• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The ligand coordination approach for improving the stability of low-mercury catalyst in the hydrochlorination of acetylene☆

    2017-05-30 02:11:17XiaolongXuHaihuaHeJiaZhaoBailinWangShanchuanGuXiaonianLi

    Xiaolong Xu,Haihua He,Jia Zhao,Bailin Wang,Shanchuan Gu,Xiaonian Li*

    Institute of Industrial Catalysis of Zhejiang University of Technology,State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,Hangzhou 310032,China

    1.Introduction

    Vinyl chloride monomer(VCM)is mainly used for the production of polyvinyl chloride(PVC),which is one of the five general resins and widely applied in the fields of industry,agriculture,and building materials[1].Generally,VCM is industrially synthesized by the dehydrochlorination of dichloroethane or the hydrochlorination of acetylene[2,3].The hydrochlorination of acetylene has received much attention in countries with large reserves of coal[4].For instance,the manufacture of PVCviathe hydrochlorination of acetylene accounts for about 70%of the total PVC production capacity in China[5].

    In the industrial process of the hydrochlorination of acetylene,acetylene(C2H2)reacts with anhydrous hydrogen chloride(HCl)to obtain VCM under the catalysis of mercuric chloride(HgCl2)supported on activated carbon at optimum temperature range of 170–180 °C[6].However,HgCl2(B.P.=302°C)volatilizes easily from the surface ofactivated carbon underreaction conditions[7].Meanwhile,HgCl2ishighly toxic.Loss of HgCl2not only leads to an irreversible deactivation of the catalyst but also threatens to the environment and human health.Therefore,it is urgent to explore new types of environment-friendly non-mercury catalysts to replace mercury catalyst from the view of sustainable development of PVC industry.Based on the correlation of hydrochlorination activity of metal chlorides supported on activated carbon with the standard reduction potential[8],scholars focuses their attention on Au3+[9–13],Pd2+[14–16],Ru3+[17,18],and Ptδ+[19,20],etal.Nevertheless,these non-mercury catalysts cannotsimultaneously satisfy the requirements of high activity and favorable stability for industrialcatalyst.Thus activated carbon supported mercuric chloride(HgCl2/AC)has still been used as the catalyst for the hydrochlorination of acetylene by most of PVC enterprises.Consequently,aiming at the problems of the instability of HgCl2/AC,it's necessary to make improvement in the stability of mercury catalyst.Herein,how to inhibit the sublimation of the mercury species is the key to improving the stability of mercury catalyst.Xin Huang employed carbon-mixing expanded multilayered vermiculite(EML-VMT-C)as the high-mercury catalyst support and the as-obtained catalyst showed good stability for acetylene hydrochlorination[21].But vermiculite has low specific surface area[22],not in favor of the dispersion of active components.Furthermore,carbon deposition in the form of polymerization of acetylene would happen on non-carbon supports in the hydrochlorination of acetylene[23].Besides,some kinds of metal chlorides such as CdCl2[24],CsCl[25],BiCl3,CeCl3and KCl[26],were used as additives to improve the stability of mercury catalyst and reduce the amount of HgCl2effectively.However,itis worth noting thatloss ofHgCl2stillexists in the operating cycle of low mercury catalyst significantly[27].Hence,to improve the stability of mercury catalyst for the hydrochlorination of acetylene presently should focus on designing more stable active component.

    The catalyst stability also puzzles the development of Au-based catalyst in the hydrochloriantion of acetylene.It has come to our notice that,in order to improve the stability of Au-based catalyst for acetylene hydrochlorination,Hutchings attempted to search or synthesize some gold complexes as the active precursor from the view of stability constant[28].Using Au(S2O3)32?with higher stability constant than AuCl?4as the active gold precursor could suppress the reduction of oxidized gold species effectively.Thus,we consider that whether this method to stabilize the gold species is valid for stabilizing mercury catalyst for acetylene hydrochlorination.Hg2+can react with halogen anions(Cl?,Br?,I?),forming a series of coordination ions(HgX24?,X=Cl,Br,I)with different stability constants and the stability of the coordination ions is enhanced in the orderofCl,Br,and I[29].In this paper,we have prepared some low-mercury catalysts(4%HgCl2loading),using potassium halides(KCl and KI)as additives.The results showed that the low-mercury catalyst HgCl2-4KI/AC performed better stability than HgCl2-4KCl/AC and HgCl2/AC under the acetylene hydrochlorination reaction conditions.The order of sublimation rates of HgCl2from the catalysts is:HgCl2-4KI/AC<HgCl2-4KCl/AC<HgCl2/AC,indicating that the HgCl2-4KI/AC catalyst using K2HgI4with larger stability constant as the main active component had better thermal stability.

    2.Experimental

    2.1.Pretreatment of activated carbon support

    A commercial activated carbon(Norit ROX 0.8)was used as the support.Activated carbon was firstly washed with concentrated nitric solution(HNO3,65%–68%)at room temperature for 1 h to remove the contained impurities,then filtered and washed with deionized water to neutral and dried at 110°C for 12 h in the air.

    2.2.Catalyst preparation

    Taking into account the depletion and limited use of mercury resources,low-mercury(4 wt%HgCl2loading)catalyst was chose as the research object.The incipient wetness impregnation method was employed to prepare the catalysts.Firstly,HgCl2(0.2 g,GR,≥99.9%,Xiya Reagent)and KX(0.2197 g KCl,or 0.4891 g KI,n(HgCl2):n(KX)=1:4,X=Cl,I)were dissolved in deionized water(9 ml).Then,the mixed solution was added dropwise to the pretreated activated carbon(5 g)with stirring.After placed overnight,the catalyst was dried at 110°C for 12 h in the air.The as-prepared catalysts were labeled as HgCl2-4KCl/AC and HgCl2-4KI/AC,respectively.The same procedure was applied to prepare the pure HgCl2/AC catalyst.

    2.3.Sublimation rate measurements of HgCl2

    The sublimation rate measurements of HgCl2were carried outas described in the chemical industry standard of the People's Republic of China HG/T 4192-2011[30].The fresh catalyst(0.6 g)was set into a tubular reactor(Ф10 mm × 400 mm)and heated up to 250 °C.Nitrogen with a flow rate of 6 ml·min?1was fed into the reactor for 3 h before the catalyst was taken out to be analyzed.The content of HgCl2in the catalyst was analyzed by titration with C5H10NS2Na.After ground,screened with 80 mesh sieve and dried to constant weight,the sample(0.5 g)was put into a 250 ml flask with a re flux condenser.10 wt%NaCl solution(10 ml)and aqua regia(10 ml)were added before the flask was heated to boiling for 15 min.The mixture was filtrated and the obtained filtrate was titrated with standard C5H10NS2Na solution.Considering the easy sublimation of mercuric chloride and the high temperature during drying process,the real contents of HgCl2in fresh catalysts were determined by the same titration method above.

    2.4.Catalyst characterization

    X-ray diffraction(XRD)patterns of the catalysts were conducted on a PANalytical X'Pert diffractometer using a Cu Kα radiation(λ=0.1541 nm)in a scanning range of2θ=10°–80°thatwas operated at the voltage of 40 kV and the current of 40 mA.The morphology and components of the catalysts was characterized by using a transmission electronic microscope(TEM,Philips-FEI Tecnai G2 F30 S-Twin)equipped with high-angle annular dark- field(HAADF)detector and EDX spectroscopy.

    2.5.Catalytic performance evaluation

    Catalytic performance was carried out in a fixed bed reactor(i.d.10 mm).The temperature of the reactor was regulated by an AI-808P temperature controller(Xiamen Yudian Automation Technology Co.,Ltd.).Firstly,nitrogen gas(6 ml·min?1)was fed into the reactor containing catalyst(0.82 g)to eliminate water and air in the reaction system.After the reactor was heated up to 220°C,switch nitrogen gas to HCl gas(6 ml·min?1),which was controlled by a calibrated mass flow controller(Beijing Sevenstar Electronics Co.,Ltd.),passing through the catalyst bed and activating the catalyst for 0.5 h.Then,pretreated by saturated K2Cr2O7solution and concentrated sulfuric acid successively to eliminate the contained H2Sand H3Pimpurities,C2H2(5 ml·min?1)wasfed through anothercalibrated mass flowcontrollerand mixed with HClbefore passing through the reactor.Here,the gas hourly space velocity(GHSV)of C2H2is 180 h?1.The exit gas mixture was passed through an absorption bottle containing saturated NaOH solution to absorb excess HCl.The compositions of the product were analyzed using an online gas chromatography(GC 9790,Zhejiang Fuli Analytical Instruments Co.,Ltd.)equipped with flame ionization detection(FID).Chromatographic separation and identification of the compositions was determined by using a Porapak N packed column(6 ft.×1/800 stainless steel).The conversion of C2H2and the selectivity to VCM were de fined by the following equations.

    In the above equations,FA0,FA,andFVCMrepresent the volume fraction of acetylene in the raw gas,the volume fraction of remaining acetylene in the product mixture gas,and the volume fraction of VCM in the product mixture gas,respectively.

    3.Results and Discussion

    3.1.Characterization

    3.1.1.Crystal phase analysis

    The X-ray diffraction patternsof the above three catalysts are shown in Fig.1.Itcan be seen thatthere are no obvious detectable re flections of Hg species,such as HgCl2,K2HgCl4,or K2HgI4,in the patterns.Itindicates that the active components are highly dispersed on the surface of activated carbon.According to Xie's findings[31],HgCl2,K2HgCl4and K2HgI4may disperse as a monolayer on the surface of the support because these substances are all salts.The extra KCl is generated when HgCl2reactswith excess KX.There were no diffraction peaks ofKCl,suggesting that the extra KCl is also highly dispersed.

    3.1.2.Morphology of HgCl2-4KI/AC

    In our previous study,when CsClwas used as an additive to be added into the low-mercury catalyst,the elements of Hg and Cl were homogeneously distributed on the surface of activated carbon[25].Therefore,we speculate that the distribution of Hg and Cl on the HgCl2-4KCl/AC catalyst is the same as that on Hg-Cs/AC catalyst.Fig.2 shows the mapping photographs of several major elements on HgCl2-4KI/AC.The mapping characterization displays that the elements of Hg and I are in homogeneous distribution on the surface of the support as well as K and Cl,and no obvious particles exist on the surface of activated carbon.It indicates that there are some interactions between HgCl2and excess KI,hinting the generation of K2HgI4,which is the active component of the HgCl2-4KI/AC catalyst.

    3.2.Catalytic properties

    3.2.1.The effect of KX on the performance of HgCl2/AC

    In order to investigate the catalytic stability,the three catalysts were evaluated for 50 h under fixed acetylene hydrochlorination reaction conditions at 220°C,an acetylene gas hourly velocity(C2H2)of 180 h?1,and a fed volume ratioV(HCl)/V(C2H2)of1.2.The catalytic performances of the three catalysts were shown in Fig.3.The selectivity to VCM was all above 99.5%over the three catalysts.Although HgCl2/AC showed the highest hydrochlorination activity with C2H2conversion of 85.12%,it deactivated rapidly with an average deactivation rate of 0.49%·h?1.The deactivation rates of HgCl2-4KCl/AC and HgCl2-4KI/AC were 0.30%·h?1and 0.10%·h?1,respectively,smaller than that of HgCl2/AC.HgCl2-4KCl/AC and HgCl2-4KI/AC exhibited better catalytic stability than HgCl2/AC.

    Fig.1.X-ray diffraction patterns of HgCl2/AC,HgCl2-4KCl/AC,and HgCl2-4KI/AC.

    Fig.3.The catalytic performances of three low-mercury catalysts in acetylene hydrochlorination.(6 ml·min?1 HCl,5 ml·min?1 C2H2,0.82 g Cat.,T=220 °C).

    3.2.2.The effect of variation of the active species on the performance of HgCl2/AC

    Fig.2.HAADF image together with the EDS mapping of the HgCl2-4KI/AC catalyst.

    Because ofthe formation of the excess KCl in HgCl2-4KX/AC,in order to investigate the intrinsic stability of the active component K2HgX4in the catalyst,we prepared some catalysts using pure K2HgX4(X=Cl,I)as precursor without excess KCl.The K2HgCl4/AC catalyst was prepared using 0.2 g HgCl2and 0.1099 g KCl(n(HgCl2):n(KCl)=1:2)as precursor.The K2HgI4/AC catalyst was prepared as follows:Firstly,the red deposit HgI2was obtained by reacting 0.2 g HgCl2with 0.2446 g KI(n(HgCl2):n(KI)=1:2),and washed with deionized water to eliminate K+and Cl?.Then,the K2HgI4/AC catalyst was got by using the as-prepared HgI2and 0.2446 g KI(n(HgI2):n(KI)=1:2)as precursor.The K2HgCl4-K2HgI4/AC catalyst was prepared by step impregnating method.The catalytic performances of the three catalysts were shown in Fig.4.We could see from Fig.4 that the three catalysts showed similar highest activity,about 78%-80%of acetylene conversion at the C2H2GHSV of 180 h?1and 220 °C.With the active component varying from K2HgCl4to K2HgI4,the stability of the catalyst was improved.The catalytic performances stated clearly that K2HgI4had better stability than K2HgCl4under acetylene hydrochlorination reaction conditions.

    Fig.4.The catalytic performances of K2HgX4/AC in acetylene hydrochlorination.(6 ml·min?1 HCl,5 ml·min?1 C2H2,0.82 g Cat.,T=220 °C).

    The reason why HgCl2-4KI/AC showed the bestcatalytic stability can be stated as below.Hg2+can react with halogen anions(Cl?,Br?,I?),forming a series of coordination ions(HgX42?,X=Cl,Br,I)with different stability constants.The chemical equations for the reactions of Hg2+and halogen ions to form a variety of coordination ions and corresponding stability constants ofthe coordination ions are listed in Table 1[29].As can be seen from Table 1,the active components of HgCl2/AC,HgCl2-4KCl/AC,and HgCl2-4KI/AC may be HgCl2,K2HgCl4and K2HgI4,respectively.The stability constant of HgI42?is 7.2×1029,far greater than that of HgCl42?,1.6×1015.According to the Principle of Hard and Soft Acids and Bases(HSAB)[32,33],hard acids prefer to bind to hard bases and soft acids prefer to bind to soft bases.Soft acids form stable complexes with bases that are highly polarizable.Hg2+is a soft acid with high polarizability.I?is a soft acid and Cl?is a hard acid.The large radius and loose electron cloud of I?results in high polarization degree of Hg--I bond and the nature of Hg--I bond is close to covalent bond.Cl?has small ionic radius,difficult to form stable covalent bond.The high polarizability of Hg2+makes the Hg--Cl bond difficult to form stable ionic bond.Therefore,the stability of HgI42?is better than that of HgCl42?.Likewise,the order of the thermal stabilities of HgCl2/AC,HgCl2-4KCl/AC and HgCl2-4KI/AC can be judged based on the stability constants.

    Table 1The stability constants ofcoordination ions formed by reacting Hg2+with Cl?,Br?,and I?,respectively

    3.3.The average sublimation rate of HgCl2

    The orderofthe sublimation ratesofHgCl2for HgCl2/AC,HgCl2-4KCl/AC and HgCl2-4KI/AC can be predicted based on the stability constants in Table 1.The specific sublimation rates of HgCl2for the three catalysts are also compared in Table 2.As we can see from Table 2,the sublimation ofHgCl2for HgCl2/AC is the fastestwith the average HgCl2sublimation rate of 47.78 × 10?3mg·g?1·min?1and the sublimation of HgCl2for HgCl2-4KI/AC is slower than HgCl2-4KCl/AC at 250°C.The average HgCl2sublimation rate of HgCl2-4KCl/AC is 20 × 10?3mg·g?1·min?1,about 5/12 of that of HgCl2/AC.The average HgCl2sublimation rate of HgCl2-4KI/AC is 2.22 × 10?3mg·g?1·min?1,about 1/22 of that of HgCl2/AC and 1/9 of that of HgCl2-4KCl/AC.Loss percentage of HgCl2from the HgCl2-4KI/AC catalyst is 1.02%,less than 3%[30],which satis fies the requirement for industrial catalyst.The data in Table 2 reveal that the addition of KI further promotes the inhibition of sublimation of HgCl2from the low-mercury catalyst compared with the addition of KCl.The order of the average HgCl2sublimation rate is opposite to the order of stability constant of active components.

    Table 2Comparison of the average HgCl2 sublimation rates of HgCl2/AC,HgCl2-4KCl/AC,and HgCl2-4KI/AC

    4.Conclusions

    A ligand coordination approach was employed to enhance the stability of low-mercury catalyst for the hydrochlorination of acetylene.According to the Principle of Hard and Soft Acids and Bases(HSAB),a more stable low-mercury catalyst(4%HgCl2loading),HgCl2-4KI/AC,was successfully prepared by using HgCl2and KIas precursors.The active component of the HgCl2-4KI/AC catalyst was K2HgI4,highly dispersed on the surface of activated carbon.The HgCl2-4KI/AC catalyst showed better catalytic stability than HgCl2/AC and HgCl2-4KCl/AC for the hydrochloriantion of acetylene under fixed acetylene hydrochlorination reaction conditions at 220°C,an acetylene gas hourly velocity(C2H2)of 180 h?1,and a fed volume ratioV(HCl)/V(C2H2)of 1.2.The comparison of the HgCl2sublimation rates for three catalysts indicated that the HgCl2-4KI/AC catalyst had best thermal stability than HgCl2/AC and HgCl2-4KCl/AC.This approach points out the direction to designing more stable mercury catalyst for the hydrochlorination of acetylene.

    [1]T.Yang,Production,application and prospect of PVC resin in China,China Plast.22(2)(2008)1–8(in Chinese).

    [2]Q.S.Han,F.Sun,Contrast analysis on PVC produced by ethylene method and acetylene method,Polyvinyl Chloride37(9)(2009)5–7(in Chinese).

    [3]F.Z.Xin,Contrast of vinyl chloride production processes,Yunnan Chem.Technol.37(1)(2010)65–67(in Chinese).

    [4]X.B.Wei,H.B.Shi,W.Z.Qian,G.H.Luo,Y.Jin,F.Wei,Gas-phase catalytic hydrochlorination of acetylene in a two-stage fluidized-bed reactor,Ind.Eng.Chem.Res.48(1)(2009)128–133.

    [5]J.L.Bing,C.Z.Li,Review on development of China's PVC industry in the past 10 years and analysis on the trends in the year 2010,Polyvinyl Chloride39(5)(2001)1–8(in Chinese).

    [6]J.L.Zhang,N.Liu,W.Li,B.Dai,Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts,Front.Chem.Sci.Eng.5(4)(2011)514–520.

    [7]G.J.Hutchings,D.T.Grady,Effect of drying conditions on carbon supported mercuric chloride catalysts,Appl.Catal.16(1985)411–415.

    [8]G.J.Hutchings,Vapor phase hydrochlorination of acetylene:Correlation of catalytic activity of supported metal chloride catalysts,J.Catal.96(1985)292–295.

    [9]K.Zhou,W.Wang,Z.Zhao,G.H.Luo,J.T.Miller,M.S.Wong,F.Wei,Synergistic Gold-Bismuth catalysis for non-mercury hydrochlorination of acetylene to vinyl chloride monomer,ACS Catal.4(2014)3112–3116.

    [10]K.Zhou,J.C.Jia,C.H.Li,H.Xu,J.Zhou,G.H.Luo,F.Wei,A low content Au-based catalyst for hydrochlorination of C2H2and its industrial scale-up for future PVC processes,Green Chem.17(2015)356–364.

    [11]J.Zhao,J.T.Xu,J.H.Xu,J.Ni,T.T.Zhang,X.L.Xu,X.N.Li,Activated-carbon-supported gold-cesium(I)as highly effective catalysts for hydrochlorination of acetylene to vinyl chloride,ChemPlusChem80(2015)196–201.

    [12]J.Zhao,J.T.Xu,J.H.Xu,T.T.Zhang,X.X.Di,J.Ni,X.N.Li,Enhancement of Au/AC acetylene hydrochlorination catalyst activity and stability via nitrogen-modified activated carbon support,Chem.Eng.J.262(2015)1152–1160.

    [13]J.Zhao,S.C.Gu,X.L.Xu,T.T.Zhang,Y.Yu,X.X.Di,J.Ni,Z.Y.Pan,X.N.Li,Supported ionic-liquid-phase-stabilized Au(III)catalyst for acetylene hydrochlorination,Catal.Sci.Technol.6(2016)3263–3270.

    [14]S.A.Mitchenko,T.V.Krasnyakova,I.V.Zhikharev,Catalytic hydrochloriantion of acetylene on mechanochemically-activated K2PdCl4,Theor.Exp.Chem.44(5)(2008)316–319.

    [15]L.Wang,F.Wang,J.D.Wang,X.L.Tang,Y.L.Zhao,D.Yang,F.M.Jia,T.Hao,Hydrochlorination of acetylene to vinyl chloride over Pd supported on zeolite Y,React.Kinet.Mech.Catal.110(2013)187–194.

    [16]L.Wang,F.Wang,J.D.Wang,Non-mercury catalytic acetylene hydrochlorination over a NH4F-urea-modified Pd/HY catalyst for vinyl chloride monomer production,New J.Chem.40(2016)3019–3023.

    [17]Y.F.Pu,J.L.Zhang,L.Yu,Y.H.Jin,W.Li,Active ruthenium species in acetylene hydrochlorination,Appl.Catal.A Gen.488(2014)28–36.

    [18]G.B.Li,W.Li,H.Y.Zhang,Y.F.Pu,M.X.Sun,J.L.Zhang,Non-mercury catalytic acetylene hydrochlorination over Ru catalysts enhanced by carbon nanotubes,RSC Adv.5(2015)9002–9008.

    [19]S.A.Mitchenko,T.V.Krasnyakova,R.S.Mitchenko,A.N.Korduban,Acetylene catalytic hydrochlorination over powder catalyst prepared by pre-milling of K2PtCl4salt,J.Mol.Catal.A Chem.275(2007)101–108.

    [20]S.A.Mitchenko,E.V.Khomutov,A.A.Shubin,Y.M.Shul'ga,Catalytic hydrochlorination ofacetylene by gaseous HClon the surface ofmechanically pre-activated K2PtCl6salt,J.Mol.Catal.A Chem.212(2004)345–352.

    [21]X.Huang,F.Yu,M.Y.Zhu,F.H.Ouyang,B.Dai,J.M.Dan,Hydrochlorination of acetylene using expanded multilayered vermiculite(EML-VMT)-supported catalysts,Chin.Chem.Lett.26(2015)1101–1104.

    [22]J.Zhang,T.Y.Liu,R.Chen,X.H.Liu,Vermiculite as a natural silicate crystal for hydrogen generation from photocatalytic splitting of water under visible light,RSC Adv.4(2014)406–408.

    [23]L.L.Xu,X.G.Wang,H.Y.Zhang,B.Dai,Z.Y.Liu,Q.F.Zhang,Application of a novel carbon carrier in acetylene hydrochlorination,Chem.Ind.Eng.Prog.30(2011)536–541(in Chinese).

    [24]M.H.Chen,K.Xu,J.X.Liao,X.H.Chen,Effects of Cd cocatalytic mechanism in multielement catalytic system on performance of low-level mercury catalyst,Polyvinyl Chloride42(5)(2014)26–29(in Chinese).

    [25]X.L.Xu,J.Zhao,C.S.Lu,T.T.Zhang,X.X.Di,S.C.Gu,X.N.Li,Improvement of the stability of Hg/AC catalysts by CsCl for the high-temperature hydrochlorination of acetylene,Chin.Chem.Lett.27(2016)822–826.

    [26]Y.Zhou,Q.Yang,Q.Luo,W.W.Jiang,Preparation and optimization of a new-type low-mercury catalyst for hydrochlorination of acetylene,Appl.Chem.Ind.40(12)(2011)2147–2150(in Chinese).

    [27]Z.Q.Chen,X.Y.Ma,Application of environmental low-mercury catalyst,China Chlor-Alkali6(2009)9–11(in Chinese).

    [28]P.Johnston,N.Carthey,G.J.Hutchings,Discovery,development,and commercialization of gold catalysts for acetylene hydrochlorination,J.Am.Chem.Soc.137(2015)14548–14557.

    [29]X.J.Liu,Y.F.Zhu,F.Gao,Inorganic Element Chemistry,Science Press,Beijing,2010(in Chinese).

    [30]China Chlor-Alkali Industry Association,HG/T 4192–2011,Low-Level Mercury Catalyst for Chloroethylene Synthesis,Chemical Industry Press,Beijing,2011(in Chinese).

    [31]Y.C.Xie,N.F.Yang,Y.J.Liu,Y.Q.Tang,Spontaneous dispersion of some active components onto the surfaces of carriers,Sci.Sinica26(1983)337–350.

    [32]R.G.Pearson,Hard and soft acids and bases,HSAB,part I fundamental principles,J.Chem.Educ.45(9)(1965)581–587.

    [33]R.G.Pearson,Hard and soft acids and bases,HSAB,part II underlying theories,J.Chem.Educ.45(10)(1968)643–648.

    大香蕉久久成人网| 夜夜骑夜夜射夜夜干| 韩国av在线不卡| 亚洲欧美色中文字幕在线| 日韩在线高清观看一区二区三区| 亚洲精品视频女| 菩萨蛮人人尽说江南好唐韦庄| 人人妻人人添人人爽欧美一区卜| 亚洲成人一二三区av| 免费人成在线观看视频色| 看十八女毛片水多多多| 亚洲欧美成人综合另类久久久| 9色porny在线观看| 99热6这里只有精品| 极品少妇高潮喷水抽搐| 成人亚洲精品一区在线观看| 国产一区二区在线观看av| 天美传媒精品一区二区| 国产精品久久久久久久久免| 成年人免费黄色播放视频| 超色免费av| 多毛熟女@视频| av不卡在线播放| 亚洲精品一区蜜桃| 国产av码专区亚洲av| 免费播放大片免费观看视频在线观看| xxxhd国产人妻xxx| 麻豆乱淫一区二区| 午夜视频国产福利| 免费人妻精品一区二区三区视频| 成人18禁高潮啪啪吃奶动态图 | 精品亚洲乱码少妇综合久久| 国产男女超爽视频在线观看| 桃花免费在线播放| 亚洲av免费高清在线观看| 免费黄频网站在线观看国产| 满18在线观看网站| 亚州av有码| 人妻人人澡人人爽人人| 国产一区有黄有色的免费视频| 国产成人精品在线电影| 日韩大片免费观看网站| 日韩亚洲欧美综合| 免费人成在线观看视频色| 99精国产麻豆久久婷婷| 久久久久久伊人网av| 大片免费播放器 马上看| 午夜精品国产一区二区电影| 不卡视频在线观看欧美| 亚洲天堂av无毛| 中国国产av一级| 亚洲五月色婷婷综合| 一区二区日韩欧美中文字幕 | 只有这里有精品99| 亚洲精品av麻豆狂野| 国产无遮挡羞羞视频在线观看| 亚洲欧美成人精品一区二区| 亚洲熟女精品中文字幕| 啦啦啦视频在线资源免费观看| 久热久热在线精品观看| 亚洲成色77777| 99久久人妻综合| 两个人免费观看高清视频| 久久久久国产网址| 精品一区二区免费观看| 搡老乐熟女国产| 亚洲五月色婷婷综合| 国产又色又爽无遮挡免| 伊人亚洲综合成人网| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃久久精品国产亚洲av| 水蜜桃什么品种好| 国产精品国产三级国产专区5o| 欧美3d第一页| 亚洲av在线观看美女高潮| 国产免费又黄又爽又色| 午夜视频国产福利| 久久久久国产网址| 两个人的视频大全免费| 18+在线观看网站| 国产精品人妻久久久影院| 中国国产av一级| 国产精品久久久久久精品电影小说| 国产欧美日韩一区二区三区在线 | 国产精品 国内视频| 久久99精品国语久久久| 国产色爽女视频免费观看| 在线观看人妻少妇| 精品亚洲乱码少妇综合久久| 免费人成在线观看视频色| 欧美激情 高清一区二区三区| 国产成人一区二区在线| www.av在线官网国产| 少妇高潮的动态图| 人体艺术视频欧美日本| 男女边摸边吃奶| 少妇丰满av| 中文精品一卡2卡3卡4更新| 午夜久久久在线观看| 9色porny在线观看| av电影中文网址| 久久精品夜色国产| 免费av不卡在线播放| 女性生殖器流出的白浆| 边亲边吃奶的免费视频| 国产精品欧美亚洲77777| 黄色视频在线播放观看不卡| 99re6热这里在线精品视频| 成人黄色视频免费在线看| av国产精品久久久久影院| 成年av动漫网址| 人妻制服诱惑在线中文字幕| 又粗又硬又长又爽又黄的视频| av女优亚洲男人天堂| 蜜桃在线观看..| 成人黄色视频免费在线看| 卡戴珊不雅视频在线播放| 久久久久久久久久久丰满| 你懂的网址亚洲精品在线观看| 亚洲av.av天堂| 中国三级夫妇交换| 欧美人与善性xxx| 十八禁网站网址无遮挡| 边亲边吃奶的免费视频| 国产国语露脸激情在线看| 在线观看国产h片| 99久国产av精品国产电影| 麻豆乱淫一区二区| 国产色爽女视频免费观看| 伦精品一区二区三区| 波野结衣二区三区在线| av免费观看日本| 王馨瑶露胸无遮挡在线观看| 另类亚洲欧美激情| 九九久久精品国产亚洲av麻豆| 国产亚洲精品久久久com| 精品视频人人做人人爽| 99热国产这里只有精品6| 国语对白做爰xxxⅹ性视频网站| 国产色婷婷99| 亚洲精品日韩av片在线观看| a级毛片黄视频| 国产又色又爽无遮挡免| 日韩精品有码人妻一区| 老司机亚洲免费影院| 赤兔流量卡办理| 婷婷色综合大香蕉| 国产老妇伦熟女老妇高清| 国产成人午夜福利电影在线观看| 亚洲国产av影院在线观看| 国产精品熟女久久久久浪| 久久久欧美国产精品| 国产 一区精品| 丰满少妇做爰视频| 国产精品不卡视频一区二区| 26uuu在线亚洲综合色| 能在线免费看毛片的网站| 99久久精品一区二区三区| 亚洲精品,欧美精品| 大片免费播放器 马上看| 美女中出高潮动态图| 国产永久视频网站| 亚洲精品久久午夜乱码| 国产免费又黄又爽又色| 日韩精品有码人妻一区| 少妇熟女欧美另类| 夫妻性生交免费视频一级片| av天堂久久9| 另类精品久久| 插逼视频在线观看| 亚洲国产精品一区三区| 天天影视国产精品| 中文欧美无线码| av卡一久久| 国产色婷婷99| 精品国产一区二区久久| 狂野欧美白嫩少妇大欣赏| 日本黄色日本黄色录像| 男女边吃奶边做爰视频| 999精品在线视频| 美女脱内裤让男人舔精品视频| 国国产精品蜜臀av免费| 精品亚洲乱码少妇综合久久| 国产精品无大码| 欧美日韩国产mv在线观看视频| 成年女人在线观看亚洲视频| 精品国产乱码久久久久久小说| 五月天丁香电影| 一个人看视频在线观看www免费| 亚洲美女视频黄频| 在线观看www视频免费| 色94色欧美一区二区| 日本午夜av视频| 久久影院123| a 毛片基地| 久久久精品区二区三区| 国产免费又黄又爽又色| 黑丝袜美女国产一区| 亚洲综合色惰| 午夜91福利影院| 午夜精品国产一区二区电影| kizo精华| 国产黄频视频在线观看| 国产成人免费观看mmmm| 99久久综合免费| 特大巨黑吊av在线直播| 看免费成人av毛片| 日韩中字成人| 亚洲精品av麻豆狂野| 中文字幕免费在线视频6| 免费大片黄手机在线观看| 哪个播放器可以免费观看大片| 国产日韩一区二区三区精品不卡 | 亚洲图色成人| 国产免费现黄频在线看| 26uuu在线亚洲综合色| 成人无遮挡网站| 亚洲国产精品国产精品| 国产精品无大码| 99久国产av精品国产电影| 久久久久久久久久成人| a级毛片免费高清观看在线播放| 久久精品国产亚洲av天美| 日韩人妻高清精品专区| 午夜福利影视在线免费观看| 九草在线视频观看| av天堂久久9| 在线观看人妻少妇| 免费观看a级毛片全部| 老司机影院成人| www.av在线官网国产| 极品人妻少妇av视频| 国产高清国产精品国产三级| 只有这里有精品99| 五月玫瑰六月丁香| 中文字幕精品免费在线观看视频 | 国模一区二区三区四区视频| 麻豆乱淫一区二区| 亚洲怡红院男人天堂| 丰满迷人的少妇在线观看| 狠狠精品人妻久久久久久综合| 91精品三级在线观看| 男人操女人黄网站| 精品少妇久久久久久888优播| 麻豆精品久久久久久蜜桃| 午夜福利,免费看| 3wmmmm亚洲av在线观看| 91精品国产国语对白视频| 久久精品国产亚洲av天美| 国产免费一级a男人的天堂| 欧美另类一区| 欧美3d第一页| 色5月婷婷丁香| 男女啪啪激烈高潮av片| 一级a做视频免费观看| 日韩亚洲欧美综合| 一区二区日韩欧美中文字幕 | 午夜福利,免费看| 哪个播放器可以免费观看大片| 少妇猛男粗大的猛烈进出视频| 午夜福利视频在线观看免费| 91久久精品国产一区二区三区| 一本一本综合久久| 免费人成在线观看视频色| 亚洲精品日韩在线中文字幕| 91在线精品国自产拍蜜月| 久久久久久人妻| 肉色欧美久久久久久久蜜桃| 国产一区二区在线观看日韩| 男男h啪啪无遮挡| 男人添女人高潮全过程视频| 汤姆久久久久久久影院中文字幕| 午夜福利视频精品| 久久久久久久亚洲中文字幕| 国产精品 国内视频| 男男h啪啪无遮挡| av专区在线播放| 18在线观看网站| 国产成人av激情在线播放 | 黑人巨大精品欧美一区二区蜜桃 | 欧美亚洲 丝袜 人妻 在线| 人人妻人人添人人爽欧美一区卜| 久久精品国产亚洲av天美| 午夜福利网站1000一区二区三区| av天堂久久9| 精品人妻一区二区三区麻豆| 亚洲国产精品一区二区三区在线| 国产视频首页在线观看| 午夜精品国产一区二区电影| 日本黄大片高清| 亚洲美女视频黄频| 啦啦啦视频在线资源免费观看| 新久久久久国产一级毛片| 欧美日韩综合久久久久久| 26uuu在线亚洲综合色| 最近中文字幕高清免费大全6| 午夜激情福利司机影院| 国产探花极品一区二区| 视频区图区小说| 校园人妻丝袜中文字幕| 日韩一区二区三区影片| 午夜视频国产福利| 日韩一本色道免费dvd| 欧美少妇被猛烈插入视频| 插阴视频在线观看视频| 欧美丝袜亚洲另类| 亚洲在久久综合| 欧美最新免费一区二区三区| 视频区图区小说| 国产精品久久久久成人av| 成年女人在线观看亚洲视频| 成人毛片60女人毛片免费| 免费观看无遮挡的男女| 乱码一卡2卡4卡精品| 午夜福利网站1000一区二区三区| 日韩中文字幕视频在线看片| 热re99久久精品国产66热6| 夜夜爽夜夜爽视频| 国产精品 国内视频| 亚洲,一卡二卡三卡| 国产日韩欧美亚洲二区| 久久久久国产网址| 精品久久国产蜜桃| 日韩 亚洲 欧美在线| 亚洲无线观看免费| 国产成人91sexporn| 欧美3d第一页| 中文天堂在线官网| 国产亚洲最大av| 国产亚洲精品第一综合不卡 | 如日韩欧美国产精品一区二区三区 | a级毛片在线看网站| 美女xxoo啪啪120秒动态图| 免费黄网站久久成人精品| 午夜福利在线观看免费完整高清在| 亚洲欧洲精品一区二区精品久久久 | 99九九线精品视频在线观看视频| 午夜精品国产一区二区电影| 色94色欧美一区二区| 国产精品国产三级国产av玫瑰| 婷婷成人精品国产| 久久久久久久久久人人人人人人| 精品久久久久久久久av| 国产精品99久久99久久久不卡 | 国产一区二区在线观看日韩| 亚洲欧美清纯卡通| 国产淫语在线视频| 最新的欧美精品一区二区| 在线观看美女被高潮喷水网站| 蜜桃国产av成人99| 国产有黄有色有爽视频| 国产综合精华液| 少妇精品久久久久久久| 亚洲色图 男人天堂 中文字幕 | av免费观看日本| 日日摸夜夜添夜夜爱| 亚洲国产精品国产精品| 制服丝袜香蕉在线| 亚洲精品国产色婷婷电影| 成人影院久久| 午夜激情av网站| 国产毛片在线视频| 又大又黄又爽视频免费| 国产精品久久久久成人av| 日韩在线高清观看一区二区三区| 国产国语露脸激情在线看| 中文字幕精品免费在线观看视频 | 在线观看人妻少妇| 天天操日日干夜夜撸| 青春草亚洲视频在线观看| 亚洲国产成人一精品久久久| 亚洲国产精品一区二区三区在线| 丰满迷人的少妇在线观看| 久久精品国产鲁丝片午夜精品| 成年美女黄网站色视频大全免费 | 女性生殖器流出的白浆| 男女高潮啪啪啪动态图| 自线自在国产av| 国产午夜精品久久久久久一区二区三区| 91精品国产国语对白视频| 涩涩av久久男人的天堂| 22中文网久久字幕| 欧美性感艳星| 新久久久久国产一级毛片| 亚洲av国产av综合av卡| 青青草视频在线视频观看| 精品亚洲成国产av| 最新的欧美精品一区二区| 少妇猛男粗大的猛烈进出视频| 精品人妻一区二区三区麻豆| 日韩人妻高清精品专区| 99久久综合免费| 美女中出高潮动态图| 亚洲一级一片aⅴ在线观看| 欧美精品高潮呻吟av久久| 自拍欧美九色日韩亚洲蝌蚪91| 狠狠精品人妻久久久久久综合| 日韩av在线免费看完整版不卡| 国语对白做爰xxxⅹ性视频网站| 尾随美女入室| 99热国产这里只有精品6| 久久久久精品性色| 亚洲中文av在线| 亚洲情色 制服丝袜| 美女中出高潮动态图| 亚洲天堂av无毛| 一本一本综合久久| 精品少妇黑人巨大在线播放| 最近最新中文字幕免费大全7| 飞空精品影院首页| 日本黄大片高清| av国产精品久久久久影院| 人妻 亚洲 视频| 国产成人免费观看mmmm| 中文字幕亚洲精品专区| 男女啪啪激烈高潮av片| 插阴视频在线观看视频| 成年人免费黄色播放视频| 夫妻午夜视频| 亚洲av成人精品一区久久| 成人黄色视频免费在线看| 观看美女的网站| 久久久久久久国产电影| 国产精品久久久久久久电影| 亚洲av电影在线观看一区二区三区| 国产色爽女视频免费观看| 亚洲av男天堂| 亚洲精品乱码久久久v下载方式| 日产精品乱码卡一卡2卡三| 久久精品夜色国产| 天天操日日干夜夜撸| 午夜老司机福利剧场| 高清午夜精品一区二区三区| a级毛片黄视频| 亚洲精品乱码久久久久久按摩| 国产视频内射| 人人妻人人澡人人看| 日本91视频免费播放| 少妇的逼好多水| 国产精品不卡视频一区二区| 91精品国产国语对白视频| 国产熟女欧美一区二区| 国产黄色视频一区二区在线观看| 亚洲精品日韩av片在线观看| 中文字幕人妻熟人妻熟丝袜美| 日韩中文字幕视频在线看片| 国产又色又爽无遮挡免| 国产av国产精品国产| 久久女婷五月综合色啪小说| 男女无遮挡免费网站观看| 制服丝袜香蕉在线| 一二三四中文在线观看免费高清| 欧美变态另类bdsm刘玥| 国产欧美另类精品又又久久亚洲欧美| 国产欧美日韩一区二区三区在线 | 狂野欧美激情性bbbbbb| 天堂中文最新版在线下载| 亚洲综合精品二区| 国产免费现黄频在线看| 一区二区三区四区激情视频| 亚洲性久久影院| 国产亚洲欧美精品永久| 国产无遮挡羞羞视频在线观看| 久久99一区二区三区| 成人无遮挡网站| 99re6热这里在线精品视频| 亚洲精品国产色婷婷电影| 日韩一区二区视频免费看| 国产成人精品婷婷| 亚洲国产欧美日韩在线播放| 午夜日本视频在线| 国产亚洲精品久久久com| 99国产综合亚洲精品| 国产免费一区二区三区四区乱码| 亚洲,欧美,日韩| 亚洲欧洲日产国产| 免费黄频网站在线观看国产| 亚洲欧洲国产日韩| 亚洲精品456在线播放app| a级毛片在线看网站| av不卡在线播放| 黄色一级大片看看| 视频中文字幕在线观看| 亚洲性久久影院| 久久综合国产亚洲精品| 国产av一区二区精品久久| 一边亲一边摸免费视频| 国产日韩欧美亚洲二区| 亚洲美女视频黄频| 成年av动漫网址| 国产极品粉嫩免费观看在线 | 国产成人一区二区在线| 日韩三级伦理在线观看| 亚洲精品456在线播放app| av在线观看视频网站免费| 精品人妻熟女av久视频| 三级国产精品欧美在线观看| 美女内射精品一级片tv| 国产欧美亚洲国产| 亚洲色图综合在线观看| 国产在线视频一区二区| 久久精品久久精品一区二区三区| 欧美+日韩+精品| 视频中文字幕在线观看| 国产探花极品一区二区| 高清欧美精品videossex| 久久久午夜欧美精品| 三上悠亚av全集在线观看| 中文精品一卡2卡3卡4更新| 只有这里有精品99| 亚洲国产色片| 国产成人精品久久久久久| 啦啦啦视频在线资源免费观看| 中国美白少妇内射xxxbb| 国产精品欧美亚洲77777| 成人综合一区亚洲| 有码 亚洲区| 男人添女人高潮全过程视频| 亚洲精品色激情综合| 欧美97在线视频| 日本vs欧美在线观看视频| 国产在线一区二区三区精| 国产精品秋霞免费鲁丝片| 久久精品国产a三级三级三级| 一区二区av电影网| 香蕉精品网在线| av免费观看日本| 精品99又大又爽又粗少妇毛片| 日本wwww免费看| 国产在线一区二区三区精| 少妇丰满av| 国产乱人偷精品视频| 国产极品粉嫩免费观看在线 | 国产免费现黄频在线看| 99九九在线精品视频| 十八禁网站网址无遮挡| 中国国产av一级| 久久久久久久久久成人| 亚洲色图综合在线观看| 成人亚洲欧美一区二区av| av女优亚洲男人天堂| 亚洲精品亚洲一区二区| 久久精品国产亚洲网站| 免费高清在线观看视频在线观看| 少妇熟女欧美另类| 久久久午夜欧美精品| 久久精品久久久久久久性| 国产一区二区三区av在线| 天堂俺去俺来也www色官网| 久久99精品国语久久久| 亚洲成人一二三区av| 亚洲熟女精品中文字幕| 精品99又大又爽又粗少妇毛片| 国产国语露脸激情在线看| 极品少妇高潮喷水抽搐| 亚洲精品色激情综合| 成年女人在线观看亚洲视频| 一级a做视频免费观看| 中国美白少妇内射xxxbb| 亚洲,一卡二卡三卡| 免费看光身美女| 日日爽夜夜爽网站| 久久精品人人爽人人爽视色| 午夜福利影视在线免费观看| 亚洲欧美精品自产自拍| a 毛片基地| 黄片无遮挡物在线观看| 免费黄网站久久成人精品| 美女国产视频在线观看| 亚洲欧美色中文字幕在线| 丰满乱子伦码专区| 国产伦理片在线播放av一区| 久久 成人 亚洲| 全区人妻精品视频| 我要看黄色一级片免费的| 亚洲欧美精品自产自拍| 国产精品久久久久久精品电影小说| 亚洲av欧美aⅴ国产| 建设人人有责人人尽责人人享有的| 91国产中文字幕| 国产无遮挡羞羞视频在线观看| 亚洲天堂av无毛| 亚洲国产精品国产精品| 亚州av有码| 两个人免费观看高清视频| 91在线精品国自产拍蜜月| 国产精品一区二区在线观看99| 日韩免费高清中文字幕av| 九九在线视频观看精品| 丰满少妇做爰视频| 男女免费视频国产| 秋霞在线观看毛片| 街头女战士在线观看网站| 狠狠精品人妻久久久久久综合| 日日撸夜夜添| av专区在线播放| 国产综合精华液| 成人亚洲欧美一区二区av| 最近手机中文字幕大全| 亚洲av欧美aⅴ国产| 建设人人有责人人尽责人人享有的| 如日韩欧美国产精品一区二区三区 | a级毛色黄片| 成人国产麻豆网| 少妇精品久久久久久久| 国产精品三级大全| 91精品一卡2卡3卡4卡| 亚洲情色 制服丝袜| 欧美激情极品国产一区二区三区 | 国产精品嫩草影院av在线观看| 久久免费观看电影| 性色av一级| 久久精品久久久久久噜噜老黄| 国产日韩欧美在线精品| 中国国产av一级|