• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Graphene oxide based carbon composite as adsorbent for Hg removal:Preparation,characterization,kinetics and isotherm studies

    2017-05-30 02:11:11TayebehEsfandiyariNavidNasirizadehMohammadDehghaniMohammadHassanEhrampoosh

    Tayebeh Esfandiyari,Navid Nasirizadeh *,Mohammad DehghaniMohammad Hassan Ehrampoosh

    1 Department of Environmental Health Engineering,Shaheed Sadoughi University of Medical Sciences,Yazd,Iran

    2 Young Researchers and Elite Club,Yazd Branch,Islamic Azad University,Yazd,Iran

    1.Introduction

    Mercury(Hg)is one of the most harmful environmental contaminants,which gains high harmfulness even at low concentrations[1].It is non-biodegradable and tends to cumulate in living tissues,posing a direct danger to human health[2].It is quite dangerous to human and living things,leading to a variety of issues in the spectrum of health,include neurological disorder,disablement,blindness,and genetic defects[3].In order to reduce the risks associated with metal pollutants,it is essential that wastewaters be treated before being released to the environment[4].Hence,the removal and recovery of heavy metal ions from industrial waste water have been a noteworthy topic in most industrialsubdivisions[5].The severaltechnologies,such as chemicalprecipitation[6],liquid extraction[7],ionic exchange[8],membrane systems[9],and adsorption[10,11],have been developed over the years.The adsorption procedure has attracted extensive attention due to its simplicity and low cost.Numerous kinds of adsorbents,such as activated carbon[1], fly ash[12],Carbon nanotubes[13],microorganisms[14],industrial and agricultural byproducts[15]and clay minerals[16],have been applied for the elimination of heavy metal ions from wastewater.

    On the other hand,making use of this kind of materials,their disorderly and unstable structure,the lack of model predictability and their incapability to eliminate the contaminants in trace concentrations may be,for very acute applications,a weakness of these materials.Therefore,study on the development of novel technical and highly specific materials is of great concern[17].

    The graphene oxide(GO),as an ideal two-dimensional material,is characterized by a great specific surface area(2630 m2·g?1),determined from the monolayer carbon structure[18].In this sense,GO is the best nonporous adsorbent,and sorption generally occurs on its planar surface(outside surface),escaping from intraporous diffusion like that in porous carbon materials but only determined by external diffusion since powdered GO with randomly aggregated structures has open ion channels,which results in a short period to reach an adsorption equilibrium[19].

    It is well known that sol–gel process is used in the fields of materials science and ceramic engineering,in which a colloidal solution(sol)is converted to an integrated network(gel)of either discrete particles or network polymers[20].The method allows the facile synthesis of stable composite with improved efficiency and performance at ambient conditions[21].A lot of work has been done about the synthesis of nanocomposites by sol gel.For example,Wanget al.[22]produced a Chitosan–silica composite for the elimination of Congo red from aquatic environment.Wuetal.[23]prepared a thiocyanato-functionalized silica gel as selective adsorbent of cadmium(II).Mercaptopropyl-coated cobalt ferrite(CoFe2O4)magnetic nanoparticles as a suitable and effective adsorbent for Hg2+ions were developed by Viltuzniket al.[24].In continuation with the previous study,we have provided the multifunctional(conductive–hydrophobic)textiles using a simple and cost effective sol–gel method[25].

    In this study,graphene oxide–carbon composite(GO–CC)was synthesized by sol gel technique and used as an adsorbent to remove of Hg2+from aqueous solution.Physicochemical properties of prepared adsorbent were characterized by FESEM,EDX and BET analysis.The operational parameters including pH of the solution,ratio of GO in adsorbent matrix(wt%),adsorbent dosage(g·L?1)and contact time(min)were investigated to understand the adsorption process and also thermodynamic and isotherm parameters were determined.

    2.Materials and Methods

    2.1.Materials

    Graphite(KS-10),Potassium trimethylsilanolate(PTMS)(see chemical structure in scheme S1),Sulfuric acid,Nitric acid,Methanol and HCl were supplied from Merck(Germany)Company.Mercury nitrate monohydrate Hg(NO3)2,was purchased from Degussa(Germany).Potassium chlorate was obtained from Sigma Aldrich.All chemicals were used as received without further purification.GO was prepared according to the Staudenmaier method[26](see Supplementary Material).

    2.2.Preparation of GO–carbon composite

    The proposed procedure for construction of graphene oxide–carbon composite(GO–CC)as adsorbentby the solgelprocess[25]is as follows:First,a medium(4.0 ml)containing ethanol/waterwith volume ratio 9:1 was prepared and the pH was adjusted to 4.5 using 10%HCl.Then,20 μl PTMS was added to the solution and agitated for 90 min to prehydrolyze the organosilane.After that,a 3.0 g mixture of the synthesized GO and graphite(mass ratio 1:3)was immersed in the solution and stirred for 90 min.This was followed by evaporation of solvent at 45°C to allow covalent bonding between the GO/silanol groups/graphite.The driedsample,i.e.cured adsorbents was scoured with the 50/50 vol%ethanol/water solution for several times until unreacted organosilane was eliminated and then dried at 50°C for 24 h.The dried sample was eventually well maintained in a desiccator for future use.

    2.3.Instruments

    A Buck Scientific atomic absorption spectrometer,model 210 VGP,was used for all absorption experiments.A mercury hollow cathode lamp(Westinghouse WL-22847)was applied as the light source,and its operating current was set to the value recommended by the manufacturer.The wavelength and bandwidth were adjusted to 253.7 nm and 0.7 nm,respectively.A Buck Scientific hydride vapor generator,model 1015,was applied for mercury generation.The mercury was reduced to metallic mercury through tin(II)chloride,and the mercury generatorwas worked outwith N2gas ascarriergas.The shape and surface morphology of the GO–carbon composites(GO–CC)were examined by a field emission scanning electron microscope(FESEM,Mira 3-XMU)equipped with EDX(Bruker 127 eV)under an acceleration voltage of 15 kV.The textural properties of GO–CC were also con firmed by N2adsorption/desorption isotherms at 77 K using a Belsorp analyzer(BEL Japan Inc.).The specific surface area(SBET)was determined by the Brunauer–Emmett–Teller(BET)technique.The textural features of GO–CC are shown in Table 1.The pore size distribution was determined by means of the Barrett–Joyner–Halenda(BJH)method(Fig.S1).The point of zero charge(pHpzc)for GO–CC was determined by a Malvern zetameter(Zetasizer 2000)(see Fig.S2).

    Table 1Textural properties obtained by N2 adsorption/desorption studies

    2.4.Absorption experiment

    The capability ofthe GO–CC to adsorb of the mercury ion from aqueous solution was determined using a batch of mercury nitrate aqueous solutions of known concentration.All the working Hg2+solution(0.1 μg·g?1)was prepared using Hg(NO3)2and DI water.Batch absorption investigations were carried out by optimization the solution pH,adsorbent dose,GO proportion in adsorbent matrix,contact time using central composite design (CCD)(see design experiment part in Supporting Information File).The ranges of selected variables are presented in Table S1.

    Brie fly,in optimum condition,an accurately weighed adsorbent(45.0 mg)was added to 10 ml of Hg2+(0.1 μg·g?1)placed in 100 ml capped Erlenmeyer flasks.After regulation ofpHwith 0.1 mol·L?1buffer phosphate solution at pH=6.6,the mixture was then agitated on a magnetic stirrer at 150 r·min?1for 95.0 min.The solution was immediately lastly filtrated.The Hg2+concentration in the ef fluents was then determined by cold vapor atomic absorption spectrometry(CVAAS)quipped with a hollow cathode lamp.Seven standard solutions were used to drawn each calibration curve.All measurements were approved outin triplicate and no results were established,ifthe standard deviation was more than 3%.

    The removal ratio of Hg2+(Re,%)and the capacities for Hg2+(qe,mg·g?1)were calculated by Eqs.(1)and(2).

    where,C0andCeare the initial and equilibrium Hg2+concentrations(μg·g?1).qeis the quantity of Hg(mg·g?1)adsorbed on unit mass of adsorbent at equilibrium.Vis the volume of solution(ml);andMis the mass of the adsorbent(g).

    3.Results and Discussion

    3.1.Characterization of adsorbent

    Fig.1a and b displays a representative SEM image of a carbon composite(a)and GO based carbon composite(b).Both composites have vastly porous morphology.Many graphene sheets were observed after the addition of GO into carbon composite matrix,re flecting the folding nature wholly of the morphology.

    An EDXanalysis con firms the presence ofseveralelements including C(74.31%),Al(0.70%),K(4.16%),O(16.30%),Cl(0.57%)and Si(3.95%)(Fig.1c)in the composite structure.The high BET surface area of the GO(280.7 m2·g?1)improved the morphology of the carbon composite and enhanced the surface area from 5.28 m2·g?1(carbon composite)to 174.3 m2·g?1(GO–CC).The great surface area of the GO–CC composite increases the binding sites for Hg2+ions in the solution.Pore volume average is 0.52 cm3·g?1and pore size is 1.21 nm,which corresponds to intra-and inter-agglomerate pores.

    The pHpzcof the GO–CC was 3.8(see Fig.S2).Mostly,the surface of adsorbent is positively charged at pH<pHpzc,and negatively charged at pH>pHpzc.The cationic adsorption is preferred at pH>pHpzc;consequently,as can be seen below,removal percentage was higher for the pH=5.0–7.0.

    Fig.1.FESEM image of carbon composite(a)graphene oxide–carbon composite(b)prepared by sol gel and(c)elemental analysis of prepared composites.

    3.2.Analysis of the model

    The CCD plan(Tables S1 and S2)was used to assess the main interaction of four independent variables(contact time(A),solution pH(B),GO ratio in adsorbent(C),and adsorbent dosage(D)).The 30 experiments and their responses are presented in Table S2.To find the most important effects and interactions,analysis of variance(ANOVA)was calculated using Design of Experiment 7.0.0.1(Table S3).Ap-value less than 0.05 in the ANOVA table shows the statistical significance of an effect at 95%con fidence level.F-test was used to evaluate the statistical significance of all terms in the polynomial equation within 95%con fidence interval.Data analysis gave a semi-empirical expression of Hg2+removal percentage with the following equation:

    In Eq.(3),all the variables(A,C,andD)had positive effects on Hg elimination,butthe value ofC>A>Dverified that the linear term in fluence ofCwas more significant than that ofAandD,representing that the GO ratio in adsorbent matrix was the main factor in fluencing on Hg2+removal.We also establish that the coefficient of interaction termC2was clearly higher than that of other coefficients;hence,the square of GO exhibits higher affinity to Hg2+.

    3.3.Effect of variables on the adsorption process

    Fig.2 represents the relevant fitted 3D plots for the design and illustrates the response surface plots of Hg2+removal(%)versus change in variables.These graphs were drawn for a given pair of factors at fixed and optimal values of other variables.The curvature natures of these graphs show their interaction.

    Fig.2a,illustrates the effect of the contact time and GO ratio in composite on the removal percentage of Hg2+ions by GO–CC using a 0.88 g·L?1adsorbent dose at pH 6.5.The removal percentage of Hg2+improved with increasing contact time from 20 to 95 min.The absorption level of Hg2+for GO–CC(as 5.0 wt%GO was applied)was quick at the initial periods(0–60 min)due to the adsorption of Hg2+ions onto the outside surface,and subsequently it became gentle when Hg2+ions move in the inner surfaces.The same trend can be seen with lower intensity when used 2.55 wt%GO.This might have been caused by a large quantity of unoccupied surface binding sites that were accessible for Hg adsorption during the initial period.Though,after a certain time,the available sites were almost occupied and the residual vacant surface sites were difficult to be engaged due to the repulsive forces between the adsorbent molecules on the solid and bulk phases[1,13].

    Fig.2.Response surface plot of a)contact time vs GO ratio in composite,when pH and adsorbent dose in constant at 6.5 and 0.88 g,and b)solution pH vs adsorbent dose on removal of Hg2+ion at constant values of 95 min as contact time and 2.6 wt%as GO ratio.(The blue color represents lowest and red indicates the highest removal efficiency.)

    Moreover,it was observed thatthe improvementof Hg removalwas accompanied by an increase of GO ratio in composite matrix from 0.1 to 2.5 wt%,after which it starts decreasing.There is improved adsorption capacity of the GO–carbon composite due to more adsorption sites for Hg2+ions in the presence of graphene sheets on carbon composite[27].With further increase in the GO ratio in carbon composite,the percentage removalwas decreased from 75%to 50%at95 min.The phenomenon could be described as a result of a partial aggregation of GO at higher ratios,which results in a decrease in effective surface area for the Hg adsorption.The same findings were observed by Wuet al.and Shiet al.regarding the reduction of removal rate due to the increase of GO[28,29].

    The effectof the pH and adsorbentamounton the Hg2+ion removal efficiency from aqueous solution is demonstrated in Fig.2b when,time and graphene oxide are fixed at 95.0 min and 2.6 wt%respectively.The solution pH has been known as the most important factor governing metal adsorption on the adsorbent.Once pH increased from 3.0 to 6.6,removal efficacy for Hg2+harshly also enhanced.It has been verified that at acidic pH,adsorption capacity was low,due to the competition of Hg2+ions with H+ions[1,13].On the other hand,the high positive charge density on the GO surface at below pHzpc(3.8)was another reason.Hg2+ions in solution are theoretically existent as various species depending on the media pH.For example,Puanngam and Unob[30]reported that Hg2+ions exist as Hg2+,HgOH+and Hg(OH)2at different pHs.It was expected that when pH<4,the dominantspecies in the Hg(II)solution would be Hg2+;while Hg(OH)+and Hg(OH)2species dominated at pH>4.From the Fig.1b,the perceived lower Hg2+removal at acidic pH(pH<pHpzc(3.8))was maybe due to(i)rivalry between Hg2+ions and H+or H3O+ions existing in the solution for the available sites on the GO–CC composite and(ii)protonation of the functional groups on GO sheets which induced the electrostatic repulsion with the Hg2+.When,the pH of the system increased(pH>pHpzc),adsorbent surface charged as negative and further functional groups would be accessible for metal ion binding due to deprotonation;thus high absorption isobserved.Moreover,ithad been reported about silicates that the reaction of the hydroxylated Hg(OH)2with the functional group caused the formation of--Si--HgOH and the binding ability could be superior than that of the protonated adsorbents with Hg2+[1,3,13,31].The highest Hg2+removalwas achieved at pH of 6.6.Furthermore,Hg2+removal efficiency reduced with increment of pH from 7.0 to 10.0.When the pH value was greater than 10.0,the adsorption of Hg2+ions was practically not detected.It seems that the interaction between the Hg2+ions and the absorbent surface is electrostatic and can be used once more from composite with a mild acid washing.

    As could be seen in Fig.2b,Hg2+removalwas improved slowly with the increase of the adsorbent dosage from 0.1 to 0.88 g·L?1.This can be attributed to the increasing surface area and accessibility of more adsorption sites,when the adsorbent dosage increased[1,13].However,the removal of Hg2+decreased as the adsorbent dosage increased upper than 0.9 g·L?1,since the system reached equilibrium at where the adsorption sites of adsorbent stayed unsaturated with the fixed Hg2+quantity in solution.

    3.4.Adsorption kinetics

    The pseudo- first-order model(Lagergren model[32])and pseudosecond order model(Ho and Mckay model[33])were applied to identify the process of Hg2+adsorption onto the GO–CC.

    The first-order rate constant(k1)was calculated fromthe slopes and interceptsofplotsoflg(qe?qt)versust.Besides,by plottingt/qtversust,the second-order rate constant(k2)andqevalues were concluded from the slope and intercepts of the plots.The mentioned plots and the corresponding linear fittings are shown in Figs.S3 and S4 for the pseudo first and pseudo second order models,respectively.The kinetic adsorption rate constantsk1andk2are shown in Table 2,along with the experimental and calculatedqe.As it may be seen,the removal of Hg2+may be explained by the second-order kinetic modelunderthe experimental conditions.Hence,the model presents the best fit,presenting highR2values(>0.99)for Hg adsorption and the calculatedqeagreed with the experimental data.This model declares that,the absorption rate is in fluenced by the amount of mercury adsorbed on the surface of GO–CC absorbent and the amount adsorbed at equilibrium.

    3.5.Adsorption isotherms

    In this study,the equilibrium data were adapted with two parameter isotherm modelsi.e.Freundlich,Langmuir,Temkin and Dubinin–Radushkevich(D–R).These models correlate the amount of solute adsorbed perunitmass ofadsorbent,qe(mg·g?1),to the adsorbate concentration in solution at equilibrium,Ce(mg·L?1).The isotherm constants for each model were calculated from the linearized Eqs.(4)–(7):

    Table 2Kinetics parameters for Hg2+adsorption on GO based carbon composites

    Here,theqmax(mg·g?1)is the maximum adsorption capacity.KL(mg?1)is the Langmuir constants related to the monolayer adsorption capacity and the adsorption free energy(KL=e?ΔG/RT).KF(mg·g?1·mg?1/n)is the Freundlich constant related to adsorption capacity andnis the heterogeneity factor.β (mmol2·J?2)and ε (–)are the D–R constants.The constant ε=RTln(1+1/Ce),Ris the gas constant,8.3145 J·mol?1·K?1andTis the absolute temperature in K.Bcorresponds to the heat of adsorption,which is equal toRT/bTandKTis the equilibrium binding constant(g?1).

    The Langmuir,Freundlich,D–R and Temkin model constants were calculated respectively,from the plot between the values of(i)lgqeand lgCe,(ii)(1/qe)and(1/Ce),(iii)lnqeand ε2and(iv)qeand lnCe.

    The adsorption isotherm graphs ofHg+2on the GO–CC was presented in Fig.S5.The relative parameters calculated from the Langmuir,D–R,Temkin and Freundlich models are listed in Table 3.A high correlation coefficient represents the good agreement between experimental and anticipated data.The value of correlation coefficient of Langmuir is greater(>0.99)than the others(i.e.the Freundlich(0.981),D–R(0.856)and Temkin(0.941)).Hence,the Langmuir equation represents best fit of experimental data over other models,and these results are in agreement with the other previously reported works[34–42].

    Table 3Isotherm parameters for Hg2+adsorption on GO–carbon composites

    In addition,the calculated values ofQmare found to be 68.8 mg·g?1,which are very close to its experimental values.The capacity of GO CC adsorbent for Hg was compared with other adsorbents[34–42].As it can be seen in Table 4,the adsorption capacity of proposed composite is comparable with carbon based adsorbent reported in the previous publications.

    3.6.Thermodynamic studies

    Effect of temperature on Hg2+removal was also assessed at the Hg2+initial concentration of 800× 10?6and the temperature range of 303–333 K.The thermodynamic parameters likely,changes in standard Gibbs free energy(ΔG°),standard enthalpy(ΔH°),and standard entropy(ΔS°)were determined by the van't Hoff model,which supposed that the activity coefficient of the solutes used in the solution was unity[43].

    Table 4Comparison of adsorption capacity against similar adsorbents

    In the lately mentioned equations,kis the distribution adsorption coefficient,qe(mg·g?1)andCe(mg·L?1)are the adsorption capacity of adsorbent and adsorbate concentration at equilibration,Ris the universal gas constant(8.314 J·mol?1·K?1),andTis the absolute temperature(K).The diagram of lnk versus1/Tgets a straight-line with the slope of ΔH°(kJ·mol?1)and intercepts of ΔS°(kJ·mol?1·K?1)as presented in Fig.S6.The calculated values of thermodynamic parameters were represented in Table 5.The negative Gibbs free energy change ΔG°proves that the adsorption of Hg2+onto GO–CC was a thermodynamically possible and spontaneous process[27].The value of ΔG°is increasing with increment of the temperature,which is representing more favorable and spontaneous adsorption at a higher temperature[34].In addition,the positive value of the enthalpy ΔH°suggests that the Hg2+adsorbed onto GO based composite was endothermic in nature,and a higher adsorption capacity would be acquired with a higher temperature.The positive value of ΔS°re flected that the randomness improved at the solid–solute interface during Hg2+adsorption onto GO–CC,also the good affinity of GO–CC for Hg2+.

    Table 5Thermodynamic parameters of Hg2+adsorption onto GO–CC

    4.Conclusions

    In the presentstudy,removalofHg2+from aqueous solutions by adsorption on the graphene oxide based carbon composite(GO–CC)was surveyed.The GO–CC was prepared using the sol gel technique.FESEM images clearly showed porous structure and graphene oxide sheets on the composites surface.The adsorption of Hg2+on the GO–CC increases with increment of the time and GO ratio in composite matrix,and achieves the highest value of 68.8 mg·g?1.In addition,the study showed that the best explanation for the experimental data of GO–CC for Hg2+from aqueous solution was given by the Langmuir isotherm equation,and the adsorption kinetics could be followed by the pseudo second order rate equation wonderfully.The thermodynamic parameters of adsorption include ΔG, ΔHand ΔSand were?1.89 kJ·mol?1(30 °C),14.71 kJ·mol?1,and 54.93 kJ·K?1·mol?1,respectively.As a result,the good adsorption capability made GO–CC a favorable candidate adsorbent for mercury removal from aqueous solutions.

    Supplementary Material

    Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cjche.2017.02.006.

    [1]S.T.Song,N.Saman,K.Johari,H.Mat,Removal of Hg(II)from aqueous solution by adsorption using raw and chemically modified rice straw as novel adsorbents,Ind.Eng.Chem.Res.52(2013)13092–13101.

    [2]O.S.Akintola,T.A.Saleh,M.M.Khaled,O.C.S.Al Hamouz,Removal of mercury(II)via a novel series of cross-linked polydithiocarbamates,J.Taiwan Inst.Chem.Eng.60(2016)602–616.

    [3]Z.H.Huang,X.Zheng,W.Lv,M.Wang,Q.H.Yang,F.Kang,Adsorption oflead(II)ions from aqueous solution on low-temperature exfoliated graphene nanosheets,Langmuir27(2011)7558–7562.

    [4]L.Cui,Y.Wang,L.Gao,L.Hu,Q.Wei,B.Du,Removal of Hg(II)from aqueous solution by resin loaded magnetic β-cyclodextrin bead and graphene oxide sheet:synthesis,adsorption mechanism and separation properties,J.Colloid Interface Sci.456(2015)42–49.

    [5]F.Ke,L.G.Qiu,Y.P.Yuan,F.M.Peng,X.Jiang,A.J.Xie,Y.H.Shen,J.F.Zhu,Thiolfunctionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+from water,J.Hazard.Mater.196(2011)36–43.

    [6]T.B.Ibigbami,F.A.Dawodu,O.J.Akinyeye,Removal of heavy metals from pharmaceutical industrial wastewater ef fluent by combination of adsorption and chemical precipitation methods,Am.J.Appl.Chem.4(2016)24–32.

    [7]P.A.Turhanen,J.J.Vepsalainen,S.Peraniemi,Advanced material and approach for metal ions removal from aqueous solutions,Sci.Rep.5(2015)1–10.

    [8]S.Siva,S.Sudharsanc,R.Sayee Kannan,Synthesis,characterization and ionexchange properties of novel hybrid polymer nanocomposites for selective and effective mercury(II)removal,RSC Adv.5(2015)79665–79678.

    [9]R.Padmavathi,M.Minnoli,D.Sangeetha,Removal of heavy metal ions from waste water using anion exchange polymer membranes,Int.J.Plast.Technol.18(2014)88–99.

    [10]H.N.M.E.Mahmud,A.K.Obidul Huq,R.B.Yahya,The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents:A review,RSC Adv.6(2016)14778–14791.

    [11]R.Fu,Y.Liu,Z.Lou,Z.Wang,S.A.Baig,X.Xu,Adsorptive removal of Pb(II)by magnetic activated carbon incorporated with amino groups from aqueous solutions,J.Taiwan Inst.Chem.Eng.62(2016)247–258.

    [12]K.He,Y.Chen,Z.Tang,Y.Hu,Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash,Environ.Sci.Pollut.Res.Int.23(2016)2778–2788.

    [13]K.Anitha,S.Namsani,J.K.Singh,Removal of heavy metal ions using a functionalized single-walled carbon nanotube:a molecular dynamics study,J.Phys.Chem.A119(2015)8349–8358.

    [14]A.Sari,M.Tuzen,Removal of mercury(II)from aqueous solution using moss(Drepanocladus revolvens)biomass:Equilibrium,thermodynamic and kinetic studies,J.Hazard.Mater.171(2009)500–507.

    [15]M.Ahmaruzzaman,V.K.Gupta,Rice husk and its ash as low-cost adsorbents in water and wastewater treatment,Ind.Eng.Chem.Res.50(2011)13589–13613.

    [16]H.Javadian,M.Taghavi,Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg2+from aqueous solution and industrial wastewater:kinetic,isotherm and thermodynamic studies,Appl.Surf.Sci.289(2014)487–494.

    [17]M.Otero,C.B.Lopes,J.Coimbra,T.R.Ferreira,C.M.Silva,Z.Lin,J.Rocha,E.Pereira,A.C.Duarte,Priority pollutants(Hg2+and Cd2+)removal from water by ETS-4 titanosilicate,Desalination249(2009)742–747.

    [18]G.Zhao,J.Li,X.Ren,C.Chen,X.Wang,Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management,Environ.Sci.Technol.45(2011)10454–10462.

    [19]H.Guo,T.Jiao,Q.Zhang,W.Guo,Q.Peng,X.Yan,Preparation of graphene oxidebased hydrogels as efficient dye adsorbents for wastewater treatment,Nanoscale Res.Lett.10(2015)272–281.

    [20]D.Jeon,W.J.Yoo,J.K.Seo,S.H.Shin,K.T.Han,S.G.Kim,J.Y.Park,B.Lee,Fiber-optic pH sensor based on sol–gel film immobilized with neutral red,Opt.Rev.20(2013)209–213.

    [21]T.M.Budnyak,I.V.Pylypchuk,V.A.Tertykh,E.S.Yanovska,D.Kolodynska,Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method,Nanoscale Res.Lett.10(2015)87–96.

    [22]J.Wang,Q.Zhou,D.Song,B.Qi,Y.Zhang,Y.Shao,Z.Shao,Chitosan–silica composite aerogels:preparation,characterization and Congo red adsorption,J.Sol-Gel Sci.Technol.76(2015)501–509.

    [23]J.B.Wu,S.Y.Zang,Y.L.Yi,Sol–gel derived ion imprinted thiocyanato-functionalized silica gel as selective adsorbent of cadmium(II),J.Sol-Gel Sci.Technol.66(2013)434–442.

    [24]B.Viltuznik,A.Lobnik,A.Kosak,The removal of Hg(II)ions from aqueous solutions by using thiol-functionalized cobalt ferrite magnetic nanoparticles,J.Sol-Gel Sci.Technol.74(2015)199–207.

    [25]N.Nasirizadeh,M.Dehghani,M.E.Yazdanshenas,Preparation of hydrophobic and conductive cotton fabrics using multi-wall carbon nanotubes by the sol–gel method,J.Sol-Gel Sci.Technol.73(2015)14–21.

    [26]H.L.Poh,F.Sanek,A.Ambrosi,G.Zhao,Z.Sofer,M.Pumera,Graphenes prepared by Staudenmaier,Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties,Nanoscale4(2012)3515–3522.

    [27]Z.Dong,F.Zhang,D.Wang,X.Liu,J.Jin,Polydopamine-mediated surfacefunctionalization of graphene oxide for heavy metal ions removal,J.Solid State Chem.224(2015)88–93.

    [28]S.Wu,X.Zhao,Y.Li,Q.Du,J.Sun,Y.Wang,X.Wang,Y.Xia,Z.Wang,L.Xia,Adsorption properties of doxorubicin hydrochloride onto graphene oxide:equilibrium,kinetic and thermodynamic studies,Materials6(2013)2026–2042.

    [29]H.Shi,W.Li,L.Zhong,C.Xu,Methylene blue adsorption from aqueous solution by magnetic cellulose/graphene oxide composite:equilibrium,kinetics,and thermodynamics,Ind.Eng.Chem.Res.53(2014)1108–1118.

    [30]M.Puanngam,F.Unob,Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg(II)ions,J.Hazard.Mater.154(2008)578–584.

    [31]Y.Zhang,L.Yan,W.Xua,X.Guo,L.Cui,L.Gao,Q.Wei,B.Du,Adsorption of Pb(II)and Hg(II)from aqueous solution using magnetic CoFe2O4-reduced graphene oxide,J.Mol.Liq.191(2014)177–182.

    [32]R.L.Tseng,F.C.Wu,R.S.Juang,Characteristics and applications of the Lagergren's first-order equation for adsorption kinetics,J.Taiwan Inst.Chem.Eng.41(2010)661–669.

    [33]R.Leyva-Ramos,L.A.Bernal-Jacome,J.Mendoza-Barron,M.M.G.Hernandez-Orta,Kinetic modeling of pentachlorophenol adsorption onto granular activated carbon,J.Taiwan Inst.Chem.Eng.40(2009)622–629.

    [34]K.Yaghmaeian,R.Khosravi Mashizi,S.Nasseri,A.H.Mahvi,M.Alimohammadi,S.Nazmara,Removal of inorganic mercury from aquatic environments by multiwalled carbon nanotubes,J.Environ.Health Sci.Eng.13(2015)55–60.

    [35]A.Somayajul,A.A.Aziz,P.Saravanan,M.Matheswaran,Adsorption of mercury(II)ion from aqueous solution using low-cost activated carbon prepared from mango kernel,Asia Pac.J.Chem.Eng.8(2012)1–10.

    [36]A.S.K.Kumar,S.J.Jiang,W.L.Tseng,Facile synthesis and characterization of thiolfunctionalized graphene oxide as effective adsorbent for Hg(II),J.Environ.Chem.Eng.4(2016)2052–2065.

    [37]B.Henriques,G.Gon?alves,N.Emami,E.Pereira,M.Vila,P.A.A.P.Marques,Optimized graphene oxide foam with enhanced performance and high selectivity for mercury removal from water,J.Hazard.Mater.301(2016)453–461.

    [38]Q.Fan,Y.Yang,Y.Hao,X.Zhao,Y.Feng,Preparation of three-dimensional PANI/GO for the separation of Hg(II)from aqueous solution,J.Mol.Liq.212(2015)557–562.

    [39]L.Cui,X.Guo,Q.Wei,Y.Wang,L.Gao,L.Yan,T.Yan,B.Du,Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide:sorption kinetic and uptake mechanism,J.Colloid Interface Sci.439(2015)112–120.

    [40]S.K.Kumar,A.S.J.Jiang,Preparation and characterization of exfoliated graphene oxide–L-cystine as an effective adsorbent of Hg(II)adsorption,RSC Adv.5(2015)6294–6304.

    [41]K.Kadirvelu,J.Goel,C.Rajagopal,Sorption of lead,mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent,J.Hazard.Mater.153(2008)502–507.

    [42]A.K.Meena,G.K.Mishra,P.K.Rai,C.Rajagopal,P.N.Nagar,Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent,J.Hazard.Mater.122(2005)161–170.

    [43]V.K.Gupta,A.Rastogi,Biosorption of hexavalent chromium by raw and acid-treated green algaOedogonium hateifrom aqueous solutions,J.Hazard.Mater.163(2009)396–402.

    熟女人妻精品中文字幕| 男女边吃奶边做爰视频| 国产1区2区3区精品| 精品少妇内射三级| 国产成人aa在线观看| 水蜜桃什么品种好| 蜜桃国产av成人99| av在线老鸭窝| 欧美3d第一页| 十八禁高潮呻吟视频| 新久久久久国产一级毛片| 日韩一区二区视频免费看| 国产成人午夜福利电影在线观看| 国产又色又爽无遮挡免| 国产在线免费精品| 亚洲成人av在线免费| 91午夜精品亚洲一区二区三区| 久久99精品国语久久久| 日本vs欧美在线观看视频| 亚洲成国产人片在线观看| 高清av免费在线| 一本色道久久久久久精品综合| 视频区图区小说| 成人国产麻豆网| www.色视频.com| 精品国产一区二区久久| 亚洲国产精品专区欧美| 黑人高潮一二区| 久久久国产一区二区| 国产亚洲最大av| 精品少妇久久久久久888优播| 久久精品国产综合久久久 | 久久精品国产亚洲av涩爱| av.在线天堂| 久久99蜜桃精品久久| 亚洲国产av影院在线观看| 精品久久国产蜜桃| 久久 成人 亚洲| 97人妻天天添夜夜摸| a级毛色黄片| 综合色丁香网| 精品国产一区二区久久| 久久久久国产网址| 晚上一个人看的免费电影| av一本久久久久| 免费高清在线观看日韩| 高清在线视频一区二区三区| 日产精品乱码卡一卡2卡三| 五月开心婷婷网| 久久精品国产亚洲av天美| 99热这里只有是精品在线观看| 波野结衣二区三区在线| 尾随美女入室| 高清视频免费观看一区二区| 热99久久久久精品小说推荐| 日韩,欧美,国产一区二区三区| 国产一区二区激情短视频 | 一区二区三区乱码不卡18| 秋霞在线观看毛片| 伊人久久国产一区二区| 精品一区二区三卡| 两个人免费观看高清视频| 黄色一级大片看看| 成年美女黄网站色视频大全免费| 久久久久久久久久久久大奶| 最新的欧美精品一区二区| 少妇被粗大猛烈的视频| av片东京热男人的天堂| 国产男人的电影天堂91| 在线观看国产h片| 亚洲 欧美一区二区三区| 亚洲精品国产av成人精品| 久久精品久久久久久久性| 亚洲精品一区蜜桃| 国产午夜精品一二区理论片| 国产成人一区二区在线| 欧美激情极品国产一区二区三区 | 日韩成人av中文字幕在线观看| 日本爱情动作片www.在线观看| 好男人视频免费观看在线| www日本在线高清视频| 97精品久久久久久久久久精品| 在线观看www视频免费| 中文字幕制服av| 涩涩av久久男人的天堂| 久久婷婷青草| videosex国产| 婷婷色麻豆天堂久久| 亚洲一级一片aⅴ在线观看| av在线播放精品| 久久久久国产精品人妻一区二区| 黄色 视频免费看| 亚洲国产精品国产精品| 日韩欧美一区视频在线观看| 午夜福利,免费看| 亚洲国产精品999| 少妇高潮的动态图| 欧美日韩综合久久久久久| 亚洲欧美一区二区三区黑人 | 哪个播放器可以免费观看大片| av免费在线看不卡| 大码成人一级视频| 日本av手机在线免费观看| 日日爽夜夜爽网站| 欧美国产精品va在线观看不卡| 国产成人aa在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品999| 成年人免费黄色播放视频| 亚洲经典国产精华液单| 欧美激情极品国产一区二区三区 | 多毛熟女@视频| 欧美另类一区| 色吧在线观看| 22中文网久久字幕| 九九在线视频观看精品| 在线精品无人区一区二区三| av在线app专区| 青春草国产在线视频| 黄色毛片三级朝国网站| 午夜久久久在线观看| 国产免费福利视频在线观看| av黄色大香蕉| 如何舔出高潮| av国产久精品久网站免费入址| 国产日韩一区二区三区精品不卡| xxx大片免费视频| 日本vs欧美在线观看视频| 亚洲成国产人片在线观看| √禁漫天堂资源中文www| 亚洲成人手机| 美女国产高潮福利片在线看| 韩国精品一区二区三区 | 草草在线视频免费看| 有码 亚洲区| 18禁在线无遮挡免费观看视频| 久久97久久精品| 亚洲欧美一区二区三区国产| 国产在线一区二区三区精| 欧美激情国产日韩精品一区| 午夜福利网站1000一区二区三区| 我的女老师完整版在线观看| 日本av手机在线免费观看| 久久97久久精品| 韩国av在线不卡| 亚洲国产成人一精品久久久| 久久精品熟女亚洲av麻豆精品| 国产白丝娇喘喷水9色精品| 亚洲一码二码三码区别大吗| 99热国产这里只有精品6| www.熟女人妻精品国产 | 性高湖久久久久久久久免费观看| 久久99精品国语久久久| 夫妻午夜视频| 久久午夜福利片| 国产69精品久久久久777片| 国产一区有黄有色的免费视频| 久久免费观看电影| 国产1区2区3区精品| 久久久久久久亚洲中文字幕| 中文字幕人妻丝袜制服| 精品少妇久久久久久888优播| 伊人久久国产一区二区| 国产精品国产三级专区第一集| 国产成人免费无遮挡视频| 国产又爽黄色视频| 国产黄频视频在线观看| 色婷婷久久久亚洲欧美| 免费在线观看完整版高清| 亚洲国产av新网站| 国产精品国产三级国产专区5o| 亚洲在久久综合| 我的女老师完整版在线观看| 亚洲欧美日韩另类电影网站| 在线天堂中文资源库| 国产欧美另类精品又又久久亚洲欧美| 国产精品99久久99久久久不卡 | 啦啦啦在线观看免费高清www| 成人无遮挡网站| 香蕉精品网在线| 欧美日本中文国产一区发布| 日韩一本色道免费dvd| 亚洲国产av新网站| 伦理电影免费视频| 97人妻天天添夜夜摸| 女的被弄到高潮叫床怎么办| 亚洲欧美色中文字幕在线| 国产成人一区二区在线| 中文天堂在线官网| 亚洲欧美精品自产自拍| 亚洲精品视频女| 我的女老师完整版在线观看| 免费久久久久久久精品成人欧美视频 | 久久国内精品自在自线图片| 国语对白做爰xxxⅹ性视频网站| 51国产日韩欧美| 成年av动漫网址| 精品一品国产午夜福利视频| 在线精品无人区一区二区三| 看十八女毛片水多多多| 欧美日韩一区二区视频在线观看视频在线| 如日韩欧美国产精品一区二区三区| 激情五月婷婷亚洲| 午夜91福利影院| 九九爱精品视频在线观看| 美女中出高潮动态图| 日韩av在线免费看完整版不卡| 黑人高潮一二区| 精品久久久精品久久久| 精品亚洲成国产av| 成人亚洲欧美一区二区av| 26uuu在线亚洲综合色| 青青草视频在线视频观看| 少妇熟女欧美另类| 国产精品不卡视频一区二区| freevideosex欧美| 久久影院123| 少妇熟女欧美另类| 亚洲,欧美,日韩| 街头女战士在线观看网站| 国产高清国产精品国产三级| 秋霞在线观看毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 交换朋友夫妻互换小说| 午夜91福利影院| 国产伦理片在线播放av一区| 一边亲一边摸免费视频| 高清在线视频一区二区三区| 69精品国产乱码久久久| 熟女人妻精品中文字幕| 老司机影院毛片| 久久热在线av| 国产日韩欧美亚洲二区| 国产成人精品无人区| 综合色丁香网| 一级爰片在线观看| 国产精品 国内视频| 在线观看美女被高潮喷水网站| 飞空精品影院首页| 国产精品.久久久| 婷婷色综合大香蕉| 久久人人爽av亚洲精品天堂| 免费看av在线观看网站| 亚洲国产看品久久| 永久网站在线| 国产精品无大码| 久久这里只有精品19| 美女xxoo啪啪120秒动态图| 一区二区三区乱码不卡18| 超碰97精品在线观看| 青春草视频在线免费观看| 天堂中文最新版在线下载| 亚洲色图 男人天堂 中文字幕 | 国产成人免费观看mmmm| 少妇的丰满在线观看| 有码 亚洲区| 三级国产精品片| 考比视频在线观看| 高清黄色对白视频在线免费看| 欧美精品人与动牲交sv欧美| 男女边吃奶边做爰视频| 在线 av 中文字幕| 97在线人人人人妻| 国产精品.久久久| 国产黄频视频在线观看| 亚洲精品国产色婷婷电影| 精品一区二区三区视频在线| 成人综合一区亚洲| 熟女电影av网| 国产一区二区在线观看日韩| 少妇人妻 视频| 中国三级夫妇交换| 有码 亚洲区| 美女内射精品一级片tv| 国产乱人偷精品视频| 人成视频在线观看免费观看| 制服人妻中文乱码| 天天躁夜夜躁狠狠躁躁| 日本免费在线观看一区| 欧美另类一区| 婷婷色av中文字幕| 免费av不卡在线播放| 啦啦啦视频在线资源免费观看| 妹子高潮喷水视频| 亚洲av欧美aⅴ国产| www.色视频.com| 亚洲欧美清纯卡通| 国产日韩欧美在线精品| 22中文网久久字幕| 久久人人爽av亚洲精品天堂| 国产深夜福利视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 夫妻午夜视频| 建设人人有责人人尽责人人享有的| 人妻一区二区av| 国产熟女午夜一区二区三区| 久久国产亚洲av麻豆专区| 午夜精品国产一区二区电影| 黑丝袜美女国产一区| 大码成人一级视频| 国产亚洲一区二区精品| 午夜免费观看性视频| 亚洲av中文av极速乱| 日本爱情动作片www.在线观看| 热re99久久精品国产66热6| 国产精品国产av在线观看| 午夜av观看不卡| 人人妻人人添人人爽欧美一区卜| 国产无遮挡羞羞视频在线观看| 五月开心婷婷网| 国产麻豆69| 大香蕉97超碰在线| 成年女人在线观看亚洲视频| 18在线观看网站| 免费观看无遮挡的男女| 91成人精品电影| 成人手机av| 国产精品久久久久久精品电影小说| 色94色欧美一区二区| 人人澡人人妻人| 美女中出高潮动态图| 少妇人妻久久综合中文| 韩国高清视频一区二区三区| 最近最新中文字幕大全免费视频 | 如日韩欧美国产精品一区二区三区| 日本欧美国产在线视频| 18禁国产床啪视频网站| 国产精品人妻久久久影院| 狠狠精品人妻久久久久久综合| 最近最新中文字幕大全免费视频 | 男女无遮挡免费网站观看| 国产麻豆69| 丰满饥渴人妻一区二区三| 老司机影院毛片| 大片电影免费在线观看免费| 久久99热6这里只有精品| 岛国毛片在线播放| 亚洲成国产人片在线观看| 水蜜桃什么品种好| 国产成人午夜福利电影在线观看| 欧美人与性动交α欧美精品济南到 | 欧美+日韩+精品| 亚洲国产av新网站| 99久国产av精品国产电影| 蜜桃在线观看..| 免费在线观看黄色视频的| 日日爽夜夜爽网站| 国产成人精品一,二区| 欧美xxⅹ黑人| 国产精品三级大全| 国产精品国产三级国产专区5o| 十八禁网站网址无遮挡| 亚洲伊人久久精品综合| 亚洲国产精品成人久久小说| 99re6热这里在线精品视频| www.色视频.com| 欧美日韩av久久| 亚洲精品美女久久av网站| 成人国产av品久久久| 久久久精品区二区三区| 亚洲中文av在线| 五月玫瑰六月丁香| 999精品在线视频| 色94色欧美一区二区| 精品午夜福利在线看| 少妇人妻精品综合一区二区| 亚洲精品美女久久av网站| 黑人高潮一二区| 亚洲成人一二三区av| videosex国产| 有码 亚洲区| 国产欧美日韩一区二区三区在线| 免费观看av网站的网址| 精品第一国产精品| 免费黄频网站在线观看国产| 边亲边吃奶的免费视频| av国产精品久久久久影院| 男人添女人高潮全过程视频| 交换朋友夫妻互换小说| 国国产精品蜜臀av免费| 热re99久久精品国产66热6| 国产精品国产av在线观看| 亚洲av成人精品一二三区| 99久久精品国产国产毛片| 18禁国产床啪视频网站| 色婷婷av一区二区三区视频| 久久精品夜色国产| 国产免费现黄频在线看| 国产精品免费大片| 成年av动漫网址| 亚洲欧美精品自产自拍| 校园人妻丝袜中文字幕| 亚洲第一av免费看| 日本色播在线视频| 一本大道久久a久久精品| 人妻一区二区av| 精品久久蜜臀av无| 亚洲精品中文字幕在线视频| 亚洲第一区二区三区不卡| 在线观看三级黄色| 久久久久久久大尺度免费视频| 欧美xxⅹ黑人| av在线播放精品| 国产av一区二区精品久久| 搡女人真爽免费视频火全软件| 熟女人妻精品中文字幕| 色94色欧美一区二区| 成人影院久久| 午夜福利视频在线观看免费| 黄片无遮挡物在线观看| 亚洲欧美清纯卡通| 欧美激情国产日韩精品一区| 国产成人精品婷婷| 熟妇人妻不卡中文字幕| 欧美精品一区二区大全| av卡一久久| 久久av网站| 少妇的逼好多水| 男人舔女人的私密视频| 蜜臀久久99精品久久宅男| 一级毛片我不卡| 日本黄色日本黄色录像| 免费久久久久久久精品成人欧美视频 | 最近的中文字幕免费完整| 老司机影院毛片| 人人妻人人添人人爽欧美一区卜| 亚洲三级黄色毛片| 国产xxxxx性猛交| 日韩精品有码人妻一区| 国产精品一二三区在线看| 成人毛片60女人毛片免费| 久久国产亚洲av麻豆专区| 亚洲性久久影院| 亚洲欧洲日产国产| 一个人免费看片子| 国产国语露脸激情在线看| 国产亚洲一区二区精品| 人成视频在线观看免费观看| 午夜老司机福利剧场| 免费看光身美女| 国国产精品蜜臀av免费| 老熟女久久久| 日本av免费视频播放| 午夜激情av网站| 国产男女超爽视频在线观看| 视频中文字幕在线观看| 亚洲三级黄色毛片| 久久这里只有精品19| 婷婷成人精品国产| 亚洲精品日韩在线中文字幕| 春色校园在线视频观看| 伦理电影大哥的女人| 中国国产av一级| 久久狼人影院| 国产麻豆69| 欧美日韩亚洲高清精品| 超色免费av| 亚洲精品日本国产第一区| 国产精品一区二区在线观看99| 人人妻人人添人人爽欧美一区卜| 日韩精品免费视频一区二区三区 | 国产精品女同一区二区软件| 五月玫瑰六月丁香| 少妇 在线观看| 国产成人精品无人区| 丰满少妇做爰视频| 亚洲久久久国产精品| av一本久久久久| 在线观看一区二区三区激情| 久久精品久久久久久噜噜老黄| 一级黄片播放器| 亚洲第一区二区三区不卡| 国产免费视频播放在线视频| 亚洲性久久影院| 久久ye,这里只有精品| 久久狼人影院| 18禁裸乳无遮挡动漫免费视频| 啦啦啦啦在线视频资源| 久久久久久久久久久久大奶| 丝袜美足系列| 国产欧美亚洲国产| 天堂8中文在线网| 精品人妻在线不人妻| 亚洲av福利一区| av线在线观看网站| 蜜臀久久99精品久久宅男| 啦啦啦中文免费视频观看日本| 国产日韩欧美在线精品| 欧美精品一区二区免费开放| 欧美精品亚洲一区二区| 香蕉丝袜av| 欧美少妇被猛烈插入视频| 天堂俺去俺来也www色官网| 亚洲精品aⅴ在线观看| 国产精品女同一区二区软件| 中文字幕免费在线视频6| 两性夫妻黄色片 | 极品少妇高潮喷水抽搐| 少妇被粗大猛烈的视频| 秋霞在线观看毛片| 精品人妻偷拍中文字幕| 丝袜脚勾引网站| 国产熟女欧美一区二区| 男男h啪啪无遮挡| 十八禁网站网址无遮挡| 亚洲内射少妇av| 在线观看一区二区三区激情| 亚洲国产av影院在线观看| 黄色 视频免费看| 黄片无遮挡物在线观看| 麻豆精品久久久久久蜜桃| 22中文网久久字幕| 国产精品熟女久久久久浪| 99视频精品全部免费 在线| 亚洲精品av麻豆狂野| 免费看光身美女| xxxhd国产人妻xxx| 国产伦理片在线播放av一区| 丰满乱子伦码专区| 日韩视频在线欧美| 在线观看三级黄色| 国产免费又黄又爽又色| 18禁裸乳无遮挡动漫免费视频| 亚洲精品一区蜜桃| 久久久久精品久久久久真实原创| 蜜桃国产av成人99| 91aial.com中文字幕在线观看| 午夜激情av网站| 寂寞人妻少妇视频99o| 国产老妇伦熟女老妇高清| 亚洲国产精品一区二区三区在线| 最近手机中文字幕大全| 国产av码专区亚洲av| 一本久久精品| 亚洲成人av在线免费| 久久精品国产综合久久久 | 亚洲精品久久午夜乱码| 18禁国产床啪视频网站| 青春草亚洲视频在线观看| 亚洲精华国产精华液的使用体验| 国产亚洲午夜精品一区二区久久| 伊人久久国产一区二区| 草草在线视频免费看| 丝瓜视频免费看黄片| 看非洲黑人一级黄片| 亚洲精品国产av蜜桃| 搡女人真爽免费视频火全软件| 免费黄网站久久成人精品| 国产欧美日韩综合在线一区二区| 中文字幕亚洲精品专区| 婷婷色综合大香蕉| 美女国产高潮福利片在线看| 亚洲精品aⅴ在线观看| 国产精品一区www在线观看| 男女边摸边吃奶| 亚洲精品成人av观看孕妇| 日韩av在线免费看完整版不卡| 一二三四在线观看免费中文在 | 日本猛色少妇xxxxx猛交久久| 日韩电影二区| 国产精品欧美亚洲77777| 国产又色又爽无遮挡免| 成人手机av| 超碰97精品在线观看| 国产一区二区三区av在线| 啦啦啦啦在线视频资源| av福利片在线| 精品亚洲成a人片在线观看| 久久久久久伊人网av| 乱码一卡2卡4卡精品| 桃花免费在线播放| 国产高清三级在线| 国产一区亚洲一区在线观看| 国产色婷婷99| 精品久久蜜臀av无| 国产成人午夜福利电影在线观看| 亚洲av电影在线观看一区二区三区| 成人午夜精彩视频在线观看| 青春草亚洲视频在线观看| 亚洲精华国产精华液的使用体验| 两个人看的免费小视频| 十八禁网站网址无遮挡| 啦啦啦视频在线资源免费观看| 成人亚洲欧美一区二区av| 又黄又粗又硬又大视频| 亚洲av欧美aⅴ国产| 在线免费观看不下载黄p国产| 免费高清在线观看视频在线观看| 性色av一级| 国产国语露脸激情在线看| 日日啪夜夜爽| 午夜激情久久久久久久| 欧美老熟妇乱子伦牲交| 久久青草综合色| 久久女婷五月综合色啪小说| 国产在视频线精品| 边亲边吃奶的免费视频| 一二三四在线观看免费中文在 | 国产精品三级大全| tube8黄色片| 精品久久国产蜜桃| 欧美人与善性xxx| 一二三四中文在线观看免费高清| 国产精品一区二区在线观看99| 国内精品宾馆在线| 久久久亚洲精品成人影院| 国产乱来视频区| 久久久久精品久久久久真实原创| 新久久久久国产一级毛片| 777米奇影视久久| 一区二区日韩欧美中文字幕 | 麻豆乱淫一区二区| 国产熟女午夜一区二区三区| 精品亚洲乱码少妇综合久久| 少妇的丰满在线观看|