• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal design of heat exchanger header for coal gasification in supercritical water through CFD simulations☆

    2017-05-29 10:48:16LeiHuangLinQiHongnaWangJinliZhangXiaoqiangJia

    Lei Huang ,Lin Qi,Hongna Wang ,Jinli Zhang ,Xiaoqiang Jia ,,*

    1 Department of Biochemical Engineering,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    2 Key Laboratory of Systems Bioengineering(Ministry of Education),Tianjin University,Tianjin 300072,China

    3 SynBio Research Platform,Collaborative Innovation Center of Chemical Science and Engineering(Tianjin),School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China

    1.Introduction

    With the increased stringency of environmental requirements,the demand for clean energy resources increases year by year.Coalgasification technology is an effective measure to make up for the clean energy shortage[1–6].Forits relatively high yield ofclean energy products such as CH4and H2compared to traditional coal gasification[7–10],coal gasification in supercriticalwater(SCW)has been increasingly investigated in recentyears[11,12].For the continuous process of coalgasification in SCW,heat exchangers are essential to preheat feed and recycle energy from products,as well as to convey feed.Particle deposition and tube plugging are common phenomena in preheaters,because the feed often contains a significant number of solid particles.Due to impingement of solid particles,large amounts of accumulated particles would further aggravate corrosion on the heater surface,especially in SCW conditions[13].Furthermore,the low uniformity of particle distribution,which is greatly influenced by hydrodynamics,would lead to tube plate worming and low heattransfer efficiency.Optimizing the exchanger header structure would resolve those problems.But the rigorous operational conditions under high temperature and pressure in supercritical water make it difficult to study the hydrodynamics of exchangers through experiment.

    Numerical simulation based on computational fluid dynamics(CFD)calculations can provide a feasible way to determine the hydrodynamics of an exchanger under different conditions.Many researchers have employed this technique to optimize the design of heat exchangers.Bhuttaet al.[14]reviewed CFD application in designs of various types of heat exchangers.In particular,CFD has been employed by many researchers to optimize the shelland tube heatexchanger structure.Brennanetal.[15]proved thatthe axialentry flowwasbetterthan side entry for heating slurry,but the effect was influenced considerably by inlet pipe con figuration.Tube damage primarily occurs in tube inlets,because the high velocity angle of the slurry often leads to flow separation in the tube inlets[15].Kimet al.[16]studied different designs of shell and tube heat exchanger headers with CFD codeflUENT 6.0.They found that uniformity of flow distribution increased with header length and decreased with gas flow rate.The flow pattern of the header was also affected by the inlet nozzle con figuration.Bremhorstet al.[17]used a “with tubes”approximation for tubes instead of a “porous plug”approximation.They also developed new flow modeling strategies for flow simulation in the inlet header and the passes header of a side entry shell.The rapid flow expansion from one port to another often leads to vortical regions where solids can divide,coagulate and block tube entries.Badret al.[18]proved that,at low inlet velocities,the erosion rates in all tubes were negligibly small for all particle sizes.The erosion rates became appreciable when the inlet velocity reached 2.1 m·s-1.The highest erosion rates were caused by small-and medium-size particles(10 and 200 μm).When the velocity increased to 4.5 m·s-1,small particles were the main factor in tube erosion.

    Although the structure of the tube entrance region was the most criticalfactorforsolid deposition in heatexchangers,there was scantliterature concerning the possibility of plugging at the inlet due to the deposition of particles.For this study,a full- flow- field,three-dimensional and transient CFD model was developed.We adopted an Eulerian–Eulerian approach to the coupling of a solid particle collision model,based on kinetic theory,to simulate the SCW and solid particle twophase flow in a shell and tube heat exchanger based on BEM type.Hydrodynamic characteristics of the exchanger,which was used for preheating the feed and cooling the products,were to be thoroughly investigated under varied header lengths,tube pass arrangements,inlet tube diameters,positions and directions.The optimal design of the exchanger was that which could alleviate the deposition and improve the uniformity.In this paper,in order to minimize deposition and plugging ofthe heatexchanger,more optimaldesigns have been established through CFD simulations.According to simulation results,we know that the optimumstructure ofa heatexchangerhas a rectangle con figuration ofthe tube pass distraction,a bottominlet,a 200-mm header heightand a 10-mm inlet pipe diameter.

    2.CFD Model

    2.1.Physical model

    The physicalmodelin this paperis the heatexchanger,which is used to exchange material heat before and after the reaction,heat the feed and cool the discharge.It is an EDR standard-type tube-and-shell heat exchanger,and the structure needs to be exported from ASPEN.The specific characteristics of the exchanger are shown in Table 1.During flow simulation calculations,the reference condition is defined as 24 MPa,570°C.The flow type is two-phase,consisting of a flow supercritical phase and a solid phase.Because of the large difference between the longitudinal and transverse dimensions,simulating the entire exchanger requires a number of simulation grids and exceeds maximum computational loads.Therefore,the heat exchanger is simplified to intercept a part of a tube side(0.5 m)and channel in the bottom.The model diagram is shown in Fig.1.

    Table 1

    Characteristics of the heat exchanger

    Contents Numerical value Full-length 6 m Tube side Single Shell side Single Outer diameter of internal tube side 12 mm Height of tube box 330 mm Type of placement Vertical Temperature range of heat transfer 420 °C-640 °C Pressure range of heat transfer 23 MPa-25 MPa

    2.2.Governing equations

    The Eulerian approach[19]was adopted to describe flow behaviors ofthe gas and solid phases,which were considered to be the continuous phase and dispersed phase,respectively.The kinetic theory-based hydrodynamics model was used for closure of the solid stress term[20,21].The interaction between the supercritical and solid phases is expressed by the Gidaspow drag model[22]with the modified Wen and Yu drag law[20,23],which is validated by Guoet al.[21]and adopted in supercritical condition.The numerical methods and simulation parameters are shown in Table 2.The IAPWS-IF97 database,which is in the CFX material library,was implemented to accurately simulate properties of SCW[24],which have been used by many for CFD modeling in supercritical condition[25,26].

    Fig.1.Physical model of the heat exchanger.

    Table 2Numerical methods and simulation parameters

    2.3.Inter-phase momentum transfer

    Interphase turbulent dispersion force was exerted,adopting the model of Lopez de Bertodano[27].The eddy viscosity hypothesis was assumed to hold for each turbulent phase.Diffusion of momentum in each phase was governed by an effective viscosity:

    Thek-ε dispersed turbulence model was used,which was appropriate when the concentrations of the secondary phases were dilute[28].Many studies had used it in supercritical condition[29].

    The turbulence viscosity of the continuous phase was obtained by thek-ε model[29]:

    The standard values of constants were used:

    2.4.Initial and boundary conditions

    Initial conditions assumed that the SCW and solid phase were all stagnant,and the solid phase was zero in the heat exchanger.

    The inlet pipe used a bulk mass flow of 270 kg·h-1as an inlet boundary condition under 570°C,24 MPa.The volume fraction of particles in the feed was 1.8%.All tube outlets used a pressure outlet boundary condition,and all other boundaries were walls,including the tube plate.

    No slip wall was adopted.Zhouet al.[30]had reported that solidphase wallboundary conditions had little effecton axialvoidage pro files when the Gidaspow drag model was used.

    2.5.Numerical solution

    In former study,the stirred tank models(computational grids of quad or hex elements)were usually set up automatically using MixSim from Fluent LLC[9]and commercial CFD codeflUENT 4.52 was often used with the EGM model in the solution of the solid–liquid multiphaseflows by researchers.In this work,the granular viscosity model of Syamlal and O′Brien[10]was used.The computational domain of all the heaters investigated in this study was set up in Gambit 2.4.6.The base geometry,including inlet pipe,header,tube sheet and part of the tube pass,was based on a 180-mm ID heater with 69 12-mm ID,1-m height tubes on a 15-mm rectangular pitch.The header length was changed to 300,200 and 100 mm,and the inlet nozzle position was changed to the horizontalor vertical side.We implemented 853012 unstructured tetrahedral grids for the base heat exchanger,as shown in Fig.2,to obtain nearly mesh-independent results.

    To numerically solve the partialdifferentialequations above,we carried out a high-resolution discretization of the equations using a finitevolume scheme with a coupled multi-grid solver,as implemented in the commercial CFD code CFX 13.0.A transient solution was used to simulate the variation along the operating time.The time step length was 0.1 s.The diameter of the header was 0.18 m.In the current condition,the estimated time to flow out the domain is 40 s.So,360 s is enough to give a good steady state.A typical solver run over 360 s of simulation time took about 4 d,15 h on a Dell workstation T7500 with 12 CPUs(Intel Xeon 2.66 GHz)inside.The solution was iterated until convergence was achieved,so that the residual for each equation fell below 10-3.The flow field reached a steady flow,as evidenced by unchanging angles of attack at the tube sheet.Steady flow was achieved after 20 s of simulation time.

    2.6.Model validation

    Experimental data from the literature were chosen to validate the two-phase flow field for the minimum fluidization velocity.

    Fig.2.A rendering of whole exchanger geometry and exchanger mesh.

    Fig.3.Geometry of different inlet pipe positions and directions based on same header.

    Fig.4.Mass of small particles in exchanger.

    Luet al.[6]have measured the minimum fluidization velocities of an SCW fluidized bed with a diameter of 35 mm and height of 600 mm in the pressure range of 23 to 27 MPa and at temperatures from 633 K to 693 K.In this section,simulations were conducted over the same range of temperature and pressure.Although Fig.2 showed that the minimum fluidization velocities computed by numerical simulation were slightly higher than experimentally measured values under several conditions,a close agreement within a deviation of+20%was observed.Therefore,the model was validated.

    3.Results and Discussion

    3.1.Effect of inlet nozzle position and direction

    The con figuration of different inlet pipe positions and directions on the same header is shown in Fig.3.

    Inlet position and inlet angle will affect the mass of particles accumulated in a vertical type exchanger.Fig.3 shows exchangers with five different inlet pipe con figurations,labeled A,B,C,D and E.The tube pass simulated was 50 mm,which did not show in Fig.3.The inletnozzle ofAand C is verticalto the nearheaderwall.The inletnozzle of E is vertical to the tube sheet.The inlet nozzle of B is in the same position as A,with a lean inletdirection,whereas the inletnozzle ofDis almost at the same position as C,with a lean inlet direction.

    The accumulated masses of particles sized 50 μm in five exchangers for 0–360 s are shown in Fig.4.This clearly shows that the five con figurations exhibited greatly different deposition effects and different flow patterns,although only a 0.5-m tube pass had been simulated.As we can see,particle mass tended to remain steady only in Cases E and C.That means particles could be transported out of the exchanger and would not lead to block-up.Particle mass in Case E was least among thefive con figurations considered.In Cases Aand B,mass was still accumulating along with time.The largest mass accumulated was in Case D.

    Differentstructures lead to different flow patterns,thus affecting the accumulated mass.Fig.5 shows the contour of the volume fraction of particles for 50-μm particles in the heat exchanger axial cross-section.Case E had fewest particles deposited at the bottom in all structures.Cases B and D,with inclined inlet nozzles,apparently concentrated more particles at the bottom compared with the same feed position in Cases A and C.In addition,Case B showed an obvious fluid drift phenomenon.

    A 50-μm particle velocity vector in the axial plane is shown in Fig.6.There is a dead zone atthe bottom ofthe headerwith lean inlet(Cases B and D),making it easy to accumulate particles and jam the feed pipe,as well as increasing the operational pressure drop.At the same time,an exchanger with a lean inlet would cause maldistribution in the tube pass,which would greatly affect the heat-exchange effect.So,adopting an inclined nozzle was not an advisable option.For Cases A and C,the feed velocity vector at the tube plate had a large angle to the vertical direction ofthe tube plate,which,according to the literature[31],would lead to more serious tube plate corrosion.The velocity vector in Case E was almost perpendicular to the tube plate,leading to less corrosion and having more advantageous to transport particles.

    Fig.6.Vector of small particle velocity on axial plane.

    Fig.7.Rendering of three different header length geometries.

    As we all know,fewerparticlesaccumulated in the headerwould reduce abrasion and corrosion,as well as the possibility of deposition and plugging.So,Case E,with an inlet at the bottom,was preferred among the five designs to avoid plugging.

    3.2.Effect of header height

    The structure of the exchanger header will affect particle deposition inside.To investigate the effect of header length,exchangers with three different header lengths were simulated,as shown in Fig.7.The header heightin Case E was 330 mm,thatin case F was 200 mm and thatin case G was 100 mm.A bottom inlet was adopted,and all other structures were the same in all cases.

    Fig.8.Contour of small particle(50 μm)volume fraction for three heat exchangers with different header lengths(HE=330 mm,HF=200 mm,HG=100 mm).

    Fig.8 shows the accumulated mass contour of 50-μm particles in 360 s.The accumulated mass per unit volume decreased with the increase of header height.But at the same time,the particle distribution was more uneven in the header tube pass from case E to B,G.In several pipes, flow speed was very low.With the decrease of the header height,more particles tended to distribute in the middle of the tube pass.

    Fig.9 shows the accumulated mass of 50-μm particles in heat exchangers.After timestep 2500,the mass of small particles in the Case F structure was beginning to decrease,however,the particles in Cases G and E were still accumulating.As Fig.8 shows,Cases F and G could not meet the basic requirement of conveying particles out of the tube plate uniformly after they were fully fluidized in the header.In Case G,there was a dead zone in the header,leading to particle accumulation.

    Fig.10 shows the supercritical water velocity vector in the intersection plane from 0.01 m above the tube sheet.As the header height increased,the velocity in the tube-side center decreased and the velocity in the tube-side periphery increased.In Case E,the peripheral velocity of SCW was greater than the velocity in the center,and the main flow was concentrated in the periphery,while some tubes in the center had velocities close to zero.However,the central rate in Case F started to increase and the velocity gradient decreased.In Case G,with the shortest header height,the mainstream was concentrated in the center line.Peripheral velocity decreased,and the velocity of several pipes was close to zero.

    Due to a greater velocity of the main flow on the cross-section and the smallest particle-accumulation trends,Case F with a 200-mm header height was the best option among Cases E,F and G.

    Fig.11.Exchangers based on Case F with different inlet pipe diameters,respectively 10 mm,25 mm and 50 mm.

    3.3.Effect of inlet pipe diameter

    Maldistribution of flow in Case F still existed in the tube pass crosssection,and flow was concentrated in the center,hence one might consider increasing the pipe diameter to optimize flow.

    Fig.12.Mass of small particles(50 μm)in exchanger.

    Fig.14.Contour of solid volume fraction for different tube pass distributions.

    Fig.11 shows the exchanger based on Case F with inlet pipe diameters of 10 mm,25 mm and 50 mm.

    As can be seen from Fig.12,particle accumulation increased with the increase of inlet pipe diameter.It may become difficult to transport the particles out of the exchanger,leading to a deposition problem.Although it might increase distribution,increasing the inlet pipe diameter beyond 10 mm may be not advisable.Determination of the best con figuration must weigh distribution and accumulation.In this case,Case F was the best choice to minimize deposition.

    3.4.Effect of tube pass distribution

    Nonuniformity in fluid flow is one of the primary reasons for poor heatexchanger performance.This may be attributed to improperdesign of the inlet/outlet port and header con figuration,distributor construction and plate corrugations.

    The con figurations of different inlet pipe positions and directions on the same headerare shown in Fig.13.The volume fraction ofparticles in the feed took 1.8%.

    The contour of the solid volume fraction for different tube pass distributions from 0 s to 50 s is shown in Fig.14.Regarding three-tube pass distribution,it can be seen that there was little difference in the volume fraction of solid particles on the outlet,which indicated tube pass distribution in the same tube number has little influence on particle transport.Certainly,careful observation of Fig.14 indicates that rectangular distribution might have an advantage,with slightly more particle volume fraction at the outlet than other types.This means more particles were brought out of the exchanger in a rectangular distribution.So rectangle con figuration was the optimum distribution.

    4.Conclusions

    A series of CFD simulations in CFX were conducted with 0.5-m tubes in the pass.This heater is typical of heat exchangers used for primary slurry heating in supercritical water coal gasification.(Experimental data from the literature were chosen to validate the two-phase flow field for the minimum fluidization velocity.)

    The standard side-entry heaterdesign was optimized.Averticalinlet was better than an inclined inlet,and an inlet at the bottom ofthe header is suggested to avoid plugging.Increasing the header height would lead to more feed flow in the center of the tube plate,and one with a uniform distribution of flow was preferable.Particle accumulation increased with the increase of the inlet pipe diameter.A rectangular tube pass distribution mighthave advantages over circularand triangular types.We discussed seven exchanger structures(A,B,C,D,E,F and G),with different inlet nozzle con figurations,header heights,inlet pipe diameters and tube pass distributions.Simulation results indicate that the optimum heatexchanger has structure F,i.e.,a rectangular configuration of the tube pass distraction,a bottom inlet,a 200-mm header height and a 10-mm inlet pipe diameter.

    Nomenclature

    CBconstant,dimensionless

    CDdrag coefficient,dimensionless

    CLlift coefficient,dimensionless

    Cε1constant,dimensionless

    Cε2constant,dimensionless

    Cμconstant,dimensionless

    Cμpconstant,dimensionless

    dsparticle diameter,m

    essrestitution coefficient

    Fig.13.Different tube pass con figurations(triple,circular and rectangular).

    ggravitational acceleration,m·s-2

    g0,ssradial distribution coefficient

    Istress tensor

    Kfsgas/solid momentum exchange coefficient

    kturbulence kinetic energy,m2·s-2

    kΘ,sdiffusion coefficient for granular energy,kg·s-1·m-1

    MDdrag force,N·m-3

    MIinter-phase momentum transfer force,N·m-3

    MLlift force,N·m-3

    mmass,kg

    nnumber density,m-3

    Pkturbulence production,kg·m-1·s-3

    ppressure,Pa

    Qgvolumetric inlet gas flow rate,L·min-1

    ResReynolds number,dimensionless

    rijequivalent radius,m

    Ssource term,kg·m-3·s-1

    Sijcross-sectional area of the collision,m2

    ttime,s

    uivelocity vector,m·s-1

    utturbulent velocity,m·s-1

    Xmass fraction,dimensionlesss

    α volume,dimensionless

    β constant,dimensionless

    γΘ,scollision dissipation of energy,kg·s-3·m-1

    ε turbulence eddy dissipation,m2·s-3

    Θsgranular temperature,m2·s-2

    λ bulk viscosity,kg·s-1·m-1

    μ shear viscosity,kg·s-1·m-1

    μeff effective viscosity,Pa·s

    μg,lgas particle induced viscosity of liquid phase,Pa·s

    μTturbulence induced viscosity,Pa·s

    ξ dimensionless size ofeddies in the inertialsubrange ofisotropic turbulence

    ρ density,kg·m-3

    σ surface tension between liquid phase and gas phase,N·m-1

    σkconstant,dimensionless

    σεconstant,dimensionless

    τ actual time during the collision,s

    υ kinematic viscosity,m2·s-1

    Subscripts

    exp experimental values

    f fluid

    i general index

    mf minimum fluidization

    s solid phase

    sim simulated vales

    Acknowledgments

    The authors thank LetPub(www.letpub.com)for its linguistic assistance during the preparation of this manuscript.

    [1]M.J.Veraa,A.T.Bell,Effect of alkalimetalcatalysts on gasification ofcoal char,Fuel57(1978)194–200.

    [2]S.Nosé,A molecular dynamics method for simulations in the canonical ensemble,Mol.Phys.52(1984)255–268.

    [3]W.G.Hoover,Canonical dynamics:Equilibrium phase-space distributions,Phys.Rev.A31(1985)1695–1697.

    [4]T.Takarada,Y.Tamai,A.Tomita,Reactivities of 34 coals under steam gasification,Fuel64(1985)1438–1442.

    [5]Z.L.Liu,H.H.Zhu,Steam gasification of coal char using alkali and alkaline-earth metal catalysts,Fuel65(1986)1334–1338.

    [6]T.Takarada,Y.Tamai,A.Tomita,Effectiveness of K2CO3and Ni as catalysts in steam gasification,Fuel65(1986)679–683.

    [7]L.Q.Wang,Y.H.Dun,X.N.Xiang,Z.J.Jiao,T.Q.Zhang,Thermodynamics research on hydrogen production from biomass and coal co-gasification with catalyst,Int.J.Hydrog.Energy36(2011)11676–11683.

    [8]A.A.Vostrikov,S.A.Psarov,D.Y.Dubov,O.N.Fedyaeva,M.Y.Sokol,Kinetics of coal conversion in supercritical water,Energy Fuel21(2007)2840–2845.

    [9]L.Han,R.Zhang,J.Bi,L.Cheng,Pyrolysis ofcoal-tar asphaltene in supercriticalwater,J.Anal.Appl.Pyrolysis91(2011)281–287.

    [10]S.Wang,Y.Guo,L.Wang,Y.Wang,D.Xu,H.Ma,Supercritical water oxidation of coal:Investigation of operating parameters'effects,reaction kinetics and mechanism,Fuel Process.Technol.92(2011)291–297.

    [11]L.Guo,H.Jin,Boiling coal in water:Hydrogen production and power generation system with zero net CO2emission based on coal and supercritical water gasification,Int.J.Hydrog.Energy38(2013)12953–12967.

    [12]J.Zhang,X.Weng,Y.Han,W.Li,Z.Gan,J.Gu,Effect of supercritical water on the stability and activity of alkaline carbonate catalysts in coal gasification,J.Energy Chem.22(2013)459–467.

    [13]P.A.Marrone,G.T.Hong,Corrosion control methods in supercritical water oxidation and gasification processes,J.Supercrit.Fluids51(2009)83–103.

    [14]M.M.Aslam Bhutta,N.Hayat,M.H.Bashir,A.R.Khan,K.N.Ahmad,S.Khan,CFD applications in various heat exchangers design:A review,Appl.Therm.Eng.32(2012)1–12.

    [15]M.Brennan,K.Bremhorst,CFD modeling of alumina slurry heat exchanger headers:(ii)Parametric studies,Seventh International Conference on CFD in the Minerals and Process IndustriesCSIRO 2009,pp.1–6.

    [16]M.Kim,Y.Lee,B.Kim,D.Lee,W.Song,CFD modeling of shell-and-tube heat exchanger header for uniform distribution among tubes,Korean J.Chem.Eng.26(2009)359–363.

    [17]K.Bremhorst,M.Brennan,CFD modelling of alumina slurry heat exchanger headers:(i)Comparison of CFD approaches,Seventh Int.Conf.on CFD in the Minerals and Process IndustriesCSIRO,Melbourne,Australia 2009,pp.9–11.

    [18]H.M.Badr,M.A.Habib,R.Ben-Mansour,S.A.M.Said,S.S.Al-Anizi,Erosion in the tube entrance region of an air-cooled heat exchanger,Int.J.Impact Eng.32(2006)1440–1463.

    [19]J.Ding,D.Gidaspow,A bubbling fluidization model using kinetic theory of granular flow,AIChE J36(1990)523–538.

    [20]V.Jiradilok,D.Gidaspow,S.Damronglerd,W.J.Koves,R.Mosto fi,Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser,Chem.Eng.Sci.61(2006)5544–5559.

    [21]Y.Lu,L.Guo,C.Ji,X.Zhang,X.Hao,Q.Yan,Hydrogen production by biomass gasification in supercritical water:A parametric study,Int.J.Hydrog.Energy31(2006)822–831.

    [22]D.Gidaspow,Multiphaseflow and Fluidization:Continuum and Kinetic Theory Descriptions,Academic Press,San Diego,CA,(1994)467.

    [23]N.Yang,W.Wang,W.Ge,L.Wang,J.Li,Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two- fluid model with the EMMS approach,Ind.Eng.Chem.Res.43(2004)5548–5561.

    [24]W.Wagner,A.Kruse,H.-J.Kurtzschmar,Properties of Water and Steam:The Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties:Tables Based on These Equations,Springer-Verlag,Berlin,1998.

    [25]J.Serin,J.Mercadier,F.Marias,P.Cezac,F.Cansell,Use of CFD for the design of injectors for supercritical water oxidation,Proceedings of the 10th European Meeting on Supercritical Fluids:Reactions,Materials and Natural Products Processing,Colmar,France,2005.

    [26]T.Yoshida,Y.Matsumura,Reactor development for supercritical water gasification of 4.9 wt%glucose solution at 673 K by using computational fluid dynamics,Ind.Eng.Chem.Res.48(2009)8381–8386.

    [27]M.L.de Bertodano,Turbulent Bubbly Flow in a Triangular Duct,Ph.D.Thesis,Rensselaer Polytechnic Institute,Troy New York,1991.

    [28]C.Chen,P.Wood,A turbulence closure model for dilute gas-particle flows,Can.J.Chem.Eng.63(1985)349–360.

    [29]C.Narayanan,C.Frouzakis,K.Boulouchos,K.Príkopsky,B.Wellig,P.Rudolf von Rohr,Numerical modelling of a supercritical water oxidation reactor containing a hydrothermal flame,J.Supercrit.Fluids46(2008)149–155.

    [30]X.Zhou,J.Gao,C.Xu,X.Lan,Effect of wall boundary condition on CFD simulation of CFB risers,Particuology11(2013)556–565.

    [31]D.Elvery,K.Bremhorst,Erosion-corrosion due to inclined flow into heat exchanger tubes–investigation of flow field,Proceedings of the ASMefluids Engineering Division Summer Meeting,San Diego,California,USA July,1996,pp.7–11.

    午夜a级毛片| 1024手机看黄色片| 国产大屁股一区二区在线视频| 国产伦精品一区二区三区四那| av福利片在线观看| 九九久久精品国产亚洲av麻豆| 舔av片在线| 桃红色精品国产亚洲av| 精品人妻一区二区三区麻豆 | 观看美女的网站| 亚洲国产欧洲综合997久久,| 久久人人爽人人爽人人片va| 亚洲精品粉嫩美女一区| 91麻豆精品激情在线观看国产| 亚洲内射少妇av| 精品久久久久久久久av| a级毛片a级免费在线| 制服丝袜大香蕉在线| 日日干狠狠操夜夜爽| 免费搜索国产男女视频| 久久亚洲真实| 久久久色成人| 成人无遮挡网站| 久久午夜福利片| 99精品久久久久人妻精品| 久久久国产成人免费| aaaaa片日本免费| 九色国产91popny在线| av福利片在线观看| 天堂动漫精品| 亚洲国产高清在线一区二区三| 日韩欧美在线二视频| 日韩精品青青久久久久久| av福利片在线观看| 三级国产精品欧美在线观看| 国产一区二区三区视频了| 午夜福利欧美成人| 亚洲五月天丁香| 亚洲av不卡在线观看| 亚洲性久久影院| 欧美又色又爽又黄视频| 一夜夜www| 又爽又黄无遮挡网站| 亚洲成av人片在线播放无| 精品人妻偷拍中文字幕| 亚洲18禁久久av| 禁无遮挡网站| 国产激情偷乱视频一区二区| 午夜免费成人在线视频| 国产黄色小视频在线观看| x7x7x7水蜜桃| 伊人久久精品亚洲午夜| 亚洲美女视频黄频| 给我免费播放毛片高清在线观看| 欧美最黄视频在线播放免费| 一区二区三区高清视频在线| 日韩强制内射视频| 特大巨黑吊av在线直播| 亚洲,欧美,日韩| 无遮挡黄片免费观看| 免费大片18禁| 一卡2卡三卡四卡精品乱码亚洲| 国产免费男女视频| 一区福利在线观看| 久久国内精品自在自线图片| 国产av麻豆久久久久久久| 老熟妇仑乱视频hdxx| 国产成人福利小说| 欧美色视频一区免费| 久久久精品大字幕| 午夜福利在线在线| 两个人视频免费观看高清| 婷婷丁香在线五月| 成人特级黄色片久久久久久久| 亚洲一级一片aⅴ在线观看| 日韩欧美精品免费久久| av专区在线播放| 中文字幕av成人在线电影| a级毛片免费高清观看在线播放| 可以在线观看的亚洲视频| 美女被艹到高潮喷水动态| 一进一出抽搐gif免费好疼| 亚洲熟妇熟女久久| xxxwww97欧美| 伦理电影大哥的女人| 黄色女人牲交| 国产精品一区www在线观看 | 久久精品影院6| 国模一区二区三区四区视频| 免费人成在线观看视频色| 成人av一区二区三区在线看| 超碰av人人做人人爽久久| 久99久视频精品免费| 窝窝影院91人妻| 午夜福利在线在线| 欧美成人a在线观看| 一本精品99久久精品77| 久久精品人妻少妇| 女人十人毛片免费观看3o分钟| 亚洲人成网站在线播| 精品福利观看| 国产精品久久久久久精品电影| 狠狠狠狠99中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 国语自产精品视频在线第100页| 99久久精品热视频| 18禁黄网站禁片午夜丰满| 在线播放无遮挡| 欧美日本亚洲视频在线播放| 国产精品久久视频播放| 99热这里只有是精品50| 精品人妻1区二区| 搡老妇女老女人老熟妇| 精品人妻一区二区三区麻豆 | 91久久精品电影网| 免费观看人在逋| 欧美日韩亚洲国产一区二区在线观看| 在线观看66精品国产| 在线免费观看的www视频| 亚洲av免费高清在线观看| 可以在线观看毛片的网站| 日日啪夜夜撸| 天天躁日日操中文字幕| 99久久成人亚洲精品观看| 999久久久精品免费观看国产| АⅤ资源中文在线天堂| 桃色一区二区三区在线观看| 日韩精品中文字幕看吧| 亚洲熟妇熟女久久| 欧美日韩亚洲国产一区二区在线观看| 欧美三级亚洲精品| 俄罗斯特黄特色一大片| 国产aⅴ精品一区二区三区波| 亚洲成人免费电影在线观看| 噜噜噜噜噜久久久久久91| 老司机午夜福利在线观看视频| 精品福利观看| 久久久久久国产a免费观看| 桃色一区二区三区在线观看| 精品不卡国产一区二区三区| 亚洲熟妇中文字幕五十中出| 如何舔出高潮| 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级国产av玫瑰| 麻豆成人午夜福利视频| 欧美激情久久久久久爽电影| 床上黄色一级片| 很黄的视频免费| 亚洲,欧美,日韩| 久久久成人免费电影| 禁无遮挡网站| netflix在线观看网站| 日韩中字成人| 日韩高清综合在线| 尾随美女入室| 日韩欧美三级三区| 亚洲一区高清亚洲精品| 国产午夜福利久久久久久| 日韩强制内射视频| 国产aⅴ精品一区二区三区波| 中文字幕av成人在线电影| 69人妻影院| 久久精品国产亚洲av天美| 波多野结衣巨乳人妻| 欧美日本亚洲视频在线播放| videossex国产| 又黄又爽又免费观看的视频| 婷婷精品国产亚洲av| 少妇丰满av| 男插女下体视频免费在线播放| 免费人成在线观看视频色| 亚洲成人精品中文字幕电影| 亚洲精品久久国产高清桃花| 日韩欧美在线乱码| 亚洲美女视频黄频| 国产亚洲欧美98| 人妻制服诱惑在线中文字幕| 亚洲av免费在线观看| 午夜精品久久久久久毛片777| 亚洲性久久影院| 男女做爰动态图高潮gif福利片| 毛片女人毛片| 午夜视频国产福利| 他把我摸到了高潮在线观看| 欧美xxxx性猛交bbbb| 欧美绝顶高潮抽搐喷水| 亚洲18禁久久av| 在线看三级毛片| 亚洲,欧美,日韩| 听说在线观看完整版免费高清| 成人国产一区最新在线观看| 国产乱人伦免费视频| 成人国产麻豆网| 听说在线观看完整版免费高清| 能在线免费观看的黄片| 精品久久久噜噜| 日本成人三级电影网站| 欧美又色又爽又黄视频| 美女xxoo啪啪120秒动态图| 成人av在线播放网站| 中文字幕人妻熟人妻熟丝袜美| 国产高清不卡午夜福利| 国产一区二区三区av在线 | 久久久久性生活片| 91狼人影院| 欧美日韩黄片免| 免费电影在线观看免费观看| 午夜福利在线观看吧| 成年女人毛片免费观看观看9| 欧美绝顶高潮抽搐喷水| 欧美三级亚洲精品| 婷婷色综合大香蕉| 美女黄网站色视频| 美女xxoo啪啪120秒动态图| 欧美成人一区二区免费高清观看| 午夜激情福利司机影院| 日本黄色片子视频| 大又大粗又爽又黄少妇毛片口| 久久精品国产亚洲av涩爱 | 99国产精品一区二区蜜桃av| 精品一区二区三区视频在线| 特大巨黑吊av在线直播| 美女被艹到高潮喷水动态| 亚洲色图av天堂| 婷婷精品国产亚洲av在线| 91av网一区二区| 有码 亚洲区| a级毛片a级免费在线| 69av精品久久久久久| 亚洲成人久久爱视频| 九九爱精品视频在线观看| 国产激情偷乱视频一区二区| 久久久久国产精品人妻aⅴ院| 1000部很黄的大片| 欧美bdsm另类| 国产一区二区亚洲精品在线观看| 丝袜美腿在线中文| 国产成人av教育| 尤物成人国产欧美一区二区三区| 真人做人爱边吃奶动态| 欧美激情久久久久久爽电影| 国产精品综合久久久久久久免费| 精品国产三级普通话版| 观看美女的网站| 毛片女人毛片| 亚洲av电影不卡..在线观看| 黄色欧美视频在线观看| 国内精品一区二区在线观看| 日本免费一区二区三区高清不卡| 少妇被粗大猛烈的视频| 亚洲国产欧美人成| 最后的刺客免费高清国语| 欧美中文日本在线观看视频| 老师上课跳d突然被开到最大视频| 成人精品一区二区免费| 亚洲经典国产精华液单| 精品人妻1区二区| 久久人人爽人人爽人人片va| 日韩高清综合在线| 99久国产av精品| 欧美潮喷喷水| h日本视频在线播放| 日本五十路高清| 五月玫瑰六月丁香| 日本a在线网址| 在线免费十八禁| 99久久成人亚洲精品观看| 伦精品一区二区三区| 三级国产精品欧美在线观看| 搡老岳熟女国产| 我的女老师完整版在线观看| 日本爱情动作片www.在线观看 | 在线观看美女被高潮喷水网站| 禁无遮挡网站| 特大巨黑吊av在线直播| 亚洲国产日韩欧美精品在线观看| 国内精品美女久久久久久| 亚洲美女视频黄频| 制服丝袜大香蕉在线| 久99久视频精品免费| 欧美国产日韩亚洲一区| 日日摸夜夜添夜夜添av毛片 | 亚洲国产精品成人综合色| x7x7x7水蜜桃| 国产欧美日韩精品一区二区| 国产高清视频在线播放一区| 色吧在线观看| 亚洲七黄色美女视频| 国内精品久久久久久久电影| 精品久久久噜噜| 一区二区三区激情视频| 黄片wwwwww| 我要看日韩黄色一级片| 国产欧美日韩一区二区精品| 高清在线国产一区| 不卡视频在线观看欧美| 神马国产精品三级电影在线观看| 国产男人的电影天堂91| 夜夜爽天天搞| 亚洲欧美精品综合久久99| 亚洲国产日韩欧美精品在线观看| 女同久久另类99精品国产91| 亚洲第一区二区三区不卡| 欧美bdsm另类| 欧美一区二区亚洲| 日本黄色片子视频| 国产激情偷乱视频一区二区| 日韩中文字幕欧美一区二区| 五月伊人婷婷丁香| 欧美日韩乱码在线| 日本撒尿小便嘘嘘汇集6| 亚洲在线观看片| 国产高清不卡午夜福利| 香蕉av资源在线| 久久亚洲真实| 精品午夜福利视频在线观看一区| 国产伦一二天堂av在线观看| 一进一出抽搐gif免费好疼| 日韩欧美三级三区| 欧美色视频一区免费| 级片在线观看| 免费av不卡在线播放| 国产一区二区在线观看日韩| 18禁在线播放成人免费| 中文字幕精品亚洲无线码一区| 小蜜桃在线观看免费完整版高清| 亚洲一区二区三区色噜噜| 亚洲一级一片aⅴ在线观看| 亚洲国产精品成人综合色| 久久草成人影院| 在线观看舔阴道视频| 国产乱人视频| 国产精品三级大全| 午夜爱爱视频在线播放| 午夜精品一区二区三区免费看| 全区人妻精品视频| 亚洲综合色惰| 亚洲黑人精品在线| 精品久久久久久成人av| 不卡视频在线观看欧美| 午夜福利18| 久久久精品欧美日韩精品| 中文字幕精品亚洲无线码一区| 成人一区二区视频在线观看| 人妻夜夜爽99麻豆av| 久久久精品欧美日韩精品| 中文字幕精品亚洲无线码一区| 免费人成在线观看视频色| 成年女人看的毛片在线观看| 亚洲av.av天堂| 国产精品一区www在线观看 | 亚洲欧美日韩无卡精品| 偷拍熟女少妇极品色| 成年免费大片在线观看| 亚洲中文日韩欧美视频| 人人妻,人人澡人人爽秒播| 国产精品爽爽va在线观看网站| 乱系列少妇在线播放| av专区在线播放| 亚洲专区中文字幕在线| 欧美一区二区国产精品久久精品| 国内精品久久久久久久电影| 亚洲精华国产精华液的使用体验 | 能在线免费观看的黄片| 真人做人爱边吃奶动态| 日韩人妻高清精品专区| 免费高清视频大片| 一本一本综合久久| 精品久久久久久久人妻蜜臀av| 又粗又爽又猛毛片免费看| 舔av片在线| 成年女人毛片免费观看观看9| 婷婷亚洲欧美| www.色视频.com| 午夜福利视频1000在线观看| 国产高清三级在线| 国产一区二区三区av在线 | 亚洲中文字幕一区二区三区有码在线看| 哪里可以看免费的av片| 欧美成人免费av一区二区三区| 日韩,欧美,国产一区二区三区 | 俄罗斯特黄特色一大片| 国产av一区在线观看免费| 99久久久亚洲精品蜜臀av| av视频在线观看入口| 啦啦啦观看免费观看视频高清| 国产免费一级a男人的天堂| 亚洲av美国av| 国产精品伦人一区二区| 久久欧美精品欧美久久欧美| 久久午夜福利片| 伦精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 欧美丝袜亚洲另类 | 亚洲aⅴ乱码一区二区在线播放| 又爽又黄a免费视频| 色在线成人网| 亚洲欧美日韩高清专用| .国产精品久久| 成人午夜高清在线视频| 在线观看舔阴道视频| 99久久中文字幕三级久久日本| 人妻少妇偷人精品九色| 国产精品人妻久久久久久| 五月玫瑰六月丁香| 欧美成人免费av一区二区三区| 国产爱豆传媒在线观看| 少妇裸体淫交视频免费看高清| 又爽又黄a免费视频| 97碰自拍视频| av视频在线观看入口| 日韩大尺度精品在线看网址| 人人妻,人人澡人人爽秒播| 99国产精品一区二区蜜桃av| 99精品在免费线老司机午夜| 人人妻,人人澡人人爽秒播| 69人妻影院| 中文字幕人妻熟人妻熟丝袜美| 22中文网久久字幕| 深爱激情五月婷婷| 日韩欧美在线二视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲av日韩精品久久久久久密| 欧美日韩亚洲国产一区二区在线观看| 亚洲人成网站在线播放欧美日韩| 观看美女的网站| 真实男女啪啪啪动态图| 男人舔奶头视频| 久久6这里有精品| 欧美中文日本在线观看视频| 国产亚洲精品综合一区在线观看| 国产三级在线视频| 成人无遮挡网站| 国产精品不卡视频一区二区| 精品一区二区免费观看| 熟女人妻精品中文字幕| 成人高潮视频无遮挡免费网站| 久久精品影院6| 十八禁国产超污无遮挡网站| 欧美bdsm另类| 韩国av在线不卡| 国产精品亚洲一级av第二区| 99国产精品一区二区蜜桃av| 中文字幕av在线有码专区| 九九久久精品国产亚洲av麻豆| 成年免费大片在线观看| 日韩中文字幕欧美一区二区| 欧美成人性av电影在线观看| 国内精品久久久久精免费| 久久热精品热| 欧美成人性av电影在线观看| 91在线观看av| 久久中文看片网| 国产成人aa在线观看| 精品不卡国产一区二区三区| 日日摸夜夜添夜夜添小说| 五月玫瑰六月丁香| 真人做人爱边吃奶动态| 91在线精品国自产拍蜜月| 人妻制服诱惑在线中文字幕| 男人的好看免费观看在线视频| 国内精品美女久久久久久| 非洲黑人性xxxx精品又粗又长| 午夜影院日韩av| 亚洲av不卡在线观看| 国产私拍福利视频在线观看| 日韩一区二区视频免费看| 免费观看人在逋| 精品福利观看| 麻豆成人午夜福利视频| 国产三级在线视频| 精品久久久久久久久久久久久| 在线免费观看的www视频| 麻豆一二三区av精品| 欧美一区二区亚洲| 日本成人三级电影网站| 99精品久久久久人妻精品| 久久人人精品亚洲av| 中文字幕免费在线视频6| 99久久中文字幕三级久久日本| 午夜精品一区二区三区免费看| 精品一区二区免费观看| 亚洲av不卡在线观看| 精品久久久久久,| 成人性生交大片免费视频hd| 成年版毛片免费区| 日本一二三区视频观看| 精品人妻1区二区| 成人亚洲精品av一区二区| 亚洲精品色激情综合| 国产精品野战在线观看| 亚洲av第一区精品v没综合| 麻豆成人av在线观看| 国产成人aa在线观看| 深夜a级毛片| 国产aⅴ精品一区二区三区波| 欧美一区二区国产精品久久精品| 少妇熟女aⅴ在线视频| 国产精华一区二区三区| 男人舔奶头视频| 亚洲男人的天堂狠狠| 久久中文看片网| 亚洲精华国产精华液的使用体验 | 久久久久久久久大av| 国产精品电影一区二区三区| 亚洲av一区综合| 亚洲av二区三区四区| 国产精品一区www在线观看 | av在线老鸭窝| 亚洲狠狠婷婷综合久久图片| 黄色日韩在线| 亚洲成人久久爱视频| 欧美bdsm另类| 日韩大尺度精品在线看网址| 嫩草影院新地址| 国产亚洲精品久久久久久毛片| 午夜激情欧美在线| 国内揄拍国产精品人妻在线| 美女被艹到高潮喷水动态| 精品免费久久久久久久清纯| 国产极品精品免费视频能看的| 99热6这里只有精品| 婷婷六月久久综合丁香| 国产欧美日韩精品一区二区| 亚洲国产精品成人综合色| 色哟哟哟哟哟哟| 久久草成人影院| 亚洲18禁久久av| 91狼人影院| 男插女下体视频免费在线播放| 国产精品久久久久久亚洲av鲁大| 久久精品国产亚洲av天美| 哪里可以看免费的av片| 日韩精品中文字幕看吧| 麻豆国产av国片精品| 欧美日韩精品成人综合77777| 国产在线精品亚洲第一网站| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线播放欧美日韩| x7x7x7水蜜桃| 久久中文看片网| 在线观看舔阴道视频| 久久久久九九精品影院| 免费看a级黄色片| 观看免费一级毛片| 18禁在线播放成人免费| 亚洲第一区二区三区不卡| 久久精品国产99精品国产亚洲性色| 免费电影在线观看免费观看| 91狼人影院| 一本久久中文字幕| 亚洲欧美日韩无卡精品| 亚洲人成网站高清观看| 最近中文字幕高清免费大全6 | 中国美女看黄片| 国产三级中文精品| 一本精品99久久精品77| 欧美日韩乱码在线| 亚洲中文字幕一区二区三区有码在线看| 久久草成人影院| 国产精品一区二区三区四区久久| 欧美日韩瑟瑟在线播放| 别揉我奶头~嗯~啊~动态视频| 一a级毛片在线观看| 日日夜夜操网爽| 国产精品久久久久久av不卡| 欧美又色又爽又黄视频| 日韩欧美国产在线观看| 深爱激情五月婷婷| 免费观看在线日韩| 精品日产1卡2卡| 变态另类丝袜制服| 伦理电影大哥的女人| 中文字幕精品亚洲无线码一区| 精品一区二区免费观看| 色5月婷婷丁香| 99久久精品国产国产毛片| 18禁黄网站禁片免费观看直播| 可以在线观看毛片的网站| 亚洲国产精品成人综合色| 欧美+亚洲+日韩+国产| 日本在线视频免费播放| 极品教师在线免费播放| 亚洲国产高清在线一区二区三| 中出人妻视频一区二区| 九色成人免费人妻av| 国产精品1区2区在线观看.| 99热这里只有是精品在线观看| 国产精品免费一区二区三区在线| 日韩国内少妇激情av| 久9热在线精品视频| 草草在线视频免费看| 久久久久免费精品人妻一区二区| 国产亚洲av嫩草精品影院| 久久精品国产自在天天线| 国产激情偷乱视频一区二区| 日韩高清综合在线| 精品久久久久久,| 成人欧美大片| 性插视频无遮挡在线免费观看| 亚洲精品一区av在线观看| 精品一区二区三区av网在线观看| а√天堂www在线а√下载| 亚洲 国产 在线| 精品人妻一区二区三区麻豆 | 日韩高清综合在线| 亚洲自拍偷在线| 免费在线观看日本一区| 久久午夜福利片| 欧美日本亚洲视频在线播放| 联通29元200g的流量卡| 成人无遮挡网站| 精品人妻视频免费看| 波多野结衣巨乳人妻| 一本久久中文字幕|