• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel method based on entransy theory for setting energy targets of heat exchanger network☆

    2017-05-29 10:48:04LiXiaYuanliFengXiaoyanSunShuguangXiang
    關(guān)鍵詞:中軸河網(wǎng)中軸線

    Li Xia,Yuanli Feng,Xiaoyan Sun,Shuguang Xiang*

    Institute of Process System Engineering,Qingdao University of Science and Technology,Qingdao 266042,China

    1.Introduction

    Energy is the driving force for economic growth and sustainable development of a country.Simultaneously,a series of environmental and health problems have been caused by energy production and consumption.Currently China has become the first energy producer and the second largest energy consumer in the world.With the rapid economic development and improved standards of living,energy demand in China is continually rising and resource constraints are becoming more seriously[1].

    Heat exchanger networks are widely used in oil refining,chemical,metallurgy,pharmaceutical and other large industrial enterprises.Its significance can be attributed to its role in reducing energy consumption and increasing energy utilization ratio[2].Nowadays,three kinds of heat exchangernetwork synthesis methods have been established:the pinch design method(PDM),the mathematical programming approach,and the artificial intelligence approach.PDM is the most mature and successful method in the heat exchange network design.Besides,PDM is applied to analyze the distribution ofenergy flow along the temperature gradient in the heat transfer process.The maximum energy recovery(MER)network can be obtained by PDM,but the heat transfer efficiency cannot be calculated.With the heatrecovery processes becoming more complex,the PDM has some shortcomings.For example,the operating and investment costs are not considered in this method.

    Heattransfer was widely thoughtto originate in 19th century,which had gradually matured in theory and engineering application[3].The various quantity methods have been used to describe the heat transfer rate,but there is no concept of efficiency for transfer processes.Guoet al.[4]introduced a new physical quantity,entransy,based on the analogy between heat and electrical conduction.The entransy of an object describes its heat transfer ability and “thermal potential energy”.The concept of entransy dissipation was introduced to analyze an irreversible heating transfer process.Moreover,Chenet al.[5,6]derived the extremumprinciple ofentransy dissipation to optimize the processes of the heat conduction.This attracts many scholars to carry out a series of in-depth related research in various directions,such as heat conduction[7–9],heat convection[10],the optimal design of heat exchangers[11,12],mass transfer[13,14],heat radiation[15–17],and multiple transfer process[18].

    In order to analyze the performance of heat transfer processes,Chenet al.[19]introduced a two-dimension property diagram,temperatureheat flow diagram(T-q·diagram).The area between the process curves of the hot and cold streams represented the total entransy dissipation rate in the whole heat exchanger.The diagram can be used to analyze the irreversibility of heat transfer processes.Wuet al.[20]compared the entransy dissipation rates of three simple chemical processes in the temperature-heat flow rate diagram(T-Q·diagram).This approach was applied to evaluate the performance of self-heat recuperation technology(SHRT).

    The theoretical basis for simplifying the complex chemical process was only provided in the previous work,but was not applied to the optimal design of HENs[29].

    This article willpropose an energy targetapproach ofHENs based on the concept of entransy and entransy dissipation.In comparison with the PDM,the entransy method of HENs has some obvious advantages,such as accurate calculation of entransy transfer efficiency,minimizing the entransy dissipation and maximizing the entransy recovery.A real case study is used to show the application of the novel method.Thus,the energy-saving potential of the HENs can be obtained based on the entransy transfer efficiency analysis.

    2.Model and Theoretical Analysis

    2.1.Model of a two-stream heat transfer process with entransy theory

    Guoet al.[4]proposed a new physical quantity,entransy,which correspond to electrical potential energy in a capacitor based on the analogy between electrical and thermal systems.The entransy of an object is,

    whereQvhis thermal capacity of an object with constant volume,cvis specific heatcapacity atconstantvolume,UhorTrepresents the thermal potential.

    For a two-stream heat exchanger,which is operated in steady state,when the temperature drop of the stream is dT,heat flow generating is dQ,and the output entransy is[21]:

    It is assumed that there is no heat exchanging with environment,the change of kinetic and potential energy,the effects of conduction and mixing in the direction ofstream can be ignored[22].The heatcapacities and heat transfer coefficients are defined as constant.

    With these assumptions,specific heat capacity at constant volume and specific heat capacity at constant pressure are approximately equal,which can be written as

    wheremis the mass flow,the subscript h refers to the hot stream,and the subscript c refers to the cold stream.

    The entransy change between the hot and cold streams is

    where the subscripts in and out denote the inlet and outlet states,respectively.

    The entransy dissipation in the whole heatexchange network can be obtained by summing Eqs.(6a)and(6b)

    In Eq.(7),we can see that entransy is not completely conserved due to dissipation,which means the entransy dissipation is a measurement of the irreversibility of heat transfer processes.If the quantity of entransy that the hot streams release is absorbed by the cold streams,the entransy dissipation is reduced.So the effective energy utilization is achieved.

    The entransy transfer efficiency can be used to evaluate the heat transfer performance of HENs,expressed as.

    whereEh,Ecrepresent the quantity of entransy that the hot streams release and the cold streams absorb,respectively.The more entransy that cold streams absorb and the less entransy that hot streams dissipate,the higher entransy transfer efficiency can be obtained.

    2.2.Available entransy and the physical meaning of T-Q diagram

    Entransy possesses both the nature of“energy”and the heattransfer ability.The temperature represents the potentialofthe heatbecause the heat differs at different temperatures.Hence the entransy of hot streams,which means“potentialenergy”ofheat,can be used effectively by cold streams.

    When two objects at different temperatures are in thermal contact,the total quantity of“potential energy”of heat can be transferred,which representthe entransy transfer associated with the heat transfer.Guoet al.[23]considered the entransy as the heat transport potential capacity in an earlierpaper.Chengetal.[24]found thatentransy changes in heat transfer process of an isolated system and a closed system.This principle was called entransy decrease,based on the first and second laws of thermodynamics.That can be written as dG≤0(the equal sign is tenable for an ideal heat transfer process,while the sign of“l(fā)ess than”is tenable for natural heat transfer process),which can be described as the irreversibility of heat transfer process due to entransy loss or heat transfer ability.

    The volume changes are not usually considered in heat transfer.AsTis a state quantity andδQis a process quantity,entransyT·δQis obviously a process quantity.Huet al.[25]derived that the entransy flow of a system,which was called the system entransyG,corresponded to a state quantity in a reversible process with constant volume.

    Based on the first law of thermodynamics,the energy balance equation can be expressed as.

    Eq.(9)points out that in entransy transfer,a portion of the entransy flow will be converted into work entransy,T·δW,which makes no contribution to the heating or cooling of an object.T·dUis the available portion of the entransy flow,which is called the available entransy.

    As mentioned above,the heat transfer process of streams can be shown in theT-Qdiagram.It is clear that the heat transfer capability should be enhanced in the HENs.The available entransy,which makes contribution to the heating or cooling streams,needs to be maximized.Thus,the heat transfer performance is improved,and the effective utilization of energy is realized.

    3.Novel Method to Setting the Energy Targets

    The tasks of HENs synthesis are minimizing capital and operating costs,achieving the initial temperature to the target temperature.The feed,which starts cold and needs to be heated up,is called as a cold stream;conversely which starts hot and needs to be cooled down,is called as a hot stream[26].

    Fig.1.The property diagram in heat transfer processes of streams.

    During the heattransferprocesses,the change of heat is equal to the enthalpy change of each stream.In Fig.2,theT-axis is a continuous change and theQ-axis is a relative change.If process curve is shifted along theQ-axis,the change of temperature,heat and entransy will not affect the property of stream.Thus,to handle multiple streams,it is convenient to combine the lines of multiple streams into a single curve.

    Fig.2 shows a formation of the hot composite curve.It is formed by three hot streams,whose heat capacity flow rates are named as A,B,C.The enthalpy change can be calculated in a series of every interval temperatures.If there is only one line in an interval,the slope cannot be changed.If multiple lines exit in an interval,the temperature of vertical coordinates in this interval remains unchanged,the enthalpy change of horizontal coordinates added together,which means the vector sum of these lines in this interval can be got.Finally,the line segments are connected end-to-end to form a single curve,shown in Fig.2(b).

    Using the same method,the cold composite curve can be obtained.Therefore,the green shade area between the hot and cold streams in Fig.3 is the total entransy dissipation,ΔE,·as shown in Eq.(7).The blue shaded area under the cold composite curve,which is identified as the entransy recovery of the system,indicates that the cold streams effectively utilize the entransy transferred from the hot streams.

    For a heat exchanger network,in order to meet the actual industrial production needs,the quantity of entransy that the hot stream releases is not completely absorbed by the cold stream.The entransy required for the cold stream to be heated to the target temperature cannot be provided entirely by the hot stream.Generally we need additional hot and cold utilities in the system.

    The maximum energy recovery and the minimum utility requirements can be achieved by the HENs synthesis method,which means that the entransy of all hot streams can possibly be absorbed in maximum by the cold streams.Meanwhile for the maximumentransy recovery,the minimum entransy dissipation and the minimum utility requirements are represented in the optimization of heat exchanger network,shown in Fig.4.

    For the design of heat exchangers,considering exchanger area,utility requirements and capital cost with minimum approach temperatureΔTminchanges.There isan optimumvalue forΔTmin,which isusually 10–20 K.

    本文所提方法最大的特點(diǎn)在于滿足中軸線提取結(jié)果可視化的基本要求下,實(shí)現(xiàn)了全自動(dòng)化提取。對(duì)提取結(jié)果完成拓?fù)錂z查后,直接進(jìn)行網(wǎng)絡(luò)空間分析。比如對(duì)于河網(wǎng)中軸可進(jìn)行連通性分析。由于本文所選數(shù)據(jù)為河網(wǎng)數(shù)據(jù),以下將對(duì)中軸提取結(jié)果建立網(wǎng)絡(luò)拓?fù)洳⑦M(jìn)行連通性分析。

    In Fig.4,the hot and cold composite curves are shifted on theQ-axis and close to each other.Until the two composite curves reach to the predetermined target position(ΔTmin)in a vertical direction,the lower right corner area indicates the minimum entransy of hot utility requirements(Eh,min),which means the cold streams can be entirely heated to target temperature.The lower left corner area indicates the minimum entransy of cold utility requirements(Ec,min),which means the hot streams can be entirely cooled to target temperature.And the overlapped area between the composite curves represents the maximum entransy recovery and the minimum entransy dissipation.

    Fig.3.The property diagram in heat transfer processes between hot and cold streams.Meanwhile,the amount of entransy dissipation and entransy recovery are shown in this diagram.

    Fig.2.Example of formation of the hot composite curve:(a)A T-Q diagram of three hot streams;(b)The process of forming a hot composite curve through three hot streams.

    Entropy,which is another kind of physical quantity in thermodynamics,is a measure of the irreversibility of a process and the randomness of a system.The entropy theory is mainly applied to the heat-work conversion optimization in reversible process,but there is an“entropy paradox”[27].That is with the increase of heat exchanger effectiveness,the entropy generation number is also increased.In addition,entropy cannot be used to describe energy quality.However,entransy is developed to describe heat transfer ability of a real system.The entransy dissipation number,which is introduced by the theory of entransy dissipation,can resolve entropy generation paradox.The entransy dissipation number can correctly describe the global performance of the heatexchangers with three different flow arrangements simultaneously[28].Compared with the entropy analysis,the entransy analysis has obvious advantages.

    Fig.4.The property diagram in heat transfer processes of all hot and cold streams in the HENs.

    4.Case Study

    The diesel oil hydrogenation unit of one petrochemical company includes reaction,fractionation,acid gas desulfurization,and the design scale is 3.4 million tons per year.According to limits and measurement methods for emission from light-duty vehicles(China 5),part of the transformation ofthe unitis to meetthe requirements ofthe production of diesel oil.To reduce the external hot utility usage,the optimization of heatexchanger network has a practical significance.The data of hot and cold streams are shown in Tables 1,2.The process flow diagram of the units is shown in Fig.5 and the hot and cold streams are simultaneously represented(red represents hot stream and blue represents cold stream).

    Table 1The data of hot streams

    Table 2The data of cold streams

    4.1.Before setting the energy target of diesel oil hydrogenation unit

    According to Table 1,the hot and cold composite curves are shown in Fig.6.As a result,the entransy of hot streams is 6.762×107kW·K while the entransy of cold streams is 6.352×107kW·K.There is no overlapped area between the composite curves,which means the quantity of entransy that the hot streams release is not absorbed by the cold streams.Hence,there are no entransy recovery,the minimum entransy dissipation is 1.311×108kW·K.

    4.2.After setting the energy target of diesel oil hydrogenation unit

    Itis assumed thatthe minimum approach temperatureΔTminis 10 K.The cold and hot stream composite curves are shown in Fig.7.

    As a result,the entransy of hot streams is 6.762×107kW·K,the entransy ofcold streams is 6.352×107kW·K,the entransy of hot utility is 8.543×106kW·K,the entransy of cold utility is 7.428×106kW·K,so the entransy recovery is 5.498×107kW·K,the entransy dissipation is 5.212×106kW·K,and the entransy transfer efficiency is 92.29%.

    Using the similar methods mentioned,one can obtain the optimization results of three different minimum approach temperatures:10 K,15 K,and 20 K.The results of comparing three different energy targets are listed in Table 3.

    From the results of calculation,we can see that the quantity of entransy is influenced by the variation of temperature difference.Corresponding to the minimum temperature difference,ΔTminis given as 10 K,15 K,and 20 K while the entransy recovery is 5.498× 107kW·K,5.377× 107kW·K,and 5.257× 107kW·K,respectively.The entransy dissipation is 5.212× 106k W·K,5.661×106kW·K,and 6.093×106kW·K.Therefore,the entransy transfer efficiency is 92.29%,91.63%,and 90.99%.It is obvious that the larger the temperature difference,the more hot and cold the utility requirements,the less the entransy recovery,the more the entransy dissipation,and the lower the entransy transfer efficiency.

    The heat transfer rate equation could be expressed as.

    whereAis the heat transfer area,Uis heat transfer coefficient.ΔTLMis the log mean temperature difference,which expression is

    It is found that the heat exchanger area is inversely proportional to the temperature difference.For an actual heat exchanger,the lower values of ΔTmincan lead to larger area and more capital cost.Therefore,in the design of heat exchanger network,we need a comprehensive consideration of operating and capital costs,heat exchanger surface area,process conditions,etc.Finally,the optimal minimum approach temperature,ΔTminand the effective energy utilization can be obtained.

    Fig.5.The process flow diagram of diesel oil hydrogenation unit.In the diagram,red represents hot streams and blue represents cold streams.

    5.Conclusions

    This paper has presented a novel method based on entransy theory forsetting energy targets ofHENs inT-Qdiagram.The hotand cold composite curves can be obtained in theT-Qdiagram.

    Fig.6.The heat transfer property diagram of the diesel oil hydrogenation unit before setting the energy target.

    Fig.7.The heattransfer property diagram of the diesel oilhydrogenation unitafter setting the energy target.

    Table 3The results of setting different energy targets,ΔT min=10 K,15 K,20 K

    Therefore,the shaded area between the hot and cold composite curves stood for the entransy dissipation.The effectofdifferent temperature differences on entransy recovery was researched.It was found that the higher values of ΔTmincan lead to more hot and cold utility requirements,the more entransy dissipation,the less entransy recovery and the lower entransy transferefficiency.Steps to setthe optimalenergy target of heat exchange network inT-Qdiagram based on entransy theory were determined.

    The diesel oil hydrogenation unit of the industrial case study was shown in this paper.Comparing the three different temperature difference results,the optimalenergy targetwas obtained.The entransy recovery was 5.498× 107kW·K,5.377× 107kW·K,and 5.257×107kW·K,and the entransy transfer efficiency was 92.29%,91.63%,and 90.99%in 10 K,15 K,and 20 K,respectively.The higher values of ΔTmincan lead to less entransy recovery,and the entransy transfer efficiency was obviously reduced.Therefore,the entransy theory is more suitable for the analysis of HENs energy efficient use.

    Thismethod can be used asa criterion forthe maximum entransy recovery of HENs.This paper has an important guideline value for setting the optimal minimum approach temperature of a heat exchanger network.It is worth making a further study on the synthesis of HENs of entransy theory.The principle and strategy of the synthesis of HENs can be proposed in the future.

    Nomenclature

    Aheat transfer area,m2

    CPheat capacity flowrate,kW·K-1

    cvspecific heat at constant volume,kJ·kg-1·K-1

    cpspecific heat at constant pressure,kJ·kg-1·K-1

    Evhentransy,kW·K

    Gsystem entransy,kW·K

    mmass,kg·s-1

    Q·heat flow rate,W

    Qtthe total heat transfer,W

    Qvhthermal capacity of an object,J

    q·heat flux,W·m-2

    Ttemperature,K

    Uheat transfer coefficient,kW·m-2·K-1

    Uhthermal potential,K

    Wwork,J

    η entransy transfer efficiency,%

    ΔTLMthe log mean temperature difference,K

    ΔTminminimum approach temperature,K

    Subscripts

    c cold stream

    h hot stream

    in inlet state

    outlet outlet state

    rev reversible condition

    [1]H.Hu,X.H.Zhang,L.L.Lin,The interactions between China's economic growth,energy production and consumption and the related air emissions during 2000–2011,Ecol.Indic.46(46)(2014)38–51.

    [2]K.C.Furman,N.V.Sahinidis,A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century,Ind.Eng.Chem.Res.41(10)(2002)2335–2370.

    [3]A.E.Bergles,Heat transfer enhancement—The encouragement and accommodation of high heat fluxes,J.Heat Transf.119(1)(1997)8–19.

    [4]Z.Y.Guo,H.Y.Zhu,X.G.Liang,Entransy—A physical quantity describing heat transfer ability,Int.J.Heat Mass Transf.50(13)(2007)2545–2556.

    [5]X.G.Cheng,Z.X.Li,Z.Y.Guo,Variational principles in heat conduction,J.Eng.Thermophys.25(3)(2004)457–459.(in Chinese)

    [6]X.G.Cheng,Entransy and Its Application in Heat Transfer Optimization Ph.D.Thesis Tsinghua University,Beijing,2004.(in Chinese)

    [7]Z.H.Xie,L.G.Chen,F.R.Sun,Constructal optimization on T-shaped cavity based on entransy dissipation minimization,Chin.Sci.Bull.54(23)(2009)4418–4427.

    [8]S.H.Wei,L.G.Chen,F.R.Sun,Constructal entransy dissipation minimization for“volume-point”heat conduction based on triangular element,Therm.Sci.14(4)(2010)1075–1088.

    [9]X.T.Cheng,X.H.Xu,X.G.Liang,Homogenization of temperature field for the thermal radiator in space,J.Eng.Thermophys.31(6)(2010)1031–1033.(in Chinese)

    [10]J.A.Meng,Z.J.Chen,Z.X.Li,Z.Y.Guo,Field-coordination analysis and numerical study on turbulent convective heat transfer enhancement,J.Enhanc.Heat Transf.12(1)(2005)73–84.

    [11]X.B.Liu,J.A.Meng,Z.Y.Guo,Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization,Chin.Sci.Bull.54(6)(2009)943–947.

    [12]Q.H.Xiao,L.G.Chen,F.R.Sun,Constructal entransy dissipation rate minimization for umbrella-shaped assembly of cylindrical fins,Sci.China Technol.Sci54(1)(2011)211–219.

    [13]Q.Chen,J.X.Ren,Z.Y.Guo,The extremum principle of mass entransy dissipation and its application to decontamination ventilation designs in space station cabins,Chin.Sci.Bull.54(16)(2009)2862–2870.

    [14]S.J.Xia,L.G.Chen,F.R.Sun,Entransy dissipation minimization for liquid–solid phase processes,Sci.China Technol.Sci.53(4)(2010)960–968.

    [15]J.Wu,X.G.Liang,Application ofentransy dissipation extremum principle in radiative heat transfer optimization,Sci.China51(8)(2008)1306–1314.

    [16]S.J.Xia,L.G.Chen,F.R.Sun,Optimalpaths for minimizing entransy dissipation during heat transfer processes with generalized radiative heat transfer law,Appl.Math.Model.34(8)(2010)2242-225.

    [17]S.P.Wang,Q.L.Chen,B.J.Zhang,An equation of entransy and its application,Chin.Sci.Bull.54(19)(2009)3572–3578.

    [18]A.Bejan,Street network theory of organization in nature,J.Adv.Transp.30(2)(1996)85–107.

    [19]Q.Chen,Y.C.Xu,Z.Y.Guo,The property diagram in heat transfer and its applications,Chin.Sci.Bull.57(57)(2012)4646–4652.

    [20]J.Wu,Z.Y.Guo,Application ofentransy analysis in self-heatrecuperation technology,Ind.Eng.Chem.Res.53(3)(2013)1274–1285.

    [21]Z.Y.Guo,X.B.Liu,W.Q.Tao,R.K.Shah,Effectiveness thermal resistance method for heat exchanger design and analysis,Int.J.Heat Mass Transf.53(13–14)(2010)2877–2884.

    [22]VDI-Gesellschaft,VDI Heat Atlas,Springer,Berlin,2010.

    [23]Z.Y.Guo,X.G.Cheng,Z.Z.Xia,Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization,Chin.Sci.Bull.48(4)(2003)406–410.(in Chinese)

    [24]X.T.Cheng,X.G.Liang,Z.Y.Guo,Entransy decrease principle of heat transfer in an isolated system,Chin.Sci.Bull.56(9)(2011)847–854.

    [25]G.J.Hu,B.Y.Cao,Z.Y.Guo,Entransy and entropy revisited,Chin.Sci.Bull.56(27)(2011)2974–2977.

    [26]I.C.Kemp,Pinch Analysis and Process Integration,Elsevier Ltd.,Oxford,2006.

    [27]A.Bejan,Advanced Engineering Thermodynamics,Wiley,New York,1988.

    [28]J.F.Guo,L.Cheng,M.T.Xu,Entransy dissipation number and its application to heat exchanger performance,Chin.Sci.Bull.54(15)(2009)2974–2977.

    [29]L.Xia,Y.L.Feng,S.G.Xiang,Progress and application of entransy theory in energy saving of chemical processes,CIESC J.67(12)(2016)4915–4921.

    猜你喜歡
    中軸河網(wǎng)中軸線
    漫畫北京中軸線(三)
    《穿越北京中軸線》簡介
    基于小世界網(wǎng)絡(luò)的海河流域河網(wǎng)結(jié)構(gòu)及功能響應(yīng)
    行走中軸線 尋找城市靈魂
    中國收藏(2023年6期)2023-06-08 21:13:31
    一線中軸,承古通今
    金橋(2022年7期)2022-07-22 08:33:08
    灣區(qū)樞紐,四心匯聚! 廣州中軸之上,發(fā)現(xiàn)全新城市中心!
    城市中軸之上,“雙TOD”超級(jí)綜合體塑造全新城市中心!
    數(shù)字經(jīng)濟(jì)+中軸力量,廣州未來十年發(fā)展大動(dòng)脈在這!
    基于PSR模型的上海地區(qū)河網(wǎng)脆弱性探討
    不同引水水源對(duì)平原河網(wǎng)影響分析
    国产午夜精品久久久久久一区二区三区 | 麻豆成人av在线观看| 窝窝影院91人妻| 国产成人av教育| 观看美女的网站| 97人妻精品一区二区三区麻豆| 无限看片的www在线观看| 久久久国产成人精品二区| 亚洲aⅴ乱码一区二区在线播放| 亚洲,欧美精品.| 亚洲国产精品sss在线观看| 婷婷亚洲欧美| 天堂网av新在线| 欧美日韩亚洲国产一区二区在线观看| 叶爱在线成人免费视频播放| 午夜免费观看网址| 久久欧美精品欧美久久欧美| www日本在线高清视频| 欧美另类亚洲清纯唯美| 中国美女看黄片| 俄罗斯特黄特色一大片| 色综合亚洲欧美另类图片| av中文乱码字幕在线| 久久精品国产综合久久久| 制服人妻中文乱码| 桃色一区二区三区在线观看| 午夜老司机福利剧场| 欧美一区二区国产精品久久精品| 午夜免费成人在线视频| 亚洲国产精品合色在线| 美女被艹到高潮喷水动态| 亚洲不卡免费看| 美女 人体艺术 gogo| 69av精品久久久久久| 日本精品一区二区三区蜜桃| 大型黄色视频在线免费观看| 激情在线观看视频在线高清| 亚洲av成人精品一区久久| 国产精品久久久久久久久免 | 999久久久精品免费观看国产| 久久精品国产亚洲av涩爱 | av天堂在线播放| 国产精品亚洲美女久久久| 国产色爽女视频免费观看| 一级黄片播放器| 精品欧美国产一区二区三| 女人十人毛片免费观看3o分钟| av又黄又爽大尺度在线免费看| 亚洲精品成人久久久久久| 91久久精品电影网| 伊人久久精品亚洲午夜| 久久精品国产鲁丝片午夜精品| 国产视频内射| 国产亚洲精品久久久com| 国产在视频线精品| 久久久精品欧美日韩精品| 菩萨蛮人人尽说江南好唐韦庄| 2021天堂中文幕一二区在线观| 亚洲经典国产精华液单| 91狼人影院| 日韩视频在线欧美| 中文字幕免费在线视频6| 亚洲欧美清纯卡通| 亚洲精品国产av成人精品| 午夜亚洲福利在线播放| 国产一区亚洲一区在线观看| 亚洲熟女精品中文字幕| 日韩av不卡免费在线播放| 国产女主播在线喷水免费视频网站 | 日韩国内少妇激情av| 秋霞伦理黄片| 老师上课跳d突然被开到最大视频| 干丝袜人妻中文字幕| 日韩一区二区三区影片| av女优亚洲男人天堂| 久久精品夜色国产| 三级毛片av免费| 亚洲婷婷狠狠爱综合网| 亚洲在久久综合| 中文在线观看免费www的网站| 麻豆精品久久久久久蜜桃| 久久韩国三级中文字幕| 午夜亚洲福利在线播放| 欧美一区二区亚洲| 亚洲av电影在线观看一区二区三区 | 成人美女网站在线观看视频| 成人二区视频| 国产片特级美女逼逼视频| 男插女下体视频免费在线播放| 观看美女的网站| 欧美一区二区亚洲| 免费大片18禁| 床上黄色一级片| 国产成人免费观看mmmm| 热99在线观看视频| 男女下面进入的视频免费午夜| 中文欧美无线码| 日日啪夜夜撸| 国产永久视频网站| 麻豆久久精品国产亚洲av| 成人亚洲欧美一区二区av| 精品少妇黑人巨大在线播放| 看免费成人av毛片| kizo精华| 一个人看视频在线观看www免费| 亚洲欧美成人精品一区二区| 赤兔流量卡办理| 日韩一区二区视频免费看| 成人一区二区视频在线观看| 日韩电影二区| 日韩视频在线欧美| 精品一区二区三卡| 夜夜爽夜夜爽视频| 十八禁国产超污无遮挡网站| 在线观看人妻少妇| 久久久a久久爽久久v久久| 色尼玛亚洲综合影院| 精品久久久久久成人av| 亚洲人成网站在线播| 亚洲av在线观看美女高潮| 久久久久久久国产电影| 欧美高清性xxxxhd video| 久热久热在线精品观看| 中文字幕制服av| 欧美 日韩 精品 国产| 婷婷色av中文字幕| 午夜激情福利司机影院| 三级国产精品片| 婷婷色av中文字幕| 极品教师在线视频| 亚洲久久久久久中文字幕| 如何舔出高潮| 天堂影院成人在线观看| 日本一本二区三区精品| 精品久久久噜噜| 一级爰片在线观看| 亚洲天堂国产精品一区在线| 国产一区有黄有色的免费视频 | 欧美高清成人免费视频www| 亚洲在线自拍视频| 男女那种视频在线观看| av在线老鸭窝| 国产午夜精品一二区理论片| 中文资源天堂在线| a级一级毛片免费在线观看| 日韩欧美一区视频在线观看 | 99热这里只有精品一区| 如何舔出高潮| 高清毛片免费看| 午夜精品国产一区二区电影 | 亚洲精品久久午夜乱码| 欧美一区二区亚洲| 少妇猛男粗大的猛烈进出视频 | 日日摸夜夜添夜夜爱| 成人无遮挡网站| 日韩亚洲欧美综合| 日韩亚洲欧美综合| 免费黄色在线免费观看| 超碰97精品在线观看| 干丝袜人妻中文字幕| 蜜桃久久精品国产亚洲av| 国产在线一区二区三区精| 国产一区有黄有色的免费视频 | 免费看光身美女| 日韩,欧美,国产一区二区三区| 日本熟妇午夜| 三级经典国产精品| 亚洲av二区三区四区| 男女啪啪激烈高潮av片| 欧美bdsm另类| 国产伦精品一区二区三区视频9| 日韩欧美一区视频在线观看 | 久久精品国产鲁丝片午夜精品| 联通29元200g的流量卡| 日韩成人伦理影院| 波野结衣二区三区在线| 国产一级毛片七仙女欲春2| 男女边摸边吃奶| 亚洲精品日韩av片在线观看| 免费av毛片视频| 亚洲国产欧美人成| 免费观看性生交大片5| 18禁裸乳无遮挡免费网站照片| 老司机影院成人| 18禁动态无遮挡网站| 老师上课跳d突然被开到最大视频| 舔av片在线| 免费看a级黄色片| 久久99精品国语久久久| 国产毛片a区久久久久| 亚洲经典国产精华液单| 麻豆久久精品国产亚洲av| av在线观看视频网站免费| 菩萨蛮人人尽说江南好唐韦庄| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜爱| 男人和女人高潮做爰伦理| 一级黄片播放器| 18禁动态无遮挡网站| 精品久久久噜噜| 免费看光身美女| av.在线天堂| 亚洲精品日韩在线中文字幕| 街头女战士在线观看网站| 七月丁香在线播放| 国产一区二区亚洲精品在线观看| 视频中文字幕在线观看| 国语对白做爰xxxⅹ性视频网站| 乱系列少妇在线播放| 亚洲av不卡在线观看| 国产又色又爽无遮挡免| 成人亚洲欧美一区二区av| 边亲边吃奶的免费视频| 26uuu在线亚洲综合色| 国产成年人精品一区二区| 69av精品久久久久久| 精品人妻熟女av久视频| 精品99又大又爽又粗少妇毛片| 国产色爽女视频免费观看| 一个人看视频在线观看www免费| av在线蜜桃| 免费观看a级毛片全部| 色综合亚洲欧美另类图片| 有码 亚洲区| 天天躁日日操中文字幕| 天堂俺去俺来也www色官网 | 高清在线视频一区二区三区| 国产在线男女| 久久鲁丝午夜福利片| 欧美精品一区二区大全| 国产精品一及| 性插视频无遮挡在线免费观看| 国内精品宾馆在线| 一级av片app| 免费不卡的大黄色大毛片视频在线观看 | 日本与韩国留学比较| 国内揄拍国产精品人妻在线| 一级片'在线观看视频| 在线观看美女被高潮喷水网站| 性插视频无遮挡在线免费观看| 久99久视频精品免费| 蜜桃久久精品国产亚洲av| 秋霞伦理黄片| 亚洲av二区三区四区| 亚洲精品亚洲一区二区| 草草在线视频免费看| 亚洲精品国产成人久久av| 亚洲欧美清纯卡通| 成人鲁丝片一二三区免费| 国产 一区 欧美 日韩| 日韩国内少妇激情av| 亚洲欧美一区二区三区黑人 | 一二三四中文在线观看免费高清| 免费观看的影片在线观看| 日韩一区二区三区影片| 国产在线一区二区三区精| 免费av观看视频| 精品一区二区三区人妻视频| 国产一区二区三区av在线| 麻豆国产97在线/欧美| 天天躁日日操中文字幕| 国产中年淑女户外野战色| 午夜久久久久精精品| 特级一级黄色大片| 纵有疾风起免费观看全集完整版 | 中国国产av一级| 一级毛片我不卡| 中文字幕制服av| 不卡视频在线观看欧美| 2022亚洲国产成人精品| 国产成人免费观看mmmm| 日本免费a在线| 男人爽女人下面视频在线观看| 国产乱人偷精品视频| 国产精品99久久久久久久久| 国产免费一级a男人的天堂| 日韩在线高清观看一区二区三区| 尾随美女入室| 亚洲国产高清在线一区二区三| av免费观看日本| or卡值多少钱| 精品一区二区三区视频在线| 免费黄频网站在线观看国产| 少妇熟女aⅴ在线视频| 亚洲激情五月婷婷啪啪| 亚洲精品一区蜜桃| 中文字幕免费在线视频6| 男女视频在线观看网站免费| 中文乱码字字幕精品一区二区三区 | 午夜激情久久久久久久| 久久精品综合一区二区三区| 国产精品久久久久久av不卡| 好男人在线观看高清免费视频| 丝瓜视频免费看黄片| 亚洲av电影不卡..在线观看| 精品国内亚洲2022精品成人| 全区人妻精品视频| 3wmmmm亚洲av在线观看| 精品一区在线观看国产| 99久国产av精品国产电影| 国产人妻一区二区三区在| 久久精品国产鲁丝片午夜精品| 少妇高潮的动态图| 汤姆久久久久久久影院中文字幕 | 我要看日韩黄色一级片| 亚洲精品影视一区二区三区av| 人妻系列 视频| 亚洲在线观看片| 国产av码专区亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 在线观看一区二区三区| 久久99热这里只频精品6学生| 国产中年淑女户外野战色| 亚洲在线自拍视频| 99视频精品全部免费 在线| 97人妻精品一区二区三区麻豆| 色综合站精品国产| 人妻少妇偷人精品九色| 免费少妇av软件| 免费观看av网站的网址| 色综合亚洲欧美另类图片| 91精品伊人久久大香线蕉| 男人爽女人下面视频在线观看| 精品久久久久久久久久久久久| 黄色配什么色好看| 蜜臀久久99精品久久宅男| 久久久久久久午夜电影| 日韩一区二区三区影片| 久久这里有精品视频免费| 麻豆久久精品国产亚洲av| 午夜激情久久久久久久| 精品人妻熟女av久视频| 可以在线观看毛片的网站| 精品熟女少妇av免费看| 黑人高潮一二区| 亚洲av免费高清在线观看| 中文字幕免费在线视频6| .国产精品久久| 97超视频在线观看视频| 日本一二三区视频观看| 国产一区有黄有色的免费视频 | 国产亚洲午夜精品一区二区久久 | 麻豆乱淫一区二区| 嫩草影院新地址| 国语对白做爰xxxⅹ性视频网站| 成人美女网站在线观看视频| 午夜福利在线在线| 91久久精品国产一区二区成人| 尤物成人国产欧美一区二区三区| 国产女主播在线喷水免费视频网站 | 国产精品久久久久久av不卡| 国产激情偷乱视频一区二区| 中文欧美无线码| 亚洲精品国产av成人精品| 欧美变态另类bdsm刘玥| 亚洲乱码一区二区免费版| 亚洲欧美清纯卡通| 一个人看视频在线观看www免费| 亚洲一级一片aⅴ在线观看| 久久精品久久久久久久性| 99视频精品全部免费 在线| 超碰av人人做人人爽久久| av在线老鸭窝| 汤姆久久久久久久影院中文字幕 | 亚洲在线自拍视频| 午夜福利高清视频| 天美传媒精品一区二区| 亚洲不卡免费看| 肉色欧美久久久久久久蜜桃 | 国产激情偷乱视频一区二区| 久久精品国产自在天天线| 能在线免费观看的黄片| 黄色日韩在线| 18禁在线播放成人免费| 国产色婷婷99| 少妇丰满av| 国产精品一二三区在线看| 国产熟女欧美一区二区| 日本av手机在线免费观看| 免费少妇av软件| 婷婷色综合大香蕉| 韩国av在线不卡| 亚洲成人av在线免费| 久久久精品94久久精品| 日韩欧美国产在线观看| 国产免费一级a男人的天堂| 亚洲精品久久午夜乱码| 国产淫语在线视频| 亚洲真实伦在线观看| 一个人观看的视频www高清免费观看| 蜜桃久久精品国产亚洲av| 国产免费一级a男人的天堂| 久久99热这里只频精品6学生| 伊人久久国产一区二区| 久久久欧美国产精品| 黄色欧美视频在线观看| 黄片wwwwww| 在线免费十八禁| 九草在线视频观看| 一级片'在线观看视频| 国产69精品久久久久777片| av网站免费在线观看视频 | 狂野欧美白嫩少妇大欣赏| 国产有黄有色有爽视频| 国产亚洲最大av| av黄色大香蕉| 午夜福利在线在线| 午夜福利视频精品| 国产伦理片在线播放av一区| 亚洲内射少妇av| 午夜福利成人在线免费观看| 成年女人看的毛片在线观看| 日韩不卡一区二区三区视频在线| 国产成人精品婷婷| 亚洲精品成人av观看孕妇| 三级经典国产精品| 免费不卡的大黄色大毛片视频在线观看 | 久久97久久精品| 亚洲人成网站高清观看| 精品人妻偷拍中文字幕| av在线天堂中文字幕| 国产91av在线免费观看| 最近中文字幕2019免费版| 激情五月婷婷亚洲| 久久精品国产鲁丝片午夜精品| 久久久久久九九精品二区国产| 国产黄色小视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品综合久久久久久久免费| 一二三四中文在线观看免费高清| 欧美丝袜亚洲另类| 国产伦在线观看视频一区| 99久久中文字幕三级久久日本| 秋霞在线观看毛片| av福利片在线观看| 欧美另类一区| 高清毛片免费看| 欧美精品一区二区大全| 2018国产大陆天天弄谢| 婷婷色av中文字幕| 大话2 男鬼变身卡| av卡一久久| 久久这里有精品视频免费| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产精品成人久久小说| 色综合色国产| 综合色av麻豆| 国产亚洲一区二区精品| 美女脱内裤让男人舔精品视频| 舔av片在线| 一级爰片在线观看| 深夜a级毛片| 亚洲精品日本国产第一区| 国产精品久久视频播放| 伊人久久国产一区二区| 午夜日本视频在线| 亚洲国产最新在线播放| 国产成人午夜福利电影在线观看| 99久久精品热视频| 插阴视频在线观看视频| 尾随美女入室| av又黄又爽大尺度在线免费看| 成人鲁丝片一二三区免费| 寂寞人妻少妇视频99o| 欧美zozozo另类| 欧美变态另类bdsm刘玥| 免费av毛片视频| 久久久久性生活片| 国产又色又爽无遮挡免| 久久久久久久久大av| 亚洲成人一二三区av| 一级毛片黄色毛片免费观看视频| 一级二级三级毛片免费看| 又黄又爽又刺激的免费视频.| 深夜a级毛片| 最近2019中文字幕mv第一页| 欧美最新免费一区二区三区| 国产 亚洲一区二区三区 | 国产淫片久久久久久久久| 日韩,欧美,国产一区二区三区| 国产一区二区亚洲精品在线观看| 亚洲国产精品国产精品| 97人妻精品一区二区三区麻豆| 在线免费十八禁| 在线a可以看的网站| 亚洲伊人久久精品综合| 亚洲成人一二三区av| 边亲边吃奶的免费视频| 午夜福利在线观看吧| 久久亚洲国产成人精品v| 亚洲国产欧美在线一区| 又爽又黄a免费视频| 日本午夜av视频| 狂野欧美白嫩少妇大欣赏| 日韩国内少妇激情av| 久久精品综合一区二区三区| 丝袜喷水一区| 在线观看一区二区三区| 三级国产精品片| 天天躁夜夜躁狠狠久久av| 欧美xxxx黑人xx丫x性爽| 亚洲欧美成人精品一区二区| 国产 一区精品| 国产老妇伦熟女老妇高清| 波野结衣二区三区在线| 最近中文字幕高清免费大全6| 亚洲人成网站高清观看| 久久久成人免费电影| 国产一级毛片在线| 日韩av在线免费看完整版不卡| 欧美一区二区亚洲| 午夜免费观看性视频| 免费电影在线观看免费观看| 亚洲av不卡在线观看| 婷婷色麻豆天堂久久| 亚洲欧美中文字幕日韩二区| 黄色日韩在线| 91在线精品国自产拍蜜月| 欧美+日韩+精品| 亚洲欧美成人综合另类久久久| 欧美丝袜亚洲另类| 国产女主播在线喷水免费视频网站 | 国产乱来视频区| 22中文网久久字幕| 婷婷色综合www| 久久久久久久久久人人人人人人| 我要看日韩黄色一级片| 尤物成人国产欧美一区二区三区| 3wmmmm亚洲av在线观看| 欧美丝袜亚洲另类| 日韩一本色道免费dvd| 男人爽女人下面视频在线观看| 精品一区二区三区人妻视频| 亚洲欧美清纯卡通| 夜夜看夜夜爽夜夜摸| 一区二区三区乱码不卡18| .国产精品久久| 午夜福利在线观看吧| 精品国产露脸久久av麻豆 | 亚洲天堂国产精品一区在线| 久久久成人免费电影| 国产在视频线在精品| 最近最新中文字幕免费大全7| 亚洲国产精品国产精品| 少妇丰满av| 欧美成人午夜免费资源| 亚洲欧洲国产日韩| 亚洲久久久久久中文字幕| 日本wwww免费看| 久久精品国产鲁丝片午夜精品| 久久久久久伊人网av| 久久精品国产鲁丝片午夜精品| 亚洲国产精品专区欧美| 亚洲美女搞黄在线观看| av免费在线看不卡| 国产高清三级在线| 精品午夜福利在线看| 亚洲av成人精品一区久久| 99久久中文字幕三级久久日本| 最近最新中文字幕大全电影3| 一级毛片 在线播放| 老女人水多毛片| 亚洲国产欧美在线一区| 免费少妇av软件| 国产黄a三级三级三级人| 久久久久久久久中文| 免费看美女性在线毛片视频| 日韩国内少妇激情av| 卡戴珊不雅视频在线播放| h日本视频在线播放| 欧美日韩国产mv在线观看视频 | 成年人午夜在线观看视频 | 精品久久国产蜜桃| 久久久欧美国产精品| 欧美日韩视频高清一区二区三区二| 久久鲁丝午夜福利片| 18禁在线无遮挡免费观看视频| 大陆偷拍与自拍| 欧美日韩国产mv在线观看视频 | av黄色大香蕉| 久久人人爽人人爽人人片va| 欧美日本视频| 日本爱情动作片www.在线观看| 白带黄色成豆腐渣| 卡戴珊不雅视频在线播放| 99视频精品全部免费 在线| 精品欧美国产一区二区三| 一区二区三区高清视频在线| 国产成人aa在线观看| av在线观看视频网站免费| 欧美成人精品欧美一级黄| 国内揄拍国产精品人妻在线| 中文字幕人妻熟人妻熟丝袜美| 国产成人精品婷婷| 久久久久久久久中文| 久久久精品欧美日韩精品| 久久久久久久久久成人| 久久6这里有精品| 亚洲成人av在线免费| 亚洲国产色片| 神马国产精品三级电影在线观看| 久久精品久久久久久久性| 亚洲欧洲国产日韩| 国产一区有黄有色的免费视频 | 国产精品久久久久久精品电影小说 | 亚洲av免费在线观看| 别揉我奶头 嗯啊视频| 午夜激情久久久久久久| 一级毛片aaaaaa免费看小| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一夜夜www| 欧美日韩综合久久久久久| 国产精品久久久久久精品电影小说 | 少妇猛男粗大的猛烈进出视频 | 日本-黄色视频高清免费观看|