):

    Root mean square error(RMSE):

    Standard deviation(STD):

    Appendix B.Instruction for using the model

    A computer program is organized to use the developed model.At if rst,the LSSVM toolbox for MATLAB should be installed,and then,the directory of the toolbox should be inserted as the main directory in the MATLAB environment.After that,the model.mat file is dragged and dropped in the MATLAB workspace.

    Example:Calculation of the hydrate formation temperature for following mixture(Table B1).

    Table B1The sample set for calculation of hydrate formation temperature

    Hydrate formation temperature is calculated simply using the below command line in the command window:

    The output result of the program(based on the developed model)will be 295.66 K while the corresponding experimental value is 295.2 K.

    [1]E.D.Sloan,Fundamental principles and applications of natural gas hydrates,Nature426(6964)(2003)353–363.

    [2]A.Chapoy,A.-H.Mohammadi,D.Richon,Predicting the hydrate stability zones of natural gases using artificial neural networks,Oil Gas Sci.Technol.Rev.l'IFP62(5)(2007)701–706.

    [3]E.D.Sloan,C.Koh,Clathrate Hydrates of Natural Gases,Third edition,Taylor&Francis,2007.

    [4]J.Carroll,Natural Gas Hydrates:A Guide for Engineers,Elsevier Science,2009.

    [5]A.H.Mohammadi,D.Richon,Development of predictive techniques for estimating liquid water-hydrate equilibrium of water-hydrocarbon system,J.Thermodyn.2009(2009)1–12.

    [6]A.H.Mohammadi,R.Anderson,B.Tohidi,Carb on monoxide clathrate hydrates:Equilibrium data and thermodynamic modeling,AIChE J.51(10)(2005)2825–2833.

    [7]E.Hammerschmidt,Formation of gas hydrates in natural gas transmission lines,Ind.Eng.Chem.26(8)(1934)851–855.

    [8]D.L.Katz,Prediction of conditions for hydrate formation in naturalgases,Trans.AIME160(1945)140–149.

    [9]W.I.Wilcox,D.Carson,D.Katz,Natural gas hydrates,Ind.Eng.Chem.33(5)(1941)662–665.

    [10]C.Baillie,E.Wichert,Chart gives hydrate formation temperature for natural gas,Oil Gas J.85(14)(1987)37–39.

    [11]S.L.Mann,Vapor–Solid Equilibrium Ratios for Structure I and II Natural Gas Hydrates,Gas Processors Association,1988.

    [12]I.U.r.F.Makogon,et al.,Hydrates of Natural Gas,PennWell Books,Tulsa,Oklahoma,1981.

    [13]B.Berge,Hydrate predictions on a microcomputer,In:Petroleum Industry Application of Microcomputers,SPE,Colorado,USA,1986.

    [14]R.Kobayashi,K.Y.Song,E.D.Sloan,Phase behavior of water/hydrocarbon systems,Petroleum Engineering Handbook25(1987)e13.

    [15]M.Motiee,Estimate possibility of hydrates,Hydrocarb.Process.70(7)(1991)98–99.[16]B.Towler,S.Mokhatab,Quickly estimate hydrate formation conditions in natural gases,Hydrocarb.Process.84(4)(2005)61–62.

    [17]A.Bahadori,H.B.Vuthaluru,A novel correlation for estimation of hydrate forming condition of natural gases,J.Nat.Gas Chem.18(4)(2009)453–457.

    [18]M.Safamirzaei,Predict gas hydrate formation temperature with a simple correlation,in,2015,http://www.gasprocessingnews.com/features/201508/Predict Gas Hydrate Formation Temperature With a Simple Correlation.aspx.Accessed:18.09.15.

    [19]S.O.Salufu,P.Nwakwo,New empirical correlation for predicting hydrate formation conditions,SPE Nigeria Annual International Conference and Exhibition,Society of Petroleum Engineers,2013.

    [20]W.R.Parrish,J.M.Prausnitz,Dissociation pressures of gas hydrates formed by gas mixtures,Ind.Eng.Chem.Process.Des.Dev.11(1)(1972)26–35.

    [21]H.J.Ng,D.B.Robinson,The measurement and prediction of hydrate formation in liquid hydrocarbon–water systems,Ind.Eng.Chem.Fundam.15(4)(1976)293–298.

    [22]V.John,K.Papadopoulos,G.Holder,A generalized model for predicting equilibrium conditions for gas hydrates,AIChE J.31(2)(1985)252–259.

    [23]G.J.Chen,T.M.Guo,Thermodynamic modeling of hydrate formation based on new concepts,Fluid Phase Equilib.122(1)(1996)43–65.

    [24]G.J.Chen,T.M.Guo,A new approach to gas hydrate modelling,Chem.Eng.J.71(2)(1998)145–151.

    [25]C.Y.Sun,G.J.Chen,Modelling the hydrate formation condition for sour gas and mixtures,Chem.Eng.Sci.60(17)(2005)4879–4885.

    [26]A.Elgibaly,A.Elkamel,Optimal hydrate inhibition policies with the aid of neural networks,Energy Fuel13(1)(1999)105–113.

    [27]A.A.Elgibaly,A.M.Elkamel,A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors,Fluid Phase Equilib.152(1)(1998)23–42.

    [28]G.Zahedi,Z.Karami,H.Yaghoobi,Prediction of hydrate formation temperature by both statistical models and artificial neural network approaches,Energy Convers.Manag.50(8)(2009)2052–2059.

    [29]A.H.Mohammadi,V.Belandria,D.Richon,Use of an artificial neural network algorithm to predict hydrate dissociation conditions for hydrogen+water and hydrogen+tetra-n-butyl ammonium bromide+water systems,Chem.Eng.Sci.65(14)(2010)4302–4305.

    [30]M.Ghavipour,M.Chitsazan,S.H.Najibi,S.S.Ghidary,Experimental study of natural gas hydrates and a novel use of neural network to predict hydrate formation conditions,Chemical Engineering Research and Design91(2013)264–273.

    [31]M.Moradi,K.Nazari,S.Alavi,M.Mohaddesi,Prediction ofequilibrium conditions for hydrate formation in binary gaseous systems using artificialneural networks,Energy Technol.1(2–3)(2013)171–176.

    [32]J.Yang,B.Tohidi,Determination of hydrate inhibitor concentrations by measuring electrical conductivity and acoustic velocity,Energy Fuel27(2)(2013)736–742.

    [33]A.Eslamimanesh,F.Gharagheizi,M.Illbeigi,A.H.Mohammadi,A.Fazlali,D.Richon,Phase equilibrium modeling of clathrate hydrates of methane,carbon dioxide,nitrogen,and hydrogen+water soluble organic promoters using support vector machine algorithm,Fluid Phase Equilib.316(2012)34–45.

    [34]C.Cortes,V.Vapnik,Support-vector networks,Mach.Learn.20(3)(1995)273–297.

    [35]J.A.Suykens,J.Vandewalle,Least squares support vector machine classifiers,Neural.Process.Lett.9(3)(1999)293–300.

    [36]M.Curilem,G.Acu?a,F.Cubillos,E.Vyhmeister,Neural networks and supportvector machine models applied to energy consumption optimization in semiautogeneous grinding,Chem.Eng.Trans.25(2011)761–766.

    [37]E.Soroush,M.Mesbah,A.Shokrollahi,A.Bahadori,M.H.Ghazanfari,Prediction ofmethane uptake on differentadsorbents in adsorbed naturalgas technology using a rigorous model,Energy Fuel28(10)(2014)6299–6314.

    [38]H.Wang,D.Hu,Comparison of SVM and LS-SVM for regression,2005 International Conference on Neural Networks and Brain,IEEE,2005.

    [39]J.A.Suykens,J.De Brabanter,L.Lukas,J.Vandewalle,Weighted least squares support vector machines:Robustness and sparse approximation,Neurocomputing48(1)(2002)85–105.

    [40]K.Pelckmans,J.A.Suykens,T.Van Gestel,J.De Brabanter,L.Lukas,B.Hamers,B.De Moor,J.Vandewalle,LS-SVMlab:A Matlab/c Toolbox for Least Squares Support Vector Machines.Tutorial,KULeuven-ESAT,Leuven,Belgium,2002.

    [41]W.Deaton,E.Frost Jr.,Gas Hydrates and Their Relation to the Operation of Naturalgas Pipe Lines,Helium Research Center,Bureau of Mines,Amarillo,TX(USA),1946.

    [42]R.Kobayashi,H.Withrow,G.Williams,D.Katz,Gas hydrate formation with brine and ethanol solutions,Proceeding of the 30th Annual Convention,Natural Gasoline Association of America,1951.

    [43]L.J.Noaker,D.L.Katz,M.Aime,Gas hydrates of hydrogen sulphide–methane mixtures,Trans.Am.Inst.Min.Metall.Pet.Eng.201(1954)237–239.

    [44]H.McLeod Jr.,J.Campbell,1566-G-natural gas hydrates at pressures to 10,000 psia,J.Pet.Technol.13(6)(1961)590–594.

    [45]D.Robinson,J.Hutton,Hydrate formation systems containing methane,hydrogen sulphide and carbon dioxide,J.Can.Pet.Technol.10(1971)33–35.

    [46]S.Adisasmito,R.J.Frank III,E.D.Sloan Jr.,Hydrates of carbon dioxide and methane mixtures,J.Chem.Eng.Data36(1)(1991)68–71.

    [47]C.Y.Sun,G.J.Chen,W.Lin,T.M.Guo,Ice,1995.

    [48]E.Kamari,M.Oyarhossein,Experimental determination of hydrate phase equilibrium curve for an Iranian sour gas condensate sample,J.Nat.Gas Sci.Eng.9(2012)11–15.

    [49]G.Jeffrey,R.McMullan,The clathrate hydrates,Prog.Inorg.Chem.8(1967)43–108.

    [50]K.De Brabanter,P.Karsmakers,F.Ojeda,C.Alzate,J.De Brabanter,K.Pelckmans,B.De Moor,J.Vandewalle,J.Suykens,LS-SVMlab Toolbox User's Guide,ESAT-SISTA Technical Report,10 2011.

    [51]C.R.Goodall,13 computation using the QR decomposition,Handbook of Statistics,9,1993,pp.467–508.

    [52]P.J.Rousseeuw,A.M.Leroy,Robust Regression and Outlier Detection,vol.589,Wiley.com,2005.

    [53]P.Gramatica,Principles of QSAR models validation:Internal and external,QSAR Comb.Sci.26(5)(2007)694–701.

    [54]A.Kamari,M.Arabloo,A.Shokrollahi,F.Gharagheizi,A.H.Mohammadi,Rapid method to estimate the minimum miscibility pressure(MMP)in live reservoir oil systems during CO2flooding,Fuel153(2015)310–319.

    国产亚洲欧美98| 一个人看的www免费观看视频| 波多野结衣巨乳人妻| 人妻制服诱惑在线中文字幕| 亚洲色图av天堂| 麻豆久久精品国产亚洲av| 精品不卡国产一区二区三区| 国产乱人视频| 成人国产麻豆网| 国产成年人精品一区二区| 免费大片18禁| 18禁在线无遮挡免费观看视频| 日韩欧美精品免费久久| 国产精品美女特级片免费视频播放器| 久久精品久久久久久久性| 国模一区二区三区四区视频| 国产中年淑女户外野战色| 精品日产1卡2卡| 国产久久久一区二区三区| 成人一区二区视频在线观看| 亚洲av二区三区四区| 亚洲精品亚洲一区二区| 草草在线视频免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 级片在线观看| 久久久欧美国产精品| 成人永久免费在线观看视频| 成年版毛片免费区| 国产精品福利在线免费观看| 日韩三级伦理在线观看| 夜夜爽天天搞| 女人被狂操c到高潮| 亚洲国产精品成人久久小说 | 久久国产乱子免费精品| 久久精品影院6| 99久久无色码亚洲精品果冻| 国产人妻一区二区三区在| 在线播放国产精品三级| 久久久久国产网址| 亚洲电影在线观看av| 久久久午夜欧美精品| 国产av不卡久久| 91久久精品国产一区二区成人| 三级毛片av免费| 婷婷色av中文字幕| 99精品在免费线老司机午夜| 亚洲国产日韩欧美精品在线观看| 白带黄色成豆腐渣| 国产精品久久久久久亚洲av鲁大| 一边亲一边摸免费视频| 一个人免费在线观看电影| 18禁在线无遮挡免费观看视频| 中国美女看黄片| 激情 狠狠 欧美| 免费人成视频x8x8入口观看| 成人鲁丝片一二三区免费| 99精品在免费线老司机午夜| 亚洲国产日韩欧美精品在线观看| 欧美三级亚洲精品| 久久久午夜欧美精品| 国产蜜桃级精品一区二区三区| 国产亚洲91精品色在线| 欧美一区二区国产精品久久精品| 日韩强制内射视频| 99国产精品一区二区蜜桃av| 一本一本综合久久| 国产精品伦人一区二区| 老女人水多毛片| 欧美变态另类bdsm刘玥| 夫妻性生交免费视频一级片| 日日啪夜夜撸| 少妇被粗大猛烈的视频| 国产男人的电影天堂91| 嫩草影院新地址| 国产亚洲精品久久久com| 又爽又黄无遮挡网站| 成人综合一区亚洲| 国产伦一二天堂av在线观看| ponron亚洲| a级毛片免费高清观看在线播放| 日韩 亚洲 欧美在线| 看片在线看免费视频| 此物有八面人人有两片| 综合色av麻豆| 如何舔出高潮| 欧美日韩一区二区视频在线观看视频在线 | 看非洲黑人一级黄片| 国产成人a∨麻豆精品| 99久久人妻综合| 九九在线视频观看精品| 国产成人福利小说| 成人鲁丝片一二三区免费| 久久久久免费精品人妻一区二区| 精品久久久久久久久亚洲| 狂野欧美激情性xxxx在线观看| 熟女人妻精品中文字幕| av在线老鸭窝| 2022亚洲国产成人精品| 一个人免费在线观看电影| 久久久久性生活片| 少妇高潮的动态图| 国产精品免费一区二区三区在线| 午夜激情欧美在线| 日日摸夜夜添夜夜添av毛片| avwww免费| 亚洲精品久久国产高清桃花| 看片在线看免费视频| 亚洲真实伦在线观看| 观看美女的网站| 老司机福利观看| 国产黄片美女视频| 哪里可以看免费的av片| 久久久久性生活片| 91狼人影院| 哪个播放器可以免费观看大片| 欧美zozozo另类| 国产乱人偷精品视频| 中文亚洲av片在线观看爽| 亚洲18禁久久av| 狂野欧美白嫩少妇大欣赏| 欧美日韩国产亚洲二区| 美女国产视频在线观看| 最近的中文字幕免费完整| 国产探花在线观看一区二区| 中文欧美无线码| 99久久无色码亚洲精品果冻| 免费一级毛片在线播放高清视频| 日韩中字成人| 久久久国产成人免费| 国产午夜精品一二区理论片| 亚洲精品成人久久久久久| 欧美zozozo另类| 观看免费一级毛片| 99国产极品粉嫩在线观看| 成人漫画全彩无遮挡| 午夜福利成人在线免费观看| 一进一出抽搐gif免费好疼| 黄色视频,在线免费观看| 国产一级毛片在线| 亚洲一区二区三区色噜噜| 久久久久久国产a免费观看| 色视频www国产| 黄色一级大片看看| 亚州av有码| 久久久色成人| 免费看光身美女| 免费av毛片视频| av女优亚洲男人天堂| 免费av观看视频| 成人三级黄色视频| 久久午夜亚洲精品久久| 国产精品乱码一区二三区的特点| 国产av不卡久久| 国产亚洲欧美98| 国产黄片美女视频| 噜噜噜噜噜久久久久久91| 午夜福利成人在线免费观看| 久久热精品热| 一个人观看的视频www高清免费观看| 亚洲av成人精品一区久久| 一进一出抽搐gif免费好疼| 免费大片18禁| 精品国内亚洲2022精品成人| 国产三级在线视频| 99久国产av精品国产电影| 18+在线观看网站| 欧美bdsm另类| 亚洲成人久久爱视频| 日本熟妇午夜| 免费不卡的大黄色大毛片视频在线观看 | 国产精品一区二区三区四区久久| 91精品国产九色| 精品久久国产蜜桃| 国产久久久一区二区三区| 1000部很黄的大片| av卡一久久| 国内精品久久久久精免费| 欧美+亚洲+日韩+国产| 成人午夜高清在线视频| 老女人水多毛片| 亚洲中文字幕一区二区三区有码在线看| 国产精品av视频在线免费观看| 精品熟女少妇av免费看| 日韩人妻高清精品专区| 国产精品日韩av在线免费观看| 成人av在线播放网站| 国产色爽女视频免费观看| 熟女电影av网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品免费一区二区三区在线| av在线天堂中文字幕| 人妻少妇偷人精品九色| 日韩大尺度精品在线看网址| av天堂中文字幕网| 久久这里只有精品中国| 国产成人a∨麻豆精品| 嘟嘟电影网在线观看| 午夜免费男女啪啪视频观看| 国产免费一级a男人的天堂| 日韩欧美一区二区三区在线观看| 女人十人毛片免费观看3o分钟| 日韩一区二区三区影片| 美女被艹到高潮喷水动态| 波多野结衣高清无吗| 国产一区二区激情短视频| 禁无遮挡网站| 国产 一区 欧美 日韩| 人体艺术视频欧美日本| 在线免费观看的www视频| 国产淫片久久久久久久久| a级一级毛片免费在线观看| 国产精品福利在线免费观看| 天美传媒精品一区二区| 午夜福利成人在线免费观看| 欧美最新免费一区二区三区| www日本黄色视频网| 99久久精品热视频| 亚洲av不卡在线观看| 日韩成人伦理影院| 国产真实伦视频高清在线观看| 狠狠狠狠99中文字幕| 嘟嘟电影网在线观看| 久久久久国产网址| 草草在线视频免费看| 一本一本综合久久| 看片在线看免费视频| 亚洲电影在线观看av| 久久精品国产亚洲av香蕉五月| 亚洲欧洲日产国产| 久久久午夜欧美精品| 深夜精品福利| 国产亚洲精品久久久com| 亚洲av不卡在线观看| 日韩国内少妇激情av| 久久欧美精品欧美久久欧美| 九九热线精品视视频播放| 简卡轻食公司| 国产成人午夜福利电影在线观看| 国产免费一级a男人的天堂| 波多野结衣高清作品| 久久久国产成人免费| 免费av观看视频| 日韩精品青青久久久久久| 亚洲自偷自拍三级| 久久久久网色| 国产成人精品一,二区 | 超碰av人人做人人爽久久| 能在线免费观看的黄片| 观看免费一级毛片| 一区二区三区高清视频在线| 国产精品日韩av在线免费观看| 亚洲图色成人| 黄片wwwwww| 少妇人妻精品综合一区二区 | 免费观看人在逋| 日韩视频在线欧美| 丰满人妻一区二区三区视频av| 国产精品久久久久久久久免| 此物有八面人人有两片| 国产真实乱freesex| 三级男女做爰猛烈吃奶摸视频| 综合色av麻豆| 国产av麻豆久久久久久久| 美女国产视频在线观看| 亚洲av电影不卡..在线观看| 国产精品福利在线免费观看| 国产中年淑女户外野战色| 国语自产精品视频在线第100页| 国产一区二区在线av高清观看| 别揉我奶头 嗯啊视频| 91aial.com中文字幕在线观看| 成人av在线播放网站| 精品不卡国产一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲国产精品合色在线| 青青草视频在线视频观看| 日韩视频在线欧美| 亚洲自偷自拍三级| 内地一区二区视频在线| 日韩欧美精品v在线| 欧美色视频一区免费| 国语自产精品视频在线第100页| 乱人视频在线观看| 国产在线男女| 久久久久久久午夜电影| 久久这里有精品视频免费| 久久精品国产清高在天天线| 高清毛片免费看| 亚洲国产精品sss在线观看| 人妻少妇偷人精品九色| 国产高潮美女av| 一边摸一边抽搐一进一小说| 变态另类成人亚洲欧美熟女| 亚洲高清免费不卡视频| 亚洲av二区三区四区| 日本免费a在线| 成人一区二区视频在线观看| 国产av不卡久久| 国产亚洲av片在线观看秒播厂 | av福利片在线观看| 美女内射精品一级片tv| 欧美不卡视频在线免费观看| 99九九线精品视频在线观看视频| 日韩在线高清观看一区二区三区| 亚洲无线在线观看| 午夜免费男女啪啪视频观看| 91久久精品国产一区二区三区| 日本一本二区三区精品| 免费电影在线观看免费观看| 国产91av在线免费观看| 黄片wwwwww| 婷婷色av中文字幕| 免费观看a级毛片全部| 欧美色欧美亚洲另类二区| 欧美一区二区精品小视频在线| 毛片女人毛片| 久久精品91蜜桃| 91久久精品国产一区二区成人| 欧美人与善性xxx| a级毛片a级免费在线| 成人综合一区亚洲| 亚洲精品粉嫩美女一区| 成人美女网站在线观看视频| 黑人高潮一二区| 久久精品国产鲁丝片午夜精品| 少妇丰满av| 成人二区视频| 久久国产乱子免费精品| 亚洲欧美精品综合久久99| 自拍偷自拍亚洲精品老妇| 午夜激情福利司机影院| 亚洲真实伦在线观看| 午夜激情欧美在线| 久久99精品国语久久久| 国产视频内射| 国产精品福利在线免费观看| 免费看日本二区| 国产一区二区三区av在线 | 久久这里只有精品中国| 99久久人妻综合| 久久精品久久久久久噜噜老黄 | 国产午夜精品论理片| 亚洲无线在线观看| 国产成人午夜福利电影在线观看| 日韩强制内射视频| 国产成人一区二区在线| 亚洲七黄色美女视频| 国产成人一区二区在线| 亚洲七黄色美女视频| 欧美日韩国产亚洲二区| 亚洲国产欧美在线一区| 99在线视频只有这里精品首页| 欧美zozozo另类| 男女那种视频在线观看| 成年女人看的毛片在线观看| 国国产精品蜜臀av免费| 麻豆乱淫一区二区| 黄色配什么色好看| 波多野结衣高清作品| 亚洲av不卡在线观看| 麻豆久久精品国产亚洲av| 国产高清有码在线观看视频| 亚洲在线自拍视频| 亚洲乱码一区二区免费版| 亚洲va在线va天堂va国产| 国产伦在线观看视频一区| 爱豆传媒免费全集在线观看| 亚洲成a人片在线一区二区| 高清午夜精品一区二区三区 | 老司机福利观看| 精品一区二区三区人妻视频| 一级毛片久久久久久久久女| 亚洲人成网站在线观看播放| 中国国产av一级| av在线亚洲专区| 亚洲精品成人久久久久久| 成年免费大片在线观看| 精品久久久久久久久亚洲| 亚洲欧美精品综合久久99| 久久精品国产自在天天线| 国产亚洲欧美98| 免费看a级黄色片| 日本黄色片子视频| 国产 一区精品| 成人二区视频| 黄片wwwwww| 久久精品国产99精品国产亚洲性色| 国产 一区精品| 久久99热6这里只有精品| 日日啪夜夜撸| 日本撒尿小便嘘嘘汇集6| 国产三级在线视频| 人妻久久中文字幕网| 久久精品久久久久久噜噜老黄 | 一个人看的www免费观看视频| 亚洲高清免费不卡视频| 亚洲第一区二区三区不卡| 在现免费观看毛片| 国产精品一区二区性色av| 久久久国产成人免费| 天天躁夜夜躁狠狠久久av| 国产黄色视频一区二区在线观看 | 91久久精品国产一区二区三区| 波多野结衣巨乳人妻| 中文字幕熟女人妻在线| 国产成人freesex在线| 欧美zozozo另类| av福利片在线观看| 日韩高清综合在线| 精品一区二区三区人妻视频| 熟女人妻精品中文字幕| 亚洲精品自拍成人| 日本黄色片子视频| 午夜a级毛片| 亚洲久久久久久中文字幕| avwww免费| 亚洲国产精品久久男人天堂| 国产精品免费一区二区三区在线| 国产欧美日韩精品一区二区| 国产一区二区三区在线臀色熟女| 亚洲在久久综合| 一个人观看的视频www高清免费观看| 波野结衣二区三区在线| 99久久精品国产国产毛片| 九九在线视频观看精品| 亚洲欧美中文字幕日韩二区| 国产精品福利在线免费观看| 欧美高清性xxxxhd video| 亚洲欧美成人综合另类久久久 | 色综合色国产| 深爱激情五月婷婷| 日韩欧美在线乱码| 老熟妇乱子伦视频在线观看| 色哟哟·www| 国产在线精品亚洲第一网站| 亚洲av二区三区四区| 校园人妻丝袜中文字幕| 91狼人影院| 黄色视频,在线免费观看| 午夜视频国产福利| 久久热精品热| 在线免费观看不下载黄p国产| 蜜臀久久99精品久久宅男| 国产精品久久久久久精品电影小说 | 亚洲自拍偷在线| 美女 人体艺术 gogo| 日本黄大片高清| 亚洲精品国产av成人精品| 免费av不卡在线播放| 少妇裸体淫交视频免费看高清| 午夜视频国产福利| 国产黄a三级三级三级人| 国产综合懂色| 自拍偷自拍亚洲精品老妇| 久久精品夜色国产| 亚洲精品自拍成人| 亚洲aⅴ乱码一区二区在线播放| 国产成人午夜福利电影在线观看| 床上黄色一级片| 欧美一级a爱片免费观看看| 高清日韩中文字幕在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品sss在线观看| 欧美色欧美亚洲另类二区| 男人舔奶头视频| 最近2019中文字幕mv第一页| 国产女主播在线喷水免费视频网站 | 亚洲av二区三区四区| 女人十人毛片免费观看3o分钟| 内射极品少妇av片p| 免费看美女性在线毛片视频| 中国美白少妇内射xxxbb| 综合色av麻豆| 午夜免费男女啪啪视频观看| 男女边吃奶边做爰视频| 欧美一级a爱片免费观看看| 亚洲精品色激情综合| 国产色爽女视频免费观看| 国产精品,欧美在线| 免费黄网站久久成人精品| 看非洲黑人一级黄片| 国产精品久久久久久久久免| 91av网一区二区| 蜜桃亚洲精品一区二区三区| 国产一区二区三区av在线 | 深夜a级毛片| 久久久国产成人精品二区| 日本五十路高清| 久久人人爽人人片av| 久久精品人妻少妇| 三级毛片av免费| 亚洲精品亚洲一区二区| 三级毛片av免费| 亚洲av中文av极速乱| 一进一出抽搐动态| 欧美+亚洲+日韩+国产| 午夜激情福利司机影院| 亚洲av中文av极速乱| 一级黄片播放器| 99国产极品粉嫩在线观看| 国产日本99.免费观看| 欧美又色又爽又黄视频| 99热全是精品| 久久99精品国语久久久| 夜夜夜夜夜久久久久| 国产三级在线视频| 女人被狂操c到高潮| 91aial.com中文字幕在线观看| 女人被狂操c到高潮| 色噜噜av男人的天堂激情| 色尼玛亚洲综合影院| 99久久中文字幕三级久久日本| 国产亚洲av片在线观看秒播厂 | 级片在线观看| 亚洲综合色惰| 亚洲在线自拍视频| 亚洲国产欧洲综合997久久,| 国产色婷婷99| 国产一区二区激情短视频| 波多野结衣巨乳人妻| 爱豆传媒免费全集在线观看| 国产 一区 欧美 日韩| 国产精品久久久久久精品电影| 别揉我奶头 嗯啊视频| 99久久精品热视频| 亚洲图色成人| av免费在线看不卡| 高清在线视频一区二区三区 | 99国产极品粉嫩在线观看| 桃色一区二区三区在线观看| 日本五十路高清| 老司机福利观看| 亚洲欧美日韩高清专用| 国产精品一区二区性色av| 久久午夜亚洲精品久久| 成人毛片a级毛片在线播放| 一进一出抽搐动态| 2022亚洲国产成人精品| 免费看av在线观看网站| www日本黄色视频网| 久久精品国产亚洲av天美| 91麻豆精品激情在线观看国产| 亚洲在线自拍视频| 国产一区二区激情短视频| 欧美高清成人免费视频www| 免费观看人在逋| 99久久九九国产精品国产免费| 国产成人a∨麻豆精品| 欧美日韩一区二区视频在线观看视频在线 | 亚洲人与动物交配视频| 九九久久精品国产亚洲av麻豆| 小蜜桃在线观看免费完整版高清| 97热精品久久久久久| 2022亚洲国产成人精品| 观看免费一级毛片| 国产黄片视频在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品456在线播放app| 波多野结衣高清作品| 婷婷亚洲欧美| 秋霞在线观看毛片| 久久中文看片网| 国产探花极品一区二区| 人妻少妇偷人精品九色| 亚洲欧美成人综合另类久久久 | 国产av在哪里看| 观看免费一级毛片| 嫩草影院新地址| ponron亚洲| 精品久久久久久久久久久久久| 综合色av麻豆| 亚洲国产高清在线一区二区三| 国产真实乱freesex| 久久99蜜桃精品久久| 欧洲精品卡2卡3卡4卡5卡区| 免费不卡的大黄色大毛片视频在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美国产在线观看| 国产av不卡久久| 国产伦理片在线播放av一区 | 午夜久久久久精精品| 床上黄色一级片| 欧美+日韩+精品| 免费人成视频x8x8入口观看| 亚洲国产高清在线一区二区三| 三级毛片av免费| 五月伊人婷婷丁香| 国产亚洲av片在线观看秒播厂 | 联通29元200g的流量卡| 我要看日韩黄色一级片| 久久久久国产网址| 国产精华一区二区三区| 日韩精品青青久久久久久| 国产精品久久久久久久久免| 久久精品国产清高在天天线| 成人午夜精彩视频在线观看| 青青草视频在线视频观看| 一级黄色大片毛片| 能在线免费观看的黄片| 亚洲成人中文字幕在线播放| 久久人妻av系列| 噜噜噜噜噜久久久久久91| 欧美不卡视频在线免费观看| 久久精品国产亚洲网站| 亚洲av免费在线观看| 看免费成人av毛片| 狂野欧美白嫩少妇大欣赏| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久精品欧美日韩精品| 久久精品91蜜桃| 蜜桃久久精品国产亚洲av| 欧美一区二区亚洲| 两个人的视频大全免费| 女的被弄到高潮叫床怎么办| 久久人人爽人人爽人人片va|