• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Column adsorption of Cu(II)by polymer-supported nano-iron oxides in the presence of sulfate:Experimental and mathematical modeling☆

    2017-05-30 02:11:09HuiQiuXiaolinZhangZheXu

    Hui Qiu ,Xiaolin Zhang *,Zhe Xu

    1 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET),School of Environmental Science and Engineering,Nanjing University of Information Science&Technology,Nanjing 210044,China

    2 State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment,Nanjing University,Nanjing 210023,China

    1.Introduction

    As is generally known,iron(hydr)oxides can effectively sequestrate heavy metal ions through outer sphere or inner sphere complexation and thereby significantly affect the immigration of toxic metals in water and soil systems[1–3].In terms of high affinity to metals,easy availability and low cost,iron(hydr)oxides exhibitgreatpotentialin decontamination of water from heavy metals[4,5].Unfortunately,most iron(hydr)oxides are presented as fine orultra fine particles,and cannot be directly applied in flow-through systems due to the excessive pressure drop,low hydraulic conductivity,and poor mechanical rigidity[6–8].In the past decade,people have found an effective approach to overcome the above-mentioned technical challenges,i.e.,by encapsulating fine oxide particles inside porous hosts oflarge size and good geometrical shape(e.g.,spherical beads or fibers).The resultant composite materials are expected to incorporate the high reactivity of iron(hydr)oxides and the desirable hydraulic properties of host materials[9],and could be readily employed in fixed-bed columns or other flowthrough systems for heavy metals removal.Activated carbon,zeolite,alginate,and polymers are widely used to serve as hosts for nanoparticles nowadays[10–14].In particular,porous polymeric beads are extremely attractive partially because of their adjustable pore size and surface chemistry[15,16].Various functional groups could be grafted on the inner surface of the materials depending on the nature of pollutants.Cumbal and SenGupta[17]found that the Donnan effect greatly enhanced sorption efficiencies towards heavy metals,because the polymeric beads containing charged groups could pre-concentrate these metals,facilitating the formation of inner-or outer-sphere complex with the encapsulated iron oxides.Recently,a new composite material was fabricated by impregnating HFO nanoparticles into a commercial chloromethyl polystyrene(PS)resin,which exhibited good removal capacities towards Cu(II)and As(V)[18].

    Commonly,considerable oxyanions like sulfate,phosphate,and nitrate also exist in the waters contaminated by heavy metals.These inorganic ligands can promote metal adsorption onto iron(hydr)oxides by changing theirsurface charge,forming stable surface-metalligand complexes,or hinder it through the formation of soluble complexes,which is greatly dependent upon the nature of ligands,solution pH,surface properties of iron(hydr)oxide,as well as ligand/metal ratio[19,20].For example,Aliand Dzombak[21]demonstrated that Cu(II)sorption on ferrihydrite would be dramatically enhanced in the presence of sulfate due to the formation of a ternary complex with stoichiometry≡FeOHMeSO4based on the generalized two-layer model.Conversely,with the aid of ATR–FTIR study,Beattieet al.[22]believed that the change of surface charge appeared to be a plausible mechanism for higher Cu(II)uptake to goethite in sulfate systems.

    Nevertheless,almost all the available literatures discussed the effects of ligands on heavy metal removal based on the results of batch studies.Column adsorption has been scarcely exploited for this purpose,though it is widely used in realistic applications.The objective of this study is to evaluate the effect of sulfate on Cu(II)sorption by a polymer-supported HFO composite in column adsorption.The nanocomposite HFO-PS was obtained by immobilizing nanosized hydrated ferric oxide inside a commercial chloromethylated polystyrene resin[23,18].The effects of initial Cu(II)concentration, flow rate,and column length on column adsorption were examined,and several empirical models were applied to predict the breakthrough curves,including Adams–Bohart,Clark,Thomas and BDST models.

    2.Materials and Method

    2.1.Chemicals

    All chemicals were of reagent grade and solutions were prepared by deionized water(18.25 MΩ·cm).The chloromethylated polystyrene(PS)beads were purchased from Zhengguang Resin Co.Ltd.(Hangzhou,China).Prior to use,the PS beads were sieved(0.5–0.6 mm),and rinsed with 1 mol·L?1HCl and 1 mol·L?1NaOH in sequence,then extracted with ethanol in a Soxhlet apparatus to remove the possible residual impurities.Finally,they were dried under vacuum at323 Kfor 24 h for further use.

    2.2.Preparation of HFO-bearing hybrid sorbent

    Encapsulation of HFO nanoparticles within PS beads was achieved by the following steps[24].First,10 g of dry PS beads was added into 300 ml ethanol–water(V:V=1:2)solution containing 2 mol·L?1FeCl3and stirred at 298 K for 12 h to ensure the sufficient permeation of Fe(III)into the inner surface of polymeric phase.Second,the Fe(III)-loaded PS beads were filtered,vacuum-desiccated,and immersed into a 200 ml solution containing 0.1 mol·L?1NaOH and 0.1 mol·L?1NaCl,and then stirred at 298 K for 12 h.Finally,the resulting PS beads were rinsed with ultrapure water till pH=5–6 and were thermally treated at 328 K for 10 h to obtain the hybrid HFO-PS.The amorphous nature of the loaded HFO was con firmed by comparison of the XRD pattern of the resulting hybrid sorbents and its parent materials(data not shown).

    2.3.Batch sorption experiments

    Batch sorption experiments were conducted using a traditional bottle-point method.To start the experiment,50 mg of adsorbent was added into 50 ml solution containing different amount of Cu(II)and sulfate.Na2SO4was added to study the in fluence of sulfate on Cu(II)sorption with the concentrations ranging from 0 to 30 mmol·L?1.All the experiments were carried out at a constant ionic strength of 0.01 mol·L?1NaNO3.Solution pH was maintained at 5.5 ± 0.1 by using 0.1 mol·L?1HNO3and 0.1 mol·L?1NaOH solution at intervals[25].The flasks were then transferred to an incubator shaker equipped with thermostat,and shaken at 298 K for 24 h to ensure the sorption equilibrium.The amount of Cu(II)adsorbed on HFO-PS was determined by the difference between the initial and the remaining concentrations in equilibrium.

    2.4.Column experiments

    Fixed-bed experiments were performed using a small polyethylene column(12 mm in diameter and 130 mm in length)equipped with a thermostated water bath to maintain constant temperature,and a certain amount of HFO-PS was packed within columns for test.The simulated wastewater containing Cu(II)and sulfate was prepared as the feeding solution and pumped using a Lange-580 pump(China)to ensure a constant flow rate.The operating conditions,initial Cu(II)or sulfate concentration, flow rate,and column length,were summarized in the related graphs.All the column experiments were performed at 298 K.

    2.5.Analysis

    To determine the concentration of soluble Cu(II),the filtrate was acidified and analyzed with Flame atomic adsorption spectrophotometry(Thermal Co.,US).The specific surface area and pore size distribution of the polymeric host and nanocomposite were measured by a NOVA3000e Instrument(USA)using N2adsorption and desorption test at 77 K.The loaded HFO particles were observed with a highresolution transmission electron microscope(TEM,JEOL JEM-100S).Mineralogy ofthe samples was determined by an X-ray diffraction analysis instrument(XTRA,Switzerland).

    2.6.Mathematical models

    Four mathematicalmodels,Adams–Bohart,Clark,Thomas,and BDST model were applied to simulate the breakthrough curves.

    2.6.1.Adams–Bohart model

    Adams–Bohart model was originally applied to a gas–solid system and nowadays has been expanded to describe and quantify other systems like solid–liquid system[26].It assumes that sorption rate is proportional to the residual capacity of the solid and the concentration of the adsorbate,which is appropriate to describe the initial part of the breakthrough curve.The model can be expressed as:

    whereC0(mg·L?1)is the in fluent Cu(II)concentration,Ct(mg·L?1)is the ef fluent Cu(II)concentration at timet(min),kAB(L·mg?1·h?1)is the mass transfer coefficient,N0(mg·L?1)is the maximum volumetric adsorption capacity,Z(cm)is the column length andU0(m·h?1)is the super ficial velocity(the ratio between the volumetric flow rate and the section area).Its linear form is:

    2.6.2.Clark model

    The Clark model combines the Freundlich equation and the mass transfer concept to de fine a new relation for the breakthrough curve[27]:

    wherenis the Freundlich constant,and bothAandrare Clark constants.For a particular adsorption process in fixed-bed column,the values ofAandrcan be determined from Eq.(4),thereby enabling the prediction of breakthrough curves[28].

    2.6.3.Thomas model

    The Thomas model is one of the most generally and widely used models in column performance theory[29].It assumes a Langmuir modelofequilibrium,no axialdispersion is derived with the adsorption,and the rate driving force obeys pseudo-second order reversible reaction kinetics[30].The expression of Thomas model is given as follows:

    wherekTh(L·mg?1·h?1)is the Thomas rate constant,qTh(mg·g?1)is the theoretical saturated adsorption capacity,v(ml·h?1)is the flow rate of the ef fluent,andm(g)is the mass of the adsorbent.The value ofCt/C0is the ratio of ef fluent and in fluent Cu(II)concentrations at certain time.The kinetic coefficientkThand the adsorption capacity of the columnqThcan be obtained from a plot ofCt/C0againsttat a given flow rate using linear regression.

    2.6.4.BDST model

    The bed depth service time(BDST)model,which was derived from Adams–Bohart model,is generally accepted as a rapid prediction method,stating thatbed heightZand service timetofa column bearsa linear relationship[31].It assumes that sorption is a continuous process wherein equilibrium is not attained instantaneously and the rate of sorption is proportional to sorption capacity that still remains on sorbent.It can be expressed by the following equation:

    wherek′is the adsorption rate constant(L·mg?1·h?1),Zis the column length(cm),Uis the linear flow velocity(m·h?1),andtis the service time of column under above conditions(h).

    3.Results and Discussion

    3.1.Characterization of HFO-based nanocomposite

    The as-obtained hybrid material HFO-PS was characterized by scanning electron microscope(SEM),transmission electron microscope(TEM),X-ray diffraction(XRD)and N2adsorption–desorption test at 77 K.As suggested by the TEM image shown in Fig.1a,the PS matrix was characterized by homogeneous nature.As depicted in Fig.1b,one can observe lots of irregular shadows of dozens of nanometers appearing in HFO-PS sample,indicating that HFO particles were encapsulated within PS matrix successfully.Also,it can be observed that HFO is well dispersed as separated nanoparticles in polystyrene matrix,which facilitates the decontamination performance of HFO-PS by providing more accessible sites than bulky HFO.Besides,the impregnation of HFO resulted in a significantincrease in the specific surface area from 38.90 of PS to 68.52 m2·g?1of HFO-PS,which is mainly ascribed to the well dispersed HFO nanoparticles within the PS host[32,33].Fig.S1 shows the X-ray diffraction spectra of the composite HFO-PS,from which one can see a broad peak ataround 20°arising from the presence of the PS matrix[18],con firming that the impregnated HFO was mainly in the form of amorphous phase.The loading content of Fe in HFO-PS was 7.67%in mass(see supplementary material).

    3.2.Effects of sulfate on Cu(II)sorption

    3.2.1.Batch sorption

    Adsorption isotherms were conducted at 298 K to determine the effects of sulfate on Cu(II)removal by HFO-PS.As shown in Fig.2,the adsorption capacity of Cu(II)is about 22 mg·g?1when the equilibrium concentration of phosphate is 20 mg·L?1without sulfate.The amount of adsorbed Cu(II)at the same condition is significantly enhanced and up to 42,47 and 53 mg·g?1in the presence of sulfate at the concentration of 0.5,2 and 10 mmol·L?1sulfate respectively.Previous studies indicated that Cu(II)is adsorbed onto the surface of ferrihydrite by the formation of edge sharing inner-sphere sorption complexes[34].In the presence of sulfate,the formation of Cu–SO4ternary complexes is distinguished with the aid of XPS spectra,and it plays an important role for the enhanced Cu(II)adsorption on HFO-PS[24].

    The Langmuir and Freundlich models were employed to fit the equilibrium data[35].As listed in Table 1,the correlation coefficients for Langmuir model are larger than 0.97,while that for Freundlich model were higher than 0.95,suggesting that Langmuir model is more appropriate to represent the experimental data in the studied concentration range.The normalized saturation capacities from Langmuir model,qm,are 58.82,62.67,and 67.13 mg·g?1HFO in the presence of sulfate at 0.5,2,and 10 mmol·L?1respectively,much higher than the sulfatefree systems(qm,32.26 mg·g?1HFO).In particular,theKLvalues increases exponentially with the concentration of sulfate,and the conformed formula was presented as follows:

    3.2.2.Column sorption

    Column adsorption was employed to evaluate the effect of sulfate on the performance of the hybrid sorbent HFO-PS in a typical flow-through system[36],and the breakthrough curvesare illustrated in Fig.3.Column adsorptions were carried out at sulfate concentrations of 0,0.5,2 and 10 mmol·L?1,with the initial Cu(II)concentration of 4.86 mg·L?1,flow rate of 25 ml·h?1,and column length of 4.42 cm.From Fig.3,we can observe that the breakthrough point(set atCt/C0=0.2)occurred after 0.29 L in the sulfate-free system,while 0.79 L,1.15 L,and 1.48 L for sulfate concentration of 0.5,2 and 10 mmol·L?1,respectively.Cu(II)broke through fairly later in the sulfate systems.At sulfate concentration of 10 mmol·L?1,the treatment capacity of HFO-PS is nearly 5-folder that in sulfate-free system.It is clear that the addition ofsulfate leads to a considerable enhancement in the treatment capacity of HFO-PS,which is consistent with the batch studies.It is really attractive because sulfate is generally present with Cu(II)ions in the contaminated waters.

    Fig.1.TEM images of the samples.(a)PS and(b)HFO-PS.

    Fig.2.(a)Adsorption isotherms of Cu(II)sorption onto HFO-PS under variable sulfate concentrations at 298 K(adsorption dose,0.5 g·L?1;pH,5.5± 0.1).(b)The relationship between Langmuir adsorption constant K L and sulfate concentration.

    Table 1Langmuir and Freundlich isotherm constants for Cu(II)sorption by HFO-PS

    3.3.Effect of operating parameters

    The in fluence of the operation parameters,initial Cu(II)concentration, flow rate,and column length on the breakthrough curves was evaluated and mathematically modeled.

    3.3.1.Effect of the inlet concentration

    The initial Cu(II)concentration was set as 4.86,7.29 and 9.72 mg·L?1,respectively[Fig.4(a)],with the flow rate of 25 ml·h?1,the bed height of 4.42 cm,and the sulfate concentration of 2 mmol·L?1.The breakthrough(set atCt/C0=0.2)occurred after 1.15 L for the initial 4.86 mg·L?1Cu(II),0.84 L for 7.29 mg·L?1Cu(II),and 0.65 L for 9.72 mg·L?1Cu(II).As expected,the breakthrough time was shortened with the increased inlet concentration because the sites of HFO-PS for Cu(II)sorption are limited.The slope of breakthrough curve becomes steeper when the inlet Cu(II)concentration increases.

    3.3.2.Effect of theflow rate

    The effectsof flow rate on Cu(II)removalby HFO-PSwere investigated at 12.5 ml·h?1,25 ml·h?1and 50 ml·h?1,respectively,where the initial Cu(II)concentration,the column length and the sulfate concentration were set as 4.86 mg·L?1,4.42 cm and 2 mmol·L?1.As seen from Fig.4(b),a breakthrough point(set atCt/C0=0.2)appeared at 0.64 L for the flow rate of 50 ml·h?1,1.14 L for 25 ml·h?1,and 1.72 L for 12.5 ml·h?1.It is obvious that the breakthrough point occurred at a less treatment capacity with a higher flow rate.It is attributed to the insufficient residence time in the column at a higher rate,which makes the Cu(II)diffusion into the pores of the sorbent inhibited.

    3.3.3.Effect of the column length

    The breakthrough curves were examined at different column lengths of 2.21,4.42,6.63 cm,using an initial Cu(II)concentration of 4.86 mg·L?1, flow rate of 25 ml·h?1,and the sulfate concentration at 2 mmol·L?1.From Fig.4c,the experimental breakthrough time(set atCt/C0=0.2)was found to be 0.34 L for 2.21 cm,1.16 L for 4.42 cm and 1.74 L for 6.63 cm.Itseems that an increase in the column length causes a significant increase in the breakthrough time.It is mainly due to the increased adsorption sites and longer contact time as the bed height increased[37].Besides,the slopes of the breakthrough curve are roughly similar,as a change of the column length does not affectthe mass transfer of the process at the same concentration and flow rate.

    3.4.Mathematical modeling

    Four mathematical models including Adams–Bohart,Clark,Thomas,and BDST model were employed to fit the experimental data.Each model allows to determine different parameters on the fixed-bed sorption of Cu(II)onto HFO-PS.The standard error(SE)method is used to evaluate the difference between the predicted and experimentalvalues.

    Fig.3.Breakthrough curves of Cu(II)removal by HFO-PS at different sulfate levels.(Initial Cu(II),4.86 mg·L?1;column length,4.42 cm; flow rate,25 ml·h?1).

    Fig.5(a)presents the predicted curves according to Adams–Bohart model.The characteristic parameters such as adsorption capacityN0and the relative coefficientkABwere shown in Table S1(see supplementary material).Clearly,Adams–Bohart model could not fit the experimental data accurately and a considerable deviation betweenN0andNexpwas observed.The regression coefficientR2also showed unsatisfactory fitness.Also,the calculated adsorption capacityN0could not match the corresponding experimental ones well.Herein,Adams–Bohart model was not proper to describe Cu(II)adsorption in column runs.

    Clark model gave a new simulation of breakthrough curves.Batch sorption showed that Freundlich model is valid for the sorption of Cu(II)by HFO-PS,allowing the use of the Freundlich constant(n=3.75 at sulfate of 2 mmol·L?1)to calculate the parametersAandrin Clark model.From Fig.5b,we found that Clark model fitted the experimental data much better than the Adams–Bohart model with the regression coefficientsR2around 0.90(Table S1),though the considerable difference was still observed between the calculated and experimental data.

    The breakthrough curves predicted by Thomasmodelwere depicted in Fig.4,and the fit of Thomas model allows predicting the sorption capacity of the column(qTh)and the Thomas rate constant(kTh).The determined coefficients and relative constants were obtained using linear regression analysis according to Eq.(6),and the results are listed in Table S2.In all the cases,a negligible difference between the predicted and the experimental data is observed.From the regression coefficients and standard error,it can be concluded that Thomas model fits the experimental quite well(R2>0.96;SE<0.3).

    Fig.4.Breakthrough curves of Cu(II)removal by HFO-PS in sulfate systems:Experimental and predicted by the Thomas model:(a)different initial Cu(II)concentrations(column length,4.42 cm; flow rate,25 ml·h?1);(b)different volumetric flow rates(column length,4.42 cm;in fluent Cu(II),4.86 mg·L?1);(c)different column lengths(in fluent Cu(II),4.86 mg·L?1; flow rate,25 ml·h?1).The sulfate concentration is constant at 2 mmol·L?1.

    Fig.5.Breakthrough curves of Cu(II)removal by HFO-PS in 2 mmol·L?1 sulfate backgrounds:Experimental and predicted by Adams–Bohart model(a)and Clark model(b)at different initial Cu(II)levels.(Column length,4.42 cm; flow rate,25 ml·h?1).

    At a low flow rate(12.5 ml·h?1),the sorption capacityqThis more than 4.5 mg·g?1,higher than that at high flow rate(25 and 50 ml·h?1).By contrast,the Thomas rate constant(kTh)shows the opposite trend.Fig.6 shows the calculated values ofkThandqThunder different volumetric flow rates.We also obtained the linear equations forkThandqTh(kThvsflow rate,qThvsflow rate).

    Fig.6.The linear plot of Thomas parameters vs flow rate at 298 K in 2 mmol·L?1 sulfate backgrounds.(a)k Th vs flow rate.(b)q Th vs flow rate.

    With the increase ofvolumetric flowrate,kThincreased whileqThdecreased,mainly because higher flow rate would result in faster mass transfer and more insufficient adsorption[38].The Eqs.(8)–(9)might be applied to predict the breakthrough curves in practical operation.The values ofqThandkThhave yet to show significant dependence on the initial Cu(II)concentration and column height,implying that both factors have negligible in fluence on the rate of mass transfer and saturated adsorption capacity.The underlying mechanism deserves to be further explored in future research.

    The BDST modelis proposed to assess the relationship between time and column length.The lines oft-ZatCt/C0=0.1,0.2,0.3,0.4 are shown in Fig.7.The equations of these lines are as follows:

    Fig.7.BDST fitting curves for Cu(II)sorption onto HFO-PS at 298 K in 2 mmol·L?1 sulfate backgrounds.(Initial Cu(II),4.86 mg·L?1;column length,4.42 cm; flow rate,25 ml·h?1).

    ValuesofN0(g·L?1)andk′(L·mg?1·h?1)in sulfate systemsare determined according to the slopes and intercepts of the lines and are listed in Table S3.Once the relative constants are determined,the model can be used to estimate the service time for a given column length and specific solute concentration.It is found that the regression coefficientsR2all exceed 0.95,indicating that the BDST model could be applicable to represent Cu(II)sorption by HFO-PS in the presence of sulfate.

    Note that the adsorption rate is proportional to the residual capacity ofthe adsorbentand the concentration ofCu(II),the value ofadsorption rate constantk′would decrease asCt/C0increased,due to the weakened driving force of mass transfer[39].However,the calculated value ofk′is shown to rise whenCt/C0≥0.3 as listed in Table S3.Since BDST model is originated from Adams–Bohart model,it is appropriate for the description of the initial part of the breakthrough curve(Ct/C0<0.3).

    4.Conclusions

    Column adsorption of Cu(II)by polymer-supported nano-iron oxides in the presence of sulfate has been evaluated in the present study.A hybrid sorbent HFO-PS was fabricated by encapsulating nanosized HFO into macroporous polystyrene(PS)resin.We evaluated the effect of sulfate on the sorption towards Cu(II)of HFO-PS in batch and particularly column runs.Both Langmuir and Freundlich models show a good description forthe isothermadsorption,and the adsorption constantsKLhas been growing exponentially as the sulfate concentration rises.In column operations,the presence of sulfate significantly improved Cu(II)sorption onto HFO-PS,and the effects of flow rate,inlet concentration,and column length on column adsorption have been investigated.Mathematical models were applied to predict the theoretical breakthrough curves.Among them,Thomas model is found to be the most suitable one to describe the column adsorption.The calculated value of Thomas rate constantkThand adsorption capacityqThshows linear relation with flow rate,i.e.,kTh=6.17×10?4v?4.63×10?3andqTh=?5.62v+5.093,which could be useful for predicting the breakthrough curves for scaling up.Besides,a linear relationship between breakthrough time and column length was suggested by BDST model,which could possibly predict the breakthrough time for Cu(II)sorption onto HFO-PS especially forCt/C0<0.3.

    Acknowledgments

    This work was supported by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control.

    Supplementary Material

    Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cjche.2017.01.011.

    [1]I.Ali,New generation adsorbents for water treatment,Chem.Rev.112(2012)5073–5091.

    [2]D.J.Cain,M.N.Croteau,C.C.Fuller,Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide,Environ.Sci.Technol.47(2013)2869–2876.

    [3]C.Dai,Y.D.Hu,Fe(III)hydroxide nucleation and growth on quartz in the presence of Cu(II),Pb(II),and Cr(III):Metal hydrolysis and adsorption,Environ.Sci.Technol.49(2015)292–300.

    [4]S.Dulnee,A.C.Scheinost,Surface reaction of snII on goethite(α-FeOOH):Surface complexation,redox reaction,reductive dissolution,and phase transformation,Environ.Sci.Technol.48(2014)9341–9348.

    [5]H.Foerstendorf,N.Jordan,K.Heim,Probing the surface speciation of uranium(VI)on iron(hydr)oxides by in situ ATR FT-IR spectroscopy,J.Colloid Interface Sci.416(2014)133–138.

    [6]A.V.Vitela-Rodriguez,J.R.Rangel-Mendez,Arsenic removal by modified activated carbons with iron hydro(oxide)nanoparticles,J.Environ.Manag.114(2013)225–231.

    [7]R.Y.Li,L.B.Zhang,P.Wang,Rational design of nanomaterials for water treatment,Nano7(2015)17167–17194.

    [8]H.Qiu,C.Liang,X.L.Zhang,M.D.Chen,Y.X.Zhao,T.Tao,Z.W.Xu,G.Liu,Fabrication of a biomass-based hydrous zirconium oxide nanocomposite for preferable phosphate removal and recovery,ACS Appl.Mater.Interfaces7(2015)20835–20844.

    [9]S.J.Tesh,T.B.Scott,Nano-composites for water remediation:A review,Adv.Mater.26(2014)6056–6068.

    [10]L.C.Oliveira,D.I.Petkowicz,A.Smaniotto,S.B.Pergher,Magnetic zeolites:A new adsorbent for removal of metallic contaminants from water,Water Res.38(2004)3699–3704.

    [11]S.F.Lim,Y.M.Zheng,S.W.Zou,J.P.Chen,Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR,XPS,and mathematical modeling study,Environ.Sci.Technol.42(2008)2551–2556.

    [12]J.A.Arcibar-Orozco,M.Avalos-Borja,J.R.Rangel-Mendez,Effect of phosphate on the particle size offerric oxyhydroxides anchored onto activated carbon:As(V)removal from water,Environ.Sci.Technol.46(2012)9577–9583.

    [13]O.Hakami,Y.Zhang,C.J.Banks,Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water,Water Res.46(2012)3913–3922.

    [14]H.Qiu,S.J.Zhang,B.C.Pan,W.M.Zhang,L.Lv,Oxalate-promoted dissolution of hydrous ferric oxide immobilized within nanoporous polymers:Effect ofionic strength and visible light irradiation,Chem.Eng.J.232(2013)167–173.

    [15]M.Hua,Y.N.Jiang,B.Wu,B.C.Pan,X.Zhao,Q.X.Zhang,Oxalate-promoted dissolution of hydrous ferric oxide immobilized within nanoporous polymers:Effect of ionic strength and visible light irradiation,ACS Appl.Mater.Interfaces5(2013)12135–12142.

    [16]B.C.Pan,F.C.Han,G.Z.Nie,B.Wu,K.He,L.Lv,New strategy to enhance phosphate removal from water by hydrous manganese oxide,Environ.Sci.Technol.48(2014)5101–5107.

    [17]L.Cumbal,A.K.SenGupta,Arsenic removal using polymer-supported hydrated iron(III)oxide nanoparticles:Role of Donnan membrane effect,Environ.Sci.Technol.39(2005)6508–6515.

    [18]G.Z.Nie,B.C.Pan,S.J.Zhang,B.J.Pan,Surface chemistry of nanosized hydrated ferric oxide encapsulated inside porous polymer:Modeling and experimental studies,J.Phys.Chem.C117(2013)6201–6209.

    [19]M.Komárek,A.Vaněk,V.Ettler,Chemical stabilization of metals and arsenic in contaminated soils using oxides—A review,Environ.Pollut.172(2013)9–22.

    [20]M.A.G.Hinkle,Z.M.Wang,D.E.Giammar,J.G.Catalano,Interaction of Fe(II)with phosphate and sulfate on iron oxide surfaces,Geochim.Cosmochim.Acta158(2015)130–146.

    [21]M.A.Ali,D.A.Dzombak,Interactions of copper,organic acids,and sulfate in goethite suspensions,Geochim.Cosmochim.Acta60(1996)5045–5053.

    [22]D.A.Beattie,J.K.Chapelet,M.Grafe,W.M.Skinner,E.Smith,Interactions of copper,organic acids,and sulfate in goethite suspensions,Environ.Sci.Technol.42(2008)9191–9196.

    [23]Z.M.Jiang,L.Lv,W.M.Zhang,Q.Du,B.C.Pan,L.Yang,Q.X.Zhang,Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins:Role of surface functional groups,Water Res.45(2011)2191–2198.

    [24]H.Qiu,S.J.Zhang,B.C.Pan,W.M.Zhang,L.Lv,Effect of sulfate on Cu(II)sorption to polymer-supported nano-iron oxides:Behavior and XPS study,J.ColloidInterface Sci.366(2012)37–43.

    [25]C.F.Baes,R.E.Mesmer,The Hydrolysis of Cations,Wiley,New York,1976.

    [26]G.Bohart,E.Adams,Some aspects of the behavior of charcoal with respect to chlorine.1,J.Am.Chem.Soc.42(1920)523–544.

    [27]R.M.Clark,Evaluating the cost and performance of field-scale granular activated carbon systems,Environ.Sci.Technol.21(1987)573–580.

    [28]V.C.Srivastava,B.Prasad,I.M.Mishra,I.D.Mall,M.M.Swamy,Prediction of breakthrough curves for sorptive removal of phenol by bagasse fly ash packed bed,Ind.Eng.Chem.Res.47(2008)1603–1613.

    [29]H.C.Thomas,Heterogeneous ion exchange in a flowing system,J.Am.Chem.Soc.66(1944)1664–1666.

    [30]C.B.Lopes,E.Pereira,Z.Lin,P.Pato,M.Otero,C.M.Silva,J.Rocha,A.C.Duarte,Fixedbed removal of Hg2+from contaminated water by microporous titanosilicate ETS-4:Experimental and theoretical breakthrough curves,Microporous Mesoporous Mater.145(2011)32–40.

    [31]G.M.Walker,L.R.Weatherley,Adsorption of acid dyes on to granular activated carbon in fixed beds,Water Res.31(1997)2093–2101.

    [32]N.Savage,M.S.Diallo,Nanomaterials and water purification:Opportunities and challenges,J.Nanopart.Res.7(2005)331–342.

    [33]B.J.Pan,J.Wu,B.C.Pan,L.Lv,W.M.Zhang,L.L.Xiao,X.S.Wang,X.C.Tao,S.R.Zheng,Development of polymer-based nanosized hydrated ferric oxides(HFOs)for enhanced phosphate removal from waste ef fluents,Water Res.43(2009)4421–4429.

    [34]A.C.Scheinost,S.Abend,K.I.Pandya,D.L.Sparks,Kinetic controls on Cu and Pb sorption by ferrihydrite,Environ.Sci.Technol.35(2001)1090–1096.

    [35]K.Yang,B.S.Xing,Adsorption of organic compounds by carbon nanomaterials in aqueous phase:Polanyi theory and its application,Chem.Rev.110(2010)5989–6008.

    [36]A.Sperlich,A.Werner,A.Genz,G.Amy,E.Worch,M.Jekel,Breakthrough behavior of granular ferric hydroxide(GFH) fixed-bed adsorption filters:Modeling and experimental approaches,Water Res.39(2005)1190–1198.

    [37]J.Y.Song,W.H.Zou,Y.Y.Bian,F.Y.Su,R.P.Han,Adsorption characteristics of methylene blue by peanut husk in batch and column modes,Desalination265(2011)119–125.

    [38]J.L.Sotelo,G.Ovejero,A.Rodríguez,S.álvarez,J.García,Removal of atenolol and isoproturon in aqueous solutions by adsorption in a fixed-bed column,Ind.Eng.Chem.Res.51(2012)5045–5055.

    [39]W.X.Zhang,L.Dong,H.Yan,H.J.Li,Z.W.Jiang,X.W.Kan,H.Yang,A.M.Li,R.S.Cheng,Removal of methylene blue from aqueous solutions by straw based adsorbent in a fixed-bed column,Chem.Eng.J.173(2011)429–436.

    国产精品国产高清国产av | 首页视频小说图片口味搜索| 国产成人免费无遮挡视频| 少妇 在线观看| 国产一区有黄有色的免费视频| 99在线人妻在线中文字幕 | 成人影院久久| 777久久人妻少妇嫩草av网站| 亚洲少妇的诱惑av| videosex国产| 极品人妻少妇av视频| 国产av国产精品国产| 建设人人有责人人尽责人人享有的| 午夜福利乱码中文字幕| 亚洲精品自拍成人| 国产精品欧美亚洲77777| 无限看片的www在线观看| 国产深夜福利视频在线观看| 国产精品一区二区在线观看99| 午夜精品久久久久久毛片777| 久久午夜综合久久蜜桃| 999久久久精品免费观看国产| av视频免费观看在线观看| 亚洲欧美一区二区三区黑人| 久久久久视频综合| 香蕉久久夜色| 精品亚洲成国产av| 51午夜福利影视在线观看| aaaaa片日本免费| 久久 成人 亚洲| 国产成人欧美| 中文字幕人妻丝袜一区二区| 99香蕉大伊视频| 亚洲情色 制服丝袜| 变态另类成人亚洲欧美熟女 | 成人影院久久| 国产精品久久久久久精品古装| kizo精华| 波多野结衣一区麻豆| 久久ye,这里只有精品| av免费在线观看网站| 日韩 欧美 亚洲 中文字幕| 一夜夜www| 成人国语在线视频| 757午夜福利合集在线观看| 亚洲成人免费av在线播放| 人人妻人人澡人人爽人人夜夜| 欧美日韩一级在线毛片| 精品国产国语对白av| 91字幕亚洲| 啦啦啦 在线观看视频| 欧美成狂野欧美在线观看| 久久国产精品人妻蜜桃| 999久久久精品免费观看国产| 人人妻人人爽人人添夜夜欢视频| 午夜精品久久久久久毛片777| 看免费av毛片| 乱人伦中国视频| 国产男女超爽视频在线观看| 十分钟在线观看高清视频www| 亚洲av成人一区二区三| 国产日韩欧美在线精品| 亚洲精品自拍成人| 国产成人av激情在线播放| 在线观看www视频免费| 18禁国产床啪视频网站| 久久精品亚洲av国产电影网| 一级毛片女人18水好多| 女人高潮潮喷娇喘18禁视频| 国产av精品麻豆| 桃花免费在线播放| 曰老女人黄片| 亚洲第一青青草原| 18禁黄网站禁片午夜丰满| 真人做人爱边吃奶动态| 波多野结衣av一区二区av| 91av网站免费观看| 亚洲国产欧美在线一区| a级毛片黄视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av片天天在线观看| 久久国产精品男人的天堂亚洲| 18禁美女被吸乳视频| 欧美成人免费av一区二区三区 | 午夜两性在线视频| 男女床上黄色一级片免费看| 久久这里只有精品19| 亚洲av片天天在线观看| 亚洲国产看品久久| 亚洲五月婷婷丁香| 精品国产乱子伦一区二区三区| 黑人巨大精品欧美一区二区mp4| 亚洲成人国产一区在线观看| 久久九九热精品免费| 国产成人av激情在线播放| 亚洲国产成人一精品久久久| 狠狠婷婷综合久久久久久88av| 国产成人欧美在线观看 | 欧美精品高潮呻吟av久久| 国产成人精品久久二区二区91| 法律面前人人平等表现在哪些方面| 一二三四在线观看免费中文在| 1024香蕉在线观看| 久久久精品国产亚洲av高清涩受| 成年人午夜在线观看视频| 欧美黑人精品巨大| 久久九九热精品免费| 日日夜夜操网爽| 伊人久久大香线蕉亚洲五| 亚洲性夜色夜夜综合| 成人国产av品久久久| 国产伦人伦偷精品视频| 一级片'在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 18禁国产床啪视频网站| 操美女的视频在线观看| 一二三四在线观看免费中文在| 亚洲,欧美精品.| 久9热在线精品视频| 成人精品一区二区免费| 免费少妇av软件| 电影成人av| 91大片在线观看| 天堂俺去俺来也www色官网| 精品人妻熟女毛片av久久网站| 日韩有码中文字幕| 亚洲欧美一区二区三区久久| 久久精品aⅴ一区二区三区四区| 十八禁人妻一区二区| 亚洲欧美日韩高清在线视频 | 熟女少妇亚洲综合色aaa.| 亚洲欧美精品综合一区二区三区| 一二三四社区在线视频社区8| 亚洲人成电影免费在线| 女性被躁到高潮视频| av视频免费观看在线观看| 如日韩欧美国产精品一区二区三区| 黄色怎么调成土黄色| 午夜视频精品福利| 国产一区二区三区在线臀色熟女 | 99热国产这里只有精品6| 午夜91福利影院| 午夜福利欧美成人| 日韩有码中文字幕| 国产精品一区二区精品视频观看| 美女高潮到喷水免费观看| 18禁裸乳无遮挡动漫免费视频| 欧美激情久久久久久爽电影 | 美女福利国产在线| 国产精品麻豆人妻色哟哟久久| 岛国毛片在线播放| 69精品国产乱码久久久| 午夜福利影视在线免费观看| 欧美激情 高清一区二区三区| 日本一区二区免费在线视频| xxxhd国产人妻xxx| 国产精品国产高清国产av | 国产精品一区二区精品视频观看| 18禁观看日本| 亚洲视频免费观看视频| 天堂中文最新版在线下载| 一区在线观看完整版| 法律面前人人平等表现在哪些方面| 在线观看免费高清a一片| 天堂俺去俺来也www色官网| av欧美777| 国内毛片毛片毛片毛片毛片| 久久香蕉激情| 亚洲精品国产色婷婷电影| 高清欧美精品videossex| 99国产极品粉嫩在线观看| 天天添夜夜摸| 国产成人一区二区三区免费视频网站| 精品久久久精品久久久| 老熟女久久久| 19禁男女啪啪无遮挡网站| 欧美日韩成人在线一区二区| 色综合欧美亚洲国产小说| 亚洲欧美日韩高清在线视频 | 亚洲黑人精品在线| e午夜精品久久久久久久| 国产av国产精品国产| 黑人巨大精品欧美一区二区mp4| 国产日韩欧美在线精品| 亚洲av电影在线进入| 精品熟女少妇八av免费久了| 丰满迷人的少妇在线观看| 在线观看66精品国产| 久久亚洲精品不卡| 亚洲欧美一区二区三区黑人| 日日摸夜夜添夜夜添小说| 欧美在线黄色| 国产极品粉嫩免费观看在线| 一级黄色大片毛片| 免费观看av网站的网址| 国产99久久九九免费精品| 亚洲美女黄片视频| 这个男人来自地球电影免费观看| 国产在视频线精品| 国产欧美日韩精品亚洲av| 可以免费在线观看a视频的电影网站| 亚洲中文字幕日韩| 90打野战视频偷拍视频| 国产精品一区二区免费欧美| h视频一区二区三区| 美女主播在线视频| 亚洲成人免费电影在线观看| 精品免费久久久久久久清纯 | 欧美日韩黄片免| 国产精品av久久久久免费| 1024香蕉在线观看| av又黄又爽大尺度在线免费看| 在线观看www视频免费| 在线永久观看黄色视频| 日韩大码丰满熟妇| av国产精品久久久久影院| 午夜精品国产一区二区电影| 欧美激情 高清一区二区三区| 母亲3免费完整高清在线观看| 日韩大片免费观看网站| 午夜日韩欧美国产| 午夜精品国产一区二区电影| 日本黄色日本黄色录像| 国产黄频视频在线观看| 91大片在线观看| 侵犯人妻中文字幕一二三四区| 国产欧美日韩一区二区三| 视频在线观看一区二区三区| 大码成人一级视频| 国产精品熟女久久久久浪| 午夜福利视频在线观看免费| 日本a在线网址| 国产精品一区二区免费欧美| 国产精品久久久av美女十八| 亚洲人成伊人成综合网2020| 蜜桃国产av成人99| 麻豆av在线久日| 精品国产国语对白av| 欧美激情 高清一区二区三区| 久久久久久亚洲精品国产蜜桃av| 伊人久久大香线蕉亚洲五| 免费看十八禁软件| 亚洲午夜精品一区,二区,三区| 国产三级黄色录像| 久久热在线av| av欧美777| 亚洲人成伊人成综合网2020| 欧美 日韩 精品 国产| 啪啪无遮挡十八禁网站| 免费在线观看视频国产中文字幕亚洲| videosex国产| 国精品久久久久久国模美| 精品人妻在线不人妻| 操美女的视频在线观看| 伊人久久大香线蕉亚洲五| 这个男人来自地球电影免费观看| 下体分泌物呈黄色| 人人妻人人澡人人爽人人夜夜| 久久影院123| 久久久国产欧美日韩av| 人人妻人人澡人人看| 亚洲三区欧美一区| 视频在线观看一区二区三区| 下体分泌物呈黄色| 久久99一区二区三区| 美女福利国产在线| 国产午夜精品久久久久久| 免费av中文字幕在线| 精品亚洲成国产av| 99热国产这里只有精品6| 国产视频一区二区在线看| 狠狠婷婷综合久久久久久88av| 国产精品电影一区二区三区 | 中亚洲国语对白在线视频| netflix在线观看网站| 日本精品一区二区三区蜜桃| 久久人妻av系列| 美女午夜性视频免费| 国产精品秋霞免费鲁丝片| 午夜两性在线视频| 一边摸一边抽搐一进一小说 | 啦啦啦免费观看视频1| 热99re8久久精品国产| 国产亚洲一区二区精品| 亚洲av国产av综合av卡| 国产精品免费视频内射| 欧美在线一区亚洲| 五月天丁香电影| 色94色欧美一区二区| 久久久国产一区二区| 不卡一级毛片| 黑丝袜美女国产一区| 国产精品久久久av美女十八| 精品人妻在线不人妻| 桃红色精品国产亚洲av| 制服人妻中文乱码| 天天躁夜夜躁狠狠躁躁| 国产福利在线免费观看视频| 亚洲色图 男人天堂 中文字幕| 久久精品国产99精品国产亚洲性色 | 91精品国产国语对白视频| 午夜福利影视在线免费观看| 久久久久久免费高清国产稀缺| av天堂在线播放| 成年动漫av网址| 视频区欧美日本亚洲| 国内毛片毛片毛片毛片毛片| 99久久国产精品久久久| 又黄又粗又硬又大视频| 成人国产一区最新在线观看| 俄罗斯特黄特色一大片| 欧美黄色淫秽网站| av不卡在线播放| 久热这里只有精品99| 欧美乱妇无乱码| 一区二区三区国产精品乱码| 啦啦啦免费观看视频1| 视频在线观看一区二区三区| 国产成人av激情在线播放| 天天躁夜夜躁狠狠躁躁| 免费观看人在逋| 多毛熟女@视频| 欧美日韩黄片免| 亚洲av电影在线进入| 久久久久国产一级毛片高清牌| 亚洲五月色婷婷综合| 久久中文看片网| 操美女的视频在线观看| av免费在线观看网站| 女人久久www免费人成看片| 青青草视频在线视频观看| 久久久精品免费免费高清| 日韩中文字幕视频在线看片| 国产在线观看jvid| 少妇的丰满在线观看| 国产在线一区二区三区精| 亚洲天堂av无毛| 午夜两性在线视频| 国产精品成人在线| 精品国产超薄肉色丝袜足j| 久久精品91无色码中文字幕| 久久国产精品影院| 亚洲av欧美aⅴ国产| 国产1区2区3区精品| 天天影视国产精品| 最近最新免费中文字幕在线| 黄色a级毛片大全视频| www日本在线高清视频| 国产亚洲精品第一综合不卡| 免费在线观看完整版高清| 久久中文字幕一级| 久9热在线精品视频| 亚洲欧洲日产国产| 在线十欧美十亚洲十日本专区| 日韩制服丝袜自拍偷拍| 高清av免费在线| 亚洲色图综合在线观看| 变态另类成人亚洲欧美熟女 | 国产淫语在线视频| 欧美精品一区二区免费开放| 99国产精品99久久久久| 精品一品国产午夜福利视频| 欧美中文综合在线视频| 国产精品国产av在线观看| 少妇的丰满在线观看| 波多野结衣av一区二区av| 欧美黄色淫秽网站| 精品国产一区二区三区四区第35| 法律面前人人平等表现在哪些方面| 国产不卡一卡二| 狂野欧美激情性xxxx| 丁香欧美五月| 一级片'在线观看视频| 日韩 欧美 亚洲 中文字幕| 人妻久久中文字幕网| 国产又色又爽无遮挡免费看| 成人18禁在线播放| 亚洲第一青青草原| 啦啦啦中文免费视频观看日本| 国产一区二区三区综合在线观看| 窝窝影院91人妻| 国产欧美亚洲国产| 美女福利国产在线| 国内毛片毛片毛片毛片毛片| 国产老妇伦熟女老妇高清| 亚洲欧美一区二区三区黑人| 国产精品一区二区精品视频观看| 高清毛片免费观看视频网站 | 黄片播放在线免费| 99国产精品免费福利视频| 国产精品免费大片| 日本五十路高清| 中文字幕人妻丝袜制服| 成人18禁高潮啪啪吃奶动态图| 老熟妇乱子伦视频在线观看| 天天影视国产精品| 亚洲色图 男人天堂 中文字幕| 两个人看的免费小视频| 午夜两性在线视频| 人人妻人人爽人人添夜夜欢视频| 日本av免费视频播放| 久久人人爽av亚洲精品天堂| 一级a爱视频在线免费观看| 亚洲欧美色中文字幕在线| 99精国产麻豆久久婷婷| 久久这里只有精品19| 精品卡一卡二卡四卡免费| 欧美 日韩 精品 国产| 国产伦人伦偷精品视频| 最近最新中文字幕大全电影3 | 老汉色∧v一级毛片| 亚洲人成电影免费在线| 男女午夜视频在线观看| av网站在线播放免费| 欧美黑人精品巨大| 黄片播放在线免费| 久久精品人人爽人人爽视色| 老司机深夜福利视频在线观看| 男女下面插进去视频免费观看| 欧美精品亚洲一区二区| 成年人黄色毛片网站| 12—13女人毛片做爰片一| 黄色片一级片一级黄色片| 97在线人人人人妻| 国产男女内射视频| 亚洲成人国产一区在线观看| 高潮久久久久久久久久久不卡| 亚洲精品美女久久av网站| 热re99久久国产66热| 国产精品自产拍在线观看55亚洲 | tube8黄色片| 熟女少妇亚洲综合色aaa.| 国产欧美日韩一区二区三| 我的亚洲天堂| 天天添夜夜摸| 成年人午夜在线观看视频| 亚洲av国产av综合av卡| 久久久久久人人人人人| 成人国语在线视频| 国产免费av片在线观看野外av| 亚洲情色 制服丝袜| 人人妻人人爽人人添夜夜欢视频| 悠悠久久av| 国产高清激情床上av| 日本一区二区免费在线视频| 中文字幕制服av| 99热网站在线观看| 在线观看免费视频网站a站| 最新美女视频免费是黄的| 啦啦啦 在线观看视频| 99九九在线精品视频| 狠狠婷婷综合久久久久久88av| 下体分泌物呈黄色| 后天国语完整版免费观看| 乱人伦中国视频| 大码成人一级视频| 精品乱码久久久久久99久播| 黄色毛片三级朝国网站| 亚洲欧美一区二区三区黑人| 亚洲三区欧美一区| 国产麻豆69| 免费少妇av软件| 欧美精品av麻豆av| 国产一区二区激情短视频| 丰满少妇做爰视频| 色精品久久人妻99蜜桃| 成人av一区二区三区在线看| 在线av久久热| 91麻豆精品激情在线观看国产 | www.熟女人妻精品国产| 国产在线视频一区二区| 成人永久免费在线观看视频 | 少妇粗大呻吟视频| 国产成人免费观看mmmm| 日韩欧美一区二区三区在线观看 | 王馨瑶露胸无遮挡在线观看| 亚洲av欧美aⅴ国产| 999久久久精品免费观看国产| 亚洲国产av影院在线观看| 国产xxxxx性猛交| 91大片在线观看| videosex国产| 国产精品久久久久久精品电影小说| 日韩大码丰满熟妇| 99久久人妻综合| 午夜激情久久久久久久| 一二三四社区在线视频社区8| 女人爽到高潮嗷嗷叫在线视频| 国产精品 国内视频| 老司机靠b影院| 成人国产av品久久久| 美女扒开内裤让男人捅视频| 一二三四社区在线视频社区8| 91九色精品人成在线观看| 亚洲国产欧美一区二区综合| 免费在线观看影片大全网站| 亚洲第一欧美日韩一区二区三区 | 久久午夜亚洲精品久久| 老熟妇乱子伦视频在线观看| 肉色欧美久久久久久久蜜桃| 中文字幕最新亚洲高清| 黑人巨大精品欧美一区二区蜜桃| 女警被强在线播放| 黑人巨大精品欧美一区二区蜜桃| 99riav亚洲国产免费| 在线观看舔阴道视频| 91麻豆精品激情在线观看国产 | 美女午夜性视频免费| 国产亚洲精品久久久久5区| 久久ye,这里只有精品| 免费看a级黄色片| 亚洲人成电影观看| 日韩免费高清中文字幕av| 国产在线视频一区二区| 亚洲国产中文字幕在线视频| 成人国产一区最新在线观看| 国产熟女午夜一区二区三区| 午夜激情av网站| 满18在线观看网站| 欧美 亚洲 国产 日韩一| 极品教师在线免费播放| 99九九在线精品视频| 一个人免费在线观看的高清视频| 热re99久久国产66热| 国产男女超爽视频在线观看| 丰满少妇做爰视频| 丝袜美腿诱惑在线| av电影中文网址| 国产亚洲精品久久久久5区| 我要看黄色一级片免费的| 国产伦人伦偷精品视频| 在线十欧美十亚洲十日本专区| 国产免费福利视频在线观看| 国产老妇伦熟女老妇高清| 国产成人精品久久二区二区91| 亚洲午夜精品一区,二区,三区| 男女下面插进去视频免费观看| 五月天丁香电影| 亚洲一码二码三码区别大吗| 成年版毛片免费区| 一级片免费观看大全| 变态另类成人亚洲欧美熟女 | 女同久久另类99精品国产91| 日本vs欧美在线观看视频| 精品一品国产午夜福利视频| 亚洲精品国产色婷婷电影| 欧美老熟妇乱子伦牲交| 亚洲国产中文字幕在线视频| 久久精品熟女亚洲av麻豆精品| 欧美黄色淫秽网站| 伊人久久大香线蕉亚洲五| 亚洲天堂av无毛| 亚洲专区中文字幕在线| 嫁个100分男人电影在线观看| 国产精品久久久久久精品电影小说| 99国产综合亚洲精品| 日日摸夜夜添夜夜添小说| 天堂动漫精品| 久久午夜综合久久蜜桃| h视频一区二区三区| 可以免费在线观看a视频的电影网站| 人人妻,人人澡人人爽秒播| bbb黄色大片| 亚洲 国产 在线| 精品熟女少妇八av免费久了| 久久婷婷成人综合色麻豆| 国产色视频综合| 欧美日韩黄片免| 大香蕉久久成人网| 12—13女人毛片做爰片一| 精品国产乱码久久久久久小说| 人人妻,人人澡人人爽秒播| 精品久久蜜臀av无| 日韩欧美一区视频在线观看| 一级毛片电影观看| 欧美激情 高清一区二区三区| 久久99热这里只频精品6学生| 人人妻人人澡人人爽人人夜夜| 我要看黄色一级片免费的| 国产精品 国内视频| 另类精品久久| 国产一区二区在线观看av| 国产日韩欧美在线精品| 免费av中文字幕在线| 91精品三级在线观看| 成人精品一区二区免费| 天堂中文最新版在线下载| 亚洲欧美精品综合一区二区三区| 欧美成狂野欧美在线观看| 欧美+亚洲+日韩+国产| 一本色道久久久久久精品综合| h视频一区二区三区| 久久久久久久久免费视频了| 性高湖久久久久久久久免费观看| 无限看片的www在线观看| 亚洲精品自拍成人| 午夜福利视频在线观看免费| 亚洲色图综合在线观看| 亚洲精品自拍成人| 国产精品麻豆人妻色哟哟久久| 一级毛片精品| 汤姆久久久久久久影院中文字幕| 国产日韩欧美在线精品| 精品少妇内射三级| 高清毛片免费观看视频网站 | 国产精品熟女久久久久浪| 99久久国产精品久久久| 国产伦理片在线播放av一区| 精品国产国语对白av| 欧美精品人与动牲交sv欧美| 建设人人有责人人尽责人人享有的| 日本av免费视频播放| 91字幕亚洲| 欧美成人免费av一区二区三区 | 一二三四在线观看免费中文在|