• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The ligand coordination approach for improving the stability of low-mercury catalyst in the hydrochlorination of acetylene☆

    2017-05-30 02:11:17XiaolongXuHaihuaHeJiaZhaoBailinWangShanchuanGuXiaonianLi

    Xiaolong Xu,Haihua He,Jia Zhao,Bailin Wang,Shanchuan Gu,Xiaonian Li*

    Institute of Industrial Catalysis of Zhejiang University of Technology,State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,Hangzhou 310032,China

    1.Introduction

    Vinyl chloride monomer(VCM)is mainly used for the production of polyvinyl chloride(PVC),which is one of the five general resins and widely applied in the fields of industry,agriculture,and building materials[1].Generally,VCM is industrially synthesized by the dehydrochlorination of dichloroethane or the hydrochlorination of acetylene[2,3].The hydrochlorination of acetylene has received much attention in countries with large reserves of coal[4].For instance,the manufacture of PVCviathe hydrochlorination of acetylene accounts for about 70%of the total PVC production capacity in China[5].

    In the industrial process of the hydrochlorination of acetylene,acetylene(C2H2)reacts with anhydrous hydrogen chloride(HCl)to obtain VCM under the catalysis of mercuric chloride(HgCl2)supported on activated carbon at optimum temperature range of 170–180 °C[6].However,HgCl2(B.P.=302°C)volatilizes easily from the surface ofactivated carbon underreaction conditions[7].Meanwhile,HgCl2ishighly toxic.Loss of HgCl2not only leads to an irreversible deactivation of the catalyst but also threatens to the environment and human health.Therefore,it is urgent to explore new types of environment-friendly non-mercury catalysts to replace mercury catalyst from the view of sustainable development of PVC industry.Based on the correlation of hydrochlorination activity of metal chlorides supported on activated carbon with the standard reduction potential[8],scholars focuses their attention on Au3+[9–13],Pd2+[14–16],Ru3+[17,18],and Ptδ+[19,20],etal.Nevertheless,these non-mercury catalysts cannotsimultaneously satisfy the requirements of high activity and favorable stability for industrialcatalyst.Thus activated carbon supported mercuric chloride(HgCl2/AC)has still been used as the catalyst for the hydrochlorination of acetylene by most of PVC enterprises.Consequently,aiming at the problems of the instability of HgCl2/AC,it's necessary to make improvement in the stability of mercury catalyst.Herein,how to inhibit the sublimation of the mercury species is the key to improving the stability of mercury catalyst.Xin Huang employed carbon-mixing expanded multilayered vermiculite(EML-VMT-C)as the high-mercury catalyst support and the as-obtained catalyst showed good stability for acetylene hydrochlorination[21].But vermiculite has low specific surface area[22],not in favor of the dispersion of active components.Furthermore,carbon deposition in the form of polymerization of acetylene would happen on non-carbon supports in the hydrochlorination of acetylene[23].Besides,some kinds of metal chlorides such as CdCl2[24],CsCl[25],BiCl3,CeCl3and KCl[26],were used as additives to improve the stability of mercury catalyst and reduce the amount of HgCl2effectively.However,itis worth noting thatloss ofHgCl2stillexists in the operating cycle of low mercury catalyst significantly[27].Hence,to improve the stability of mercury catalyst for the hydrochlorination of acetylene presently should focus on designing more stable active component.

    The catalyst stability also puzzles the development of Au-based catalyst in the hydrochloriantion of acetylene.It has come to our notice that,in order to improve the stability of Au-based catalyst for acetylene hydrochlorination,Hutchings attempted to search or synthesize some gold complexes as the active precursor from the view of stability constant[28].Using Au(S2O3)32?with higher stability constant than AuCl?4as the active gold precursor could suppress the reduction of oxidized gold species effectively.Thus,we consider that whether this method to stabilize the gold species is valid for stabilizing mercury catalyst for acetylene hydrochlorination.Hg2+can react with halogen anions(Cl?,Br?,I?),forming a series of coordination ions(HgX24?,X=Cl,Br,I)with different stability constants and the stability of the coordination ions is enhanced in the orderofCl,Br,and I[29].In this paper,we have prepared some low-mercury catalysts(4%HgCl2loading),using potassium halides(KCl and KI)as additives.The results showed that the low-mercury catalyst HgCl2-4KI/AC performed better stability than HgCl2-4KCl/AC and HgCl2/AC under the acetylene hydrochlorination reaction conditions.The order of sublimation rates of HgCl2from the catalysts is:HgCl2-4KI/AC<HgCl2-4KCl/AC<HgCl2/AC,indicating that the HgCl2-4KI/AC catalyst using K2HgI4with larger stability constant as the main active component had better thermal stability.

    2.Experimental

    2.1.Pretreatment of activated carbon support

    A commercial activated carbon(Norit ROX 0.8)was used as the support.Activated carbon was firstly washed with concentrated nitric solution(HNO3,65%–68%)at room temperature for 1 h to remove the contained impurities,then filtered and washed with deionized water to neutral and dried at 110°C for 12 h in the air.

    2.2.Catalyst preparation

    Taking into account the depletion and limited use of mercury resources,low-mercury(4 wt%HgCl2loading)catalyst was chose as the research object.The incipient wetness impregnation method was employed to prepare the catalysts.Firstly,HgCl2(0.2 g,GR,≥99.9%,Xiya Reagent)and KX(0.2197 g KCl,or 0.4891 g KI,n(HgCl2):n(KX)=1:4,X=Cl,I)were dissolved in deionized water(9 ml).Then,the mixed solution was added dropwise to the pretreated activated carbon(5 g)with stirring.After placed overnight,the catalyst was dried at 110°C for 12 h in the air.The as-prepared catalysts were labeled as HgCl2-4KCl/AC and HgCl2-4KI/AC,respectively.The same procedure was applied to prepare the pure HgCl2/AC catalyst.

    2.3.Sublimation rate measurements of HgCl2

    The sublimation rate measurements of HgCl2were carried outas described in the chemical industry standard of the People's Republic of China HG/T 4192-2011[30].The fresh catalyst(0.6 g)was set into a tubular reactor(Ф10 mm × 400 mm)and heated up to 250 °C.Nitrogen with a flow rate of 6 ml·min?1was fed into the reactor for 3 h before the catalyst was taken out to be analyzed.The content of HgCl2in the catalyst was analyzed by titration with C5H10NS2Na.After ground,screened with 80 mesh sieve and dried to constant weight,the sample(0.5 g)was put into a 250 ml flask with a re flux condenser.10 wt%NaCl solution(10 ml)and aqua regia(10 ml)were added before the flask was heated to boiling for 15 min.The mixture was filtrated and the obtained filtrate was titrated with standard C5H10NS2Na solution.Considering the easy sublimation of mercuric chloride and the high temperature during drying process,the real contents of HgCl2in fresh catalysts were determined by the same titration method above.

    2.4.Catalyst characterization

    X-ray diffraction(XRD)patterns of the catalysts were conducted on a PANalytical X'Pert diffractometer using a Cu Kα radiation(λ=0.1541 nm)in a scanning range of2θ=10°–80°thatwas operated at the voltage of 40 kV and the current of 40 mA.The morphology and components of the catalysts was characterized by using a transmission electronic microscope(TEM,Philips-FEI Tecnai G2 F30 S-Twin)equipped with high-angle annular dark- field(HAADF)detector and EDX spectroscopy.

    2.5.Catalytic performance evaluation

    Catalytic performance was carried out in a fixed bed reactor(i.d.10 mm).The temperature of the reactor was regulated by an AI-808P temperature controller(Xiamen Yudian Automation Technology Co.,Ltd.).Firstly,nitrogen gas(6 ml·min?1)was fed into the reactor containing catalyst(0.82 g)to eliminate water and air in the reaction system.After the reactor was heated up to 220°C,switch nitrogen gas to HCl gas(6 ml·min?1),which was controlled by a calibrated mass flow controller(Beijing Sevenstar Electronics Co.,Ltd.),passing through the catalyst bed and activating the catalyst for 0.5 h.Then,pretreated by saturated K2Cr2O7solution and concentrated sulfuric acid successively to eliminate the contained H2Sand H3Pimpurities,C2H2(5 ml·min?1)wasfed through anothercalibrated mass flowcontrollerand mixed with HClbefore passing through the reactor.Here,the gas hourly space velocity(GHSV)of C2H2is 180 h?1.The exit gas mixture was passed through an absorption bottle containing saturated NaOH solution to absorb excess HCl.The compositions of the product were analyzed using an online gas chromatography(GC 9790,Zhejiang Fuli Analytical Instruments Co.,Ltd.)equipped with flame ionization detection(FID).Chromatographic separation and identification of the compositions was determined by using a Porapak N packed column(6 ft.×1/800 stainless steel).The conversion of C2H2and the selectivity to VCM were de fined by the following equations.

    In the above equations,FA0,FA,andFVCMrepresent the volume fraction of acetylene in the raw gas,the volume fraction of remaining acetylene in the product mixture gas,and the volume fraction of VCM in the product mixture gas,respectively.

    3.Results and Discussion

    3.1.Characterization

    3.1.1.Crystal phase analysis

    The X-ray diffraction patternsof the above three catalysts are shown in Fig.1.Itcan be seen thatthere are no obvious detectable re flections of Hg species,such as HgCl2,K2HgCl4,or K2HgI4,in the patterns.Itindicates that the active components are highly dispersed on the surface of activated carbon.According to Xie's findings[31],HgCl2,K2HgCl4and K2HgI4may disperse as a monolayer on the surface of the support because these substances are all salts.The extra KCl is generated when HgCl2reactswith excess KX.There were no diffraction peaks ofKCl,suggesting that the extra KCl is also highly dispersed.

    3.1.2.Morphology of HgCl2-4KI/AC

    In our previous study,when CsClwas used as an additive to be added into the low-mercury catalyst,the elements of Hg and Cl were homogeneously distributed on the surface of activated carbon[25].Therefore,we speculate that the distribution of Hg and Cl on the HgCl2-4KCl/AC catalyst is the same as that on Hg-Cs/AC catalyst.Fig.2 shows the mapping photographs of several major elements on HgCl2-4KI/AC.The mapping characterization displays that the elements of Hg and I are in homogeneous distribution on the surface of the support as well as K and Cl,and no obvious particles exist on the surface of activated carbon.It indicates that there are some interactions between HgCl2and excess KI,hinting the generation of K2HgI4,which is the active component of the HgCl2-4KI/AC catalyst.

    3.2.Catalytic properties

    3.2.1.The effect of KX on the performance of HgCl2/AC

    In order to investigate the catalytic stability,the three catalysts were evaluated for 50 h under fixed acetylene hydrochlorination reaction conditions at 220°C,an acetylene gas hourly velocity(C2H2)of 180 h?1,and a fed volume ratioV(HCl)/V(C2H2)of1.2.The catalytic performances of the three catalysts were shown in Fig.3.The selectivity to VCM was all above 99.5%over the three catalysts.Although HgCl2/AC showed the highest hydrochlorination activity with C2H2conversion of 85.12%,it deactivated rapidly with an average deactivation rate of 0.49%·h?1.The deactivation rates of HgCl2-4KCl/AC and HgCl2-4KI/AC were 0.30%·h?1and 0.10%·h?1,respectively,smaller than that of HgCl2/AC.HgCl2-4KCl/AC and HgCl2-4KI/AC exhibited better catalytic stability than HgCl2/AC.

    Fig.1.X-ray diffraction patterns of HgCl2/AC,HgCl2-4KCl/AC,and HgCl2-4KI/AC.

    Fig.3.The catalytic performances of three low-mercury catalysts in acetylene hydrochlorination.(6 ml·min?1 HCl,5 ml·min?1 C2H2,0.82 g Cat.,T=220 °C).

    3.2.2.The effect of variation of the active species on the performance of HgCl2/AC

    Fig.2.HAADF image together with the EDS mapping of the HgCl2-4KI/AC catalyst.

    Because ofthe formation of the excess KCl in HgCl2-4KX/AC,in order to investigate the intrinsic stability of the active component K2HgX4in the catalyst,we prepared some catalysts using pure K2HgX4(X=Cl,I)as precursor without excess KCl.The K2HgCl4/AC catalyst was prepared using 0.2 g HgCl2and 0.1099 g KCl(n(HgCl2):n(KCl)=1:2)as precursor.The K2HgI4/AC catalyst was prepared as follows:Firstly,the red deposit HgI2was obtained by reacting 0.2 g HgCl2with 0.2446 g KI(n(HgCl2):n(KI)=1:2),and washed with deionized water to eliminate K+and Cl?.Then,the K2HgI4/AC catalyst was got by using the as-prepared HgI2and 0.2446 g KI(n(HgI2):n(KI)=1:2)as precursor.The K2HgCl4-K2HgI4/AC catalyst was prepared by step impregnating method.The catalytic performances of the three catalysts were shown in Fig.4.We could see from Fig.4 that the three catalysts showed similar highest activity,about 78%-80%of acetylene conversion at the C2H2GHSV of 180 h?1and 220 °C.With the active component varying from K2HgCl4to K2HgI4,the stability of the catalyst was improved.The catalytic performances stated clearly that K2HgI4had better stability than K2HgCl4under acetylene hydrochlorination reaction conditions.

    Fig.4.The catalytic performances of K2HgX4/AC in acetylene hydrochlorination.(6 ml·min?1 HCl,5 ml·min?1 C2H2,0.82 g Cat.,T=220 °C).

    The reason why HgCl2-4KI/AC showed the bestcatalytic stability can be stated as below.Hg2+can react with halogen anions(Cl?,Br?,I?),forming a series of coordination ions(HgX42?,X=Cl,Br,I)with different stability constants.The chemical equations for the reactions of Hg2+and halogen ions to form a variety of coordination ions and corresponding stability constants ofthe coordination ions are listed in Table 1[29].As can be seen from Table 1,the active components of HgCl2/AC,HgCl2-4KCl/AC,and HgCl2-4KI/AC may be HgCl2,K2HgCl4and K2HgI4,respectively.The stability constant of HgI42?is 7.2×1029,far greater than that of HgCl42?,1.6×1015.According to the Principle of Hard and Soft Acids and Bases(HSAB)[32,33],hard acids prefer to bind to hard bases and soft acids prefer to bind to soft bases.Soft acids form stable complexes with bases that are highly polarizable.Hg2+is a soft acid with high polarizability.I?is a soft acid and Cl?is a hard acid.The large radius and loose electron cloud of I?results in high polarization degree of Hg--I bond and the nature of Hg--I bond is close to covalent bond.Cl?has small ionic radius,difficult to form stable covalent bond.The high polarizability of Hg2+makes the Hg--Cl bond difficult to form stable ionic bond.Therefore,the stability of HgI42?is better than that of HgCl42?.Likewise,the order of the thermal stabilities of HgCl2/AC,HgCl2-4KCl/AC and HgCl2-4KI/AC can be judged based on the stability constants.

    Table 1The stability constants ofcoordination ions formed by reacting Hg2+with Cl?,Br?,and I?,respectively

    3.3.The average sublimation rate of HgCl2

    The orderofthe sublimation ratesofHgCl2for HgCl2/AC,HgCl2-4KCl/AC and HgCl2-4KI/AC can be predicted based on the stability constants in Table 1.The specific sublimation rates of HgCl2for the three catalysts are also compared in Table 2.As we can see from Table 2,the sublimation ofHgCl2for HgCl2/AC is the fastestwith the average HgCl2sublimation rate of 47.78 × 10?3mg·g?1·min?1and the sublimation of HgCl2for HgCl2-4KI/AC is slower than HgCl2-4KCl/AC at 250°C.The average HgCl2sublimation rate of HgCl2-4KCl/AC is 20 × 10?3mg·g?1·min?1,about 5/12 of that of HgCl2/AC.The average HgCl2sublimation rate of HgCl2-4KI/AC is 2.22 × 10?3mg·g?1·min?1,about 1/22 of that of HgCl2/AC and 1/9 of that of HgCl2-4KCl/AC.Loss percentage of HgCl2from the HgCl2-4KI/AC catalyst is 1.02%,less than 3%[30],which satis fies the requirement for industrial catalyst.The data in Table 2 reveal that the addition of KI further promotes the inhibition of sublimation of HgCl2from the low-mercury catalyst compared with the addition of KCl.The order of the average HgCl2sublimation rate is opposite to the order of stability constant of active components.

    Table 2Comparison of the average HgCl2 sublimation rates of HgCl2/AC,HgCl2-4KCl/AC,and HgCl2-4KI/AC

    4.Conclusions

    A ligand coordination approach was employed to enhance the stability of low-mercury catalyst for the hydrochlorination of acetylene.According to the Principle of Hard and Soft Acids and Bases(HSAB),a more stable low-mercury catalyst(4%HgCl2loading),HgCl2-4KI/AC,was successfully prepared by using HgCl2and KIas precursors.The active component of the HgCl2-4KI/AC catalyst was K2HgI4,highly dispersed on the surface of activated carbon.The HgCl2-4KI/AC catalyst showed better catalytic stability than HgCl2/AC and HgCl2-4KCl/AC for the hydrochloriantion of acetylene under fixed acetylene hydrochlorination reaction conditions at 220°C,an acetylene gas hourly velocity(C2H2)of 180 h?1,and a fed volume ratioV(HCl)/V(C2H2)of 1.2.The comparison of the HgCl2sublimation rates for three catalysts indicated that the HgCl2-4KI/AC catalyst had best thermal stability than HgCl2/AC and HgCl2-4KCl/AC.This approach points out the direction to designing more stable mercury catalyst for the hydrochlorination of acetylene.

    [1]T.Yang,Production,application and prospect of PVC resin in China,China Plast.22(2)(2008)1–8(in Chinese).

    [2]Q.S.Han,F.Sun,Contrast analysis on PVC produced by ethylene method and acetylene method,Polyvinyl Chloride37(9)(2009)5–7(in Chinese).

    [3]F.Z.Xin,Contrast of vinyl chloride production processes,Yunnan Chem.Technol.37(1)(2010)65–67(in Chinese).

    [4]X.B.Wei,H.B.Shi,W.Z.Qian,G.H.Luo,Y.Jin,F.Wei,Gas-phase catalytic hydrochlorination of acetylene in a two-stage fluidized-bed reactor,Ind.Eng.Chem.Res.48(1)(2009)128–133.

    [5]J.L.Bing,C.Z.Li,Review on development of China's PVC industry in the past 10 years and analysis on the trends in the year 2010,Polyvinyl Chloride39(5)(2001)1–8(in Chinese).

    [6]J.L.Zhang,N.Liu,W.Li,B.Dai,Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts,Front.Chem.Sci.Eng.5(4)(2011)514–520.

    [7]G.J.Hutchings,D.T.Grady,Effect of drying conditions on carbon supported mercuric chloride catalysts,Appl.Catal.16(1985)411–415.

    [8]G.J.Hutchings,Vapor phase hydrochlorination of acetylene:Correlation of catalytic activity of supported metal chloride catalysts,J.Catal.96(1985)292–295.

    [9]K.Zhou,W.Wang,Z.Zhao,G.H.Luo,J.T.Miller,M.S.Wong,F.Wei,Synergistic Gold-Bismuth catalysis for non-mercury hydrochlorination of acetylene to vinyl chloride monomer,ACS Catal.4(2014)3112–3116.

    [10]K.Zhou,J.C.Jia,C.H.Li,H.Xu,J.Zhou,G.H.Luo,F.Wei,A low content Au-based catalyst for hydrochlorination of C2H2and its industrial scale-up for future PVC processes,Green Chem.17(2015)356–364.

    [11]J.Zhao,J.T.Xu,J.H.Xu,J.Ni,T.T.Zhang,X.L.Xu,X.N.Li,Activated-carbon-supported gold-cesium(I)as highly effective catalysts for hydrochlorination of acetylene to vinyl chloride,ChemPlusChem80(2015)196–201.

    [12]J.Zhao,J.T.Xu,J.H.Xu,T.T.Zhang,X.X.Di,J.Ni,X.N.Li,Enhancement of Au/AC acetylene hydrochlorination catalyst activity and stability via nitrogen-modified activated carbon support,Chem.Eng.J.262(2015)1152–1160.

    [13]J.Zhao,S.C.Gu,X.L.Xu,T.T.Zhang,Y.Yu,X.X.Di,J.Ni,Z.Y.Pan,X.N.Li,Supported ionic-liquid-phase-stabilized Au(III)catalyst for acetylene hydrochlorination,Catal.Sci.Technol.6(2016)3263–3270.

    [14]S.A.Mitchenko,T.V.Krasnyakova,I.V.Zhikharev,Catalytic hydrochloriantion of acetylene on mechanochemically-activated K2PdCl4,Theor.Exp.Chem.44(5)(2008)316–319.

    [15]L.Wang,F.Wang,J.D.Wang,X.L.Tang,Y.L.Zhao,D.Yang,F.M.Jia,T.Hao,Hydrochlorination of acetylene to vinyl chloride over Pd supported on zeolite Y,React.Kinet.Mech.Catal.110(2013)187–194.

    [16]L.Wang,F.Wang,J.D.Wang,Non-mercury catalytic acetylene hydrochlorination over a NH4F-urea-modified Pd/HY catalyst for vinyl chloride monomer production,New J.Chem.40(2016)3019–3023.

    [17]Y.F.Pu,J.L.Zhang,L.Yu,Y.H.Jin,W.Li,Active ruthenium species in acetylene hydrochlorination,Appl.Catal.A Gen.488(2014)28–36.

    [18]G.B.Li,W.Li,H.Y.Zhang,Y.F.Pu,M.X.Sun,J.L.Zhang,Non-mercury catalytic acetylene hydrochlorination over Ru catalysts enhanced by carbon nanotubes,RSC Adv.5(2015)9002–9008.

    [19]S.A.Mitchenko,T.V.Krasnyakova,R.S.Mitchenko,A.N.Korduban,Acetylene catalytic hydrochlorination over powder catalyst prepared by pre-milling of K2PtCl4salt,J.Mol.Catal.A Chem.275(2007)101–108.

    [20]S.A.Mitchenko,E.V.Khomutov,A.A.Shubin,Y.M.Shul'ga,Catalytic hydrochlorination ofacetylene by gaseous HClon the surface ofmechanically pre-activated K2PtCl6salt,J.Mol.Catal.A Chem.212(2004)345–352.

    [21]X.Huang,F.Yu,M.Y.Zhu,F.H.Ouyang,B.Dai,J.M.Dan,Hydrochlorination of acetylene using expanded multilayered vermiculite(EML-VMT)-supported catalysts,Chin.Chem.Lett.26(2015)1101–1104.

    [22]J.Zhang,T.Y.Liu,R.Chen,X.H.Liu,Vermiculite as a natural silicate crystal for hydrogen generation from photocatalytic splitting of water under visible light,RSC Adv.4(2014)406–408.

    [23]L.L.Xu,X.G.Wang,H.Y.Zhang,B.Dai,Z.Y.Liu,Q.F.Zhang,Application of a novel carbon carrier in acetylene hydrochlorination,Chem.Ind.Eng.Prog.30(2011)536–541(in Chinese).

    [24]M.H.Chen,K.Xu,J.X.Liao,X.H.Chen,Effects of Cd cocatalytic mechanism in multielement catalytic system on performance of low-level mercury catalyst,Polyvinyl Chloride42(5)(2014)26–29(in Chinese).

    [25]X.L.Xu,J.Zhao,C.S.Lu,T.T.Zhang,X.X.Di,S.C.Gu,X.N.Li,Improvement of the stability of Hg/AC catalysts by CsCl for the high-temperature hydrochlorination of acetylene,Chin.Chem.Lett.27(2016)822–826.

    [26]Y.Zhou,Q.Yang,Q.Luo,W.W.Jiang,Preparation and optimization of a new-type low-mercury catalyst for hydrochlorination of acetylene,Appl.Chem.Ind.40(12)(2011)2147–2150(in Chinese).

    [27]Z.Q.Chen,X.Y.Ma,Application of environmental low-mercury catalyst,China Chlor-Alkali6(2009)9–11(in Chinese).

    [28]P.Johnston,N.Carthey,G.J.Hutchings,Discovery,development,and commercialization of gold catalysts for acetylene hydrochlorination,J.Am.Chem.Soc.137(2015)14548–14557.

    [29]X.J.Liu,Y.F.Zhu,F.Gao,Inorganic Element Chemistry,Science Press,Beijing,2010(in Chinese).

    [30]China Chlor-Alkali Industry Association,HG/T 4192–2011,Low-Level Mercury Catalyst for Chloroethylene Synthesis,Chemical Industry Press,Beijing,2011(in Chinese).

    [31]Y.C.Xie,N.F.Yang,Y.J.Liu,Y.Q.Tang,Spontaneous dispersion of some active components onto the surfaces of carriers,Sci.Sinica26(1983)337–350.

    [32]R.G.Pearson,Hard and soft acids and bases,HSAB,part I fundamental principles,J.Chem.Educ.45(9)(1965)581–587.

    [33]R.G.Pearson,Hard and soft acids and bases,HSAB,part II underlying theories,J.Chem.Educ.45(10)(1968)643–648.

    成年女人毛片免费观看观看9| 男女下面插进去视频免费观看| 在线观看一区二区三区| 国产av在哪里看| 国产精品综合久久久久久久免费 | 在线国产一区二区在线| 制服人妻中文乱码| 国产成人欧美在线观看| 久久精品成人免费网站| а√天堂www在线а√下载| or卡值多少钱| 19禁男女啪啪无遮挡网站| 欧美激情 高清一区二区三区| 午夜福利18| 午夜视频精品福利| 亚洲五月色婷婷综合| 成人永久免费在线观看视频| 亚洲av片天天在线观看| 淫妇啪啪啪对白视频| 成人亚洲精品av一区二区| 两人在一起打扑克的视频| 久久香蕉激情| 如日韩欧美国产精品一区二区三区| 日本a在线网址| av在线天堂中文字幕| 亚洲精品粉嫩美女一区| 免费高清视频大片| 国产精品,欧美在线| 88av欧美| АⅤ资源中文在线天堂| 黄频高清免费视频| 午夜亚洲福利在线播放| 亚洲欧美日韩另类电影网站| 午夜精品国产一区二区电影| 一a级毛片在线观看| 99精品欧美一区二区三区四区| 99国产综合亚洲精品| 男人的好看免费观看在线视频 | 欧美日韩精品网址| 一区二区三区高清视频在线| 亚洲美女黄片视频| 岛国视频午夜一区免费看| 亚洲九九香蕉| 成人亚洲精品一区在线观看| 性色av乱码一区二区三区2| 成年人黄色毛片网站| 老司机午夜十八禁免费视频| 极品人妻少妇av视频| 成熟少妇高潮喷水视频| 美女扒开内裤让男人捅视频| 精品久久蜜臀av无| 日本五十路高清| 欧美一区二区精品小视频在线| 午夜视频精品福利| 波多野结衣高清无吗| 国产野战对白在线观看| 神马国产精品三级电影在线观看 | 日本 欧美在线| av超薄肉色丝袜交足视频| 国产成人精品无人区| 午夜福利在线观看吧| 久久久久国内视频| 99久久国产精品久久久| 国产成人av教育| 亚洲人成电影免费在线| 国产精品美女特级片免费视频播放器 | 窝窝影院91人妻| 真人做人爱边吃奶动态| 香蕉久久夜色| 少妇 在线观看| 午夜福利高清视频| 精品人妻1区二区| 亚洲国产看品久久| 他把我摸到了高潮在线观看| 88av欧美| 黄色视频不卡| 香蕉丝袜av| 满18在线观看网站| 电影成人av| 久久精品成人免费网站| 亚洲成av人片免费观看| 亚洲九九香蕉| 中文字幕另类日韩欧美亚洲嫩草| 大陆偷拍与自拍| 免费女性裸体啪啪无遮挡网站| 91av网站免费观看| 国产精品精品国产色婷婷| 亚洲全国av大片| 一区二区三区高清视频在线| 亚洲国产毛片av蜜桃av| av在线播放免费不卡| 一区二区日韩欧美中文字幕| 国产精品久久久人人做人人爽| 久久中文看片网| 亚洲无线在线观看| 亚洲精品中文字幕一二三四区| 免费人成视频x8x8入口观看| 在线观看午夜福利视频| 在线观看免费午夜福利视频| 国产熟女午夜一区二区三区| 真人一进一出gif抽搐免费| 亚洲色图 男人天堂 中文字幕| 午夜精品国产一区二区电影| 亚洲 欧美 日韩 在线 免费| 午夜视频精品福利| 亚洲国产看品久久| 免费在线观看完整版高清| 19禁男女啪啪无遮挡网站| 精品国产乱码久久久久久男人| 色精品久久人妻99蜜桃| 99riav亚洲国产免费| 久久久国产成人免费| 亚洲欧美激情综合另类| 国内久久婷婷六月综合欲色啪| 99精品在免费线老司机午夜| 91在线观看av| 一级黄色大片毛片| 97碰自拍视频| 日本欧美视频一区| 久久中文看片网| 成人亚洲精品一区在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲五月天丁香| 美女 人体艺术 gogo| 精品久久蜜臀av无| 天堂影院成人在线观看| 国产99久久九九免费精品| 看黄色毛片网站| 亚洲国产精品合色在线| 久久香蕉精品热| 亚洲va日本ⅴa欧美va伊人久久| 夜夜看夜夜爽夜夜摸| 男女午夜视频在线观看| 一区二区日韩欧美中文字幕| 国产精品九九99| 性色av乱码一区二区三区2| 制服诱惑二区| 一区在线观看完整版| www.精华液| 亚洲 欧美一区二区三区| 天天一区二区日本电影三级 | 国产伦人伦偷精品视频| 亚洲av第一区精品v没综合| 国产精华一区二区三区| 亚洲成a人片在线一区二区| 老司机福利观看| 久久国产精品人妻蜜桃| 精品久久久精品久久久| 亚洲三区欧美一区| 女人高潮潮喷娇喘18禁视频| 日韩欧美一区视频在线观看| www.999成人在线观看| 精品免费久久久久久久清纯| 久久九九热精品免费| 性少妇av在线| 首页视频小说图片口味搜索| 久久这里只有精品19| 午夜福利成人在线免费观看| 亚洲国产精品久久男人天堂| 欧美日韩福利视频一区二区| 操出白浆在线播放| 国产亚洲av嫩草精品影院| 久久这里只有精品19| 国产成人啪精品午夜网站| 啦啦啦韩国在线观看视频| 亚洲自偷自拍图片 自拍| 在线观看免费视频日本深夜| 亚洲国产欧美日韩在线播放| 午夜a级毛片| 亚洲熟妇熟女久久| 久久中文字幕一级| 麻豆av在线久日| 操美女的视频在线观看| 91大片在线观看| 99国产精品一区二区三区| 午夜两性在线视频| 日本五十路高清| 男女做爰动态图高潮gif福利片 | 91国产中文字幕| 国产亚洲欧美98| 91老司机精品| 亚洲国产精品合色在线| 老熟妇仑乱视频hdxx| 色综合亚洲欧美另类图片| 亚洲中文av在线| 亚洲国产欧美一区二区综合| 亚洲人成伊人成综合网2020| 精品一区二区三区av网在线观看| 熟妇人妻久久中文字幕3abv| 亚洲电影在线观看av| 欧美在线黄色| www.www免费av| 久久中文字幕一级| 久久性视频一级片| 亚洲avbb在线观看| 丝袜美足系列| 黄色成人免费大全| 午夜影院日韩av| 女性被躁到高潮视频| 色婷婷久久久亚洲欧美| 97碰自拍视频| 免费高清视频大片| 在线观看午夜福利视频| 亚洲成国产人片在线观看| 日日夜夜操网爽| 久久国产精品影院| 国产亚洲欧美98| 亚洲成a人片在线一区二区| 成人18禁高潮啪啪吃奶动态图| 精品久久久久久久人妻蜜臀av | 好男人电影高清在线观看| 亚洲国产看品久久| 大陆偷拍与自拍| 国产麻豆成人av免费视频| 啦啦啦韩国在线观看视频| 亚洲五月色婷婷综合| 欧美av亚洲av综合av国产av| 啦啦啦免费观看视频1| 在线观看www视频免费| 日韩精品免费视频一区二区三区| 久久久国产精品麻豆| 一级作爱视频免费观看| 精品第一国产精品| 免费无遮挡裸体视频| 色在线成人网| 久久精品人人爽人人爽视色| 国产av又大| 中出人妻视频一区二区| 精品国产国语对白av| 国产午夜福利久久久久久| 日本 av在线| 俄罗斯特黄特色一大片| 久久久久九九精品影院| 首页视频小说图片口味搜索| 99国产精品99久久久久| 久久婷婷成人综合色麻豆| 88av欧美| 国产色视频综合| 夜夜躁狠狠躁天天躁| 在线观看免费视频日本深夜| 99精品欧美一区二区三区四区| 亚洲五月天丁香| av片东京热男人的天堂| 午夜免费鲁丝| 亚洲精品中文字幕在线视频| 一a级毛片在线观看| 日日干狠狠操夜夜爽| 国产亚洲欧美98| 在线国产一区二区在线| 国产高清视频在线播放一区| 国产午夜精品久久久久久| 精品国产乱码久久久久久男人| 桃红色精品国产亚洲av| 欧美国产日韩亚洲一区| 在线十欧美十亚洲十日本专区| 纯流量卡能插随身wifi吗| 亚洲男人天堂网一区| 嫁个100分男人电影在线观看| 午夜成年电影在线免费观看| 久久久久国产精品人妻aⅴ院| av视频免费观看在线观看| 久久久久久久精品吃奶| 亚洲第一欧美日韩一区二区三区| 国产熟女xx| 久久欧美精品欧美久久欧美| av视频免费观看在线观看| 久久久久久久精品吃奶| svipshipincom国产片| 韩国av一区二区三区四区| 国产三级在线视频| 成人免费观看视频高清| 无人区码免费观看不卡| 丁香六月欧美| 自线自在国产av| 男女床上黄色一级片免费看| 欧美乱妇无乱码| 制服人妻中文乱码| 精品久久久精品久久久| 久久人人97超碰香蕉20202| 成人免费观看视频高清| 国产精品秋霞免费鲁丝片| 午夜免费鲁丝| 亚洲成人久久性| 十八禁网站免费在线| a在线观看视频网站| 九色国产91popny在线| 日韩中文字幕欧美一区二区| 在线免费观看的www视频| 麻豆av在线久日| 国产aⅴ精品一区二区三区波| 亚洲一区中文字幕在线| 国产精品香港三级国产av潘金莲| 日本 欧美在线| 国产片内射在线| 激情在线观看视频在线高清| 在线视频色国产色| 性色av乱码一区二区三区2| 国产亚洲精品av在线| 嫩草影视91久久| 成在线人永久免费视频| 老司机午夜福利在线观看视频| 午夜福利影视在线免费观看| 男女午夜视频在线观看| 51午夜福利影视在线观看| 免费久久久久久久精品成人欧美视频| 激情在线观看视频在线高清| 一a级毛片在线观看| 色精品久久人妻99蜜桃| 国产精品一区二区在线不卡| 久久香蕉精品热| 男女床上黄色一级片免费看| 日韩有码中文字幕| 一区二区三区国产精品乱码| 91字幕亚洲| 视频区欧美日本亚洲| 女人精品久久久久毛片| 久久国产精品影院| 欧美日本中文国产一区发布| 久久香蕉激情| 欧美一级a爱片免费观看看 | 亚洲第一青青草原| 一区二区三区精品91| 欧美大码av| 亚洲中文字幕一区二区三区有码在线看 | 欧美精品亚洲一区二区| 亚洲片人在线观看| 国产成人影院久久av| 9色porny在线观看| 12—13女人毛片做爰片一| 露出奶头的视频| 久久久国产成人精品二区| 激情在线观看视频在线高清| 免费av毛片视频| tocl精华| 午夜福利影视在线免费观看| 精品人妻在线不人妻| 给我免费播放毛片高清在线观看| 啦啦啦韩国在线观看视频| 亚洲精品一区av在线观看| av视频在线观看入口| 制服人妻中文乱码| 天天躁夜夜躁狠狠躁躁| 亚洲九九香蕉| 午夜成年电影在线免费观看| 国产午夜福利久久久久久| 国产精品精品国产色婷婷| 老司机午夜福利在线观看视频| 国产精品亚洲一级av第二区| 欧美日韩中文字幕国产精品一区二区三区 | av福利片在线| av电影中文网址| 久久国产乱子伦精品免费另类| 1024视频免费在线观看| 色综合婷婷激情| 婷婷精品国产亚洲av在线| 大型av网站在线播放| 国产av一区在线观看免费| 亚洲成人免费电影在线观看| 99在线人妻在线中文字幕| 国产成人欧美在线观看| 欧美激情久久久久久爽电影 | 久久草成人影院| 777久久人妻少妇嫩草av网站| 欧美激情 高清一区二区三区| 午夜精品久久久久久毛片777| 欧美乱色亚洲激情| 他把我摸到了高潮在线观看| 国产成人一区二区三区免费视频网站| 香蕉久久夜色| 免费在线观看完整版高清| 两人在一起打扑克的视频| 欧美激情久久久久久爽电影 | 久久久久久久久免费视频了| www.自偷自拍.com| 中国美女看黄片| 美国免费a级毛片| 日韩欧美三级三区| 久久久国产成人精品二区| 曰老女人黄片| 久久久久久国产a免费观看| 久久这里只有精品19| 欧美绝顶高潮抽搐喷水| 黄片小视频在线播放| 日本vs欧美在线观看视频| 亚洲最大成人中文| 一区二区日韩欧美中文字幕| 日韩欧美免费精品| 日本三级黄在线观看| 国产高清视频在线播放一区| 欧美日韩乱码在线| 久久久久久亚洲精品国产蜜桃av| 看黄色毛片网站| av在线播放免费不卡| 午夜亚洲福利在线播放| 99久久综合精品五月天人人| 精品国产亚洲在线| 俄罗斯特黄特色一大片| 法律面前人人平等表现在哪些方面| 亚洲成人久久性| 亚洲黑人精品在线| 国产成人av激情在线播放| 亚洲伊人色综图| 日韩大码丰满熟妇| 亚洲国产日韩欧美精品在线观看 | 亚洲色图综合在线观看| av中文乱码字幕在线| 久久亚洲真实| 黄色毛片三级朝国网站| 99re在线观看精品视频| 久久精品91无色码中文字幕| 日日摸夜夜添夜夜添小说| 久久国产精品男人的天堂亚洲| 真人一进一出gif抽搐免费| 国产成+人综合+亚洲专区| 黄色女人牲交| 久久九九热精品免费| 人人澡人人妻人| 搞女人的毛片| 亚洲国产高清在线一区二区三 | 夜夜夜夜夜久久久久| www.熟女人妻精品国产| 最新美女视频免费是黄的| 中文字幕精品免费在线观看视频| 免费在线观看影片大全网站| 女性生殖器流出的白浆| 丝袜美腿诱惑在线| 大码成人一级视频| 亚洲一区二区三区色噜噜| 国产成人精品久久二区二区91| 日日夜夜操网爽| 久久婷婷人人爽人人干人人爱 | 好男人电影高清在线观看| 丝袜人妻中文字幕| 国产成+人综合+亚洲专区| АⅤ资源中文在线天堂| 欧美成人免费av一区二区三区| 嫩草影视91久久| 午夜免费激情av| 亚洲国产精品合色在线| 99在线人妻在线中文字幕| 国产片内射在线| 国产亚洲精品第一综合不卡| 十八禁人妻一区二区| 又黄又粗又硬又大视频| АⅤ资源中文在线天堂| 成人18禁在线播放| 午夜影院日韩av| 国产精品美女特级片免费视频播放器 | 精品久久蜜臀av无| 麻豆久久精品国产亚洲av| 免费搜索国产男女视频| 在线国产一区二区在线| 亚洲,欧美精品.| www国产在线视频色| 久久人人97超碰香蕉20202| 国产成人影院久久av| 欧美性长视频在线观看| 国产三级黄色录像| 久久午夜综合久久蜜桃| 一级a爱片免费观看的视频| 欧美成狂野欧美在线观看| 免费在线观看视频国产中文字幕亚洲| 天堂√8在线中文| 亚洲国产中文字幕在线视频| 天天躁夜夜躁狠狠躁躁| 99riav亚洲国产免费| 两性午夜刺激爽爽歪歪视频在线观看 | 精品熟女少妇八av免费久了| 少妇熟女aⅴ在线视频| 国产一区二区激情短视频| 久久国产精品人妻蜜桃| 国产精品影院久久| 别揉我奶头~嗯~啊~动态视频| av免费在线观看网站| 91av网站免费观看| 久久 成人 亚洲| 欧美老熟妇乱子伦牲交| 丝袜美腿诱惑在线| 成人手机av| 国产伦一二天堂av在线观看| 国产黄a三级三级三级人| 国产精品永久免费网站| 中文字幕人成人乱码亚洲影| 性少妇av在线| 自线自在国产av| 精品欧美国产一区二区三| 久久国产精品影院| 一级片免费观看大全| 欧美性长视频在线观看| 亚洲av电影在线进入| 国产成人av激情在线播放| 午夜福利一区二区在线看| 精品久久蜜臀av无| av天堂在线播放| 久99久视频精品免费| 少妇粗大呻吟视频| 老鸭窝网址在线观看| 天天一区二区日本电影三级 | 亚洲天堂国产精品一区在线| 免费少妇av软件| 久久精品国产99精品国产亚洲性色 | 欧美一区二区精品小视频在线| 亚洲成av人片免费观看| 国产精品99久久99久久久不卡| 18禁美女被吸乳视频| 韩国av一区二区三区四区| 国产黄a三级三级三级人| 精品国产乱子伦一区二区三区| 国产又爽黄色视频| 亚洲一区高清亚洲精品| 国产男靠女视频免费网站| 热99re8久久精品国产| 纯流量卡能插随身wifi吗| 99香蕉大伊视频| 精品不卡国产一区二区三区| 啪啪无遮挡十八禁网站| 亚洲一区中文字幕在线| 18禁美女被吸乳视频| 无限看片的www在线观看| 亚洲性夜色夜夜综合| 99国产精品99久久久久| av有码第一页| 久久 成人 亚洲| 90打野战视频偷拍视频| 看片在线看免费视频| 亚洲人成77777在线视频| 波多野结衣巨乳人妻| 啦啦啦 在线观看视频| 我的亚洲天堂| 男女床上黄色一级片免费看| 久久人人爽av亚洲精品天堂| 亚洲,欧美精品.| 久久影院123| 宅男免费午夜| 国产片内射在线| 欧美老熟妇乱子伦牲交| 久久影院123| 亚洲成人国产一区在线观看| 久久人妻av系列| 久久亚洲精品不卡| 亚洲精品国产一区二区精华液| 一a级毛片在线观看| 成人18禁在线播放| 久热这里只有精品99| 日韩欧美在线二视频| 丰满的人妻完整版| 九色国产91popny在线| 国产精品一区二区三区四区久久 | 桃红色精品国产亚洲av| 精品国产超薄肉色丝袜足j| 成人手机av| 国产午夜福利久久久久久| 成人手机av| 每晚都被弄得嗷嗷叫到高潮| 后天国语完整版免费观看| 国产成人欧美| av福利片在线| 成人国产一区最新在线观看| x7x7x7水蜜桃| av中文乱码字幕在线| 在线av久久热| 搡老岳熟女国产| 欧美另类亚洲清纯唯美| 欧美黑人精品巨大| 午夜成年电影在线免费观看| 色综合亚洲欧美另类图片| 久久国产精品人妻蜜桃| 99国产精品免费福利视频| 中文字幕久久专区| 久久香蕉国产精品| 久久久久久久久中文| 国内毛片毛片毛片毛片毛片| av电影中文网址| 伊人久久大香线蕉亚洲五| 国产精品亚洲av一区麻豆| 国产又色又爽无遮挡免费看| 国产精品永久免费网站| 亚洲成av片中文字幕在线观看| 国产99久久九九免费精品| videosex国产| 天天一区二区日本电影三级 | 亚洲午夜精品一区,二区,三区| 久久久久久久精品吃奶| 午夜两性在线视频| 男人操女人黄网站| 韩国精品一区二区三区| 亚洲成国产人片在线观看| 两个人免费观看高清视频| 久久人妻av系列| 久久久久久大精品| 国产精品乱码一区二三区的特点 | 在线观看66精品国产| 制服诱惑二区| 女人高潮潮喷娇喘18禁视频| 色av中文字幕| 国产精品,欧美在线| 9色porny在线观看| 久久久久久大精品| 欧美日韩瑟瑟在线播放| 高清毛片免费观看视频网站| 午夜精品国产一区二区电影| 女人被狂操c到高潮| 国产蜜桃级精品一区二区三区| 国产成人av激情在线播放| 淫秽高清视频在线观看| 少妇熟女aⅴ在线视频| 亚洲五月婷婷丁香| 韩国精品一区二区三区| 日本在线视频免费播放| 免费高清在线观看日韩| 国产一区二区三区视频了| 亚洲av电影不卡..在线观看| 免费高清在线观看日韩| 身体一侧抽搐| 丰满人妻熟妇乱又伦精品不卡|