• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization and control of a reactive distillation process for the synthesis of dimethyl carbonate☆

    2017-05-29 10:48:12ZhixianHuangYixiongLinXiaodaWangChangshenYeLingLi

    Zhixian Huang,Yixiong Lin,Xiaoda Wang,Changshen Ye,Ling Li*

    School of Chemical Engineering,Fuzhou University,Fuzhou 350116,China

    1.Introduction

    Dimethyl carbonate(DMC)is an environmentally benign and biodegradable chemical,and ithas been widely used in the chemistry industry as a substitute to replace dimethyl sulfate and methyl halides in methylation reactions,or as a carbonylation agentin carbonylation reactions[1].In addition,DMC also has been used an additive to fuel because of its high oxygen content and octane number[2].So DMC has attracted substantialresearch efforts in recentyears.There are severalways to prepare DMC,such as the methanolysis of urea[3]and direct synthesis of DMC from propylene carbonate(PC)and methanol(MeOH)[4].However,urea methanolysis to DMC suffers from some problems including low production selectivity and high molar ratio of methanol to urea[5].Although the directproduction ofDMC by reacting PC and MeOHis limited by the unfavorable equilibriumconstant,a high conversion ofPC stillcan be achieved by using reactive distillation method,because reaction products can be removed continuously from the reactive zone and thus conversion can be increased far beyond whatis expected by the equilibrium.In the transesterification reaction of ethyl carbonate and methanol,the recent papers by Fang and Xiao[6]and Hsuet al.[7]reported that the completion conversion of the limiting reactant could be achieved by using reactive distillation.

    But in the transesterification reaction of PC and MeOH,the products are DMC and propylene glycol(PG).The former can form a homogeneous azeotrope with the reactant MeOH,so the overhead of the reactive distillation column will be a dimethyl carbonate and methanol mixture that is a challenge for the purification of dimethyl carbonate.Therefore,further separation of the mixture DMC and MeOH is needed.In order to break the dimethyl carbonate and methanol azeotrope,several techniques have been proposed,such as adsorption separation[8],extractive distillation[5,7,9],low temperature crystallization[10],pressure swing distillation[11,12],and membrane pervaporation[13,14].Among these methods,pressure swing distillation is considered as one ofthe mosteffective and environmentalfriendly processes.The dynamic simulation and control of pressure swing distillation systems for separating azeotropes have been investigated and evaluated in a lot of research papers[15–19].Weiet al.explored the pressure swing distillation systems for separation of DMC/MeOH and proposed an optimized separation con figuration based on the global economic analysis[12].Liet al.simulated and analyzed the process of separation of DMC and MeOH,including a high-pressure distillation column and an atmospheric distillation column in series[20].

    In our previous works,the integration of the reactive distillation and the separation ofthe DMC/MeOHmixture were investigated,and a novel energy saving process for the synthesis of DMC was proposed[21].This new process with a reactive distillation column and a high-pressure distillation column can save energy by 29.50%compared with the traditional process.However,the feed molar ratio of MeOH to PC is much higher than thatofstoichiometric ratio in the transesterification reaction,which meansthatmore energy isrequired to recoverexcess methanol.Furthermore,the dynamic characteristic ofthis process hasn'tbeen investigated.

    In this paper,optimization and control of the procedure for the synthesis of dimethyl carbonate by reactive distillation were carried out.First,the optimal flowsheetwas obtained by minimizing the totalannual cost(TAC)of the system.Then,the control strategy of this process with heat integrated was explored and its required control performance was discussed through varying feed flow rate and feed composition.

    2.Reaction Kinetic and Thermodynamic Model

    2.1.Reaction kinetic

    The transesterification ofPCwith MeOH,using homogeneous or heterogeneous catalysts,has already been investigated[6,22,23].Even though many catalysts are suitable for this reaction,sodium methoxide is stilla promising candidate in the currentindustrialapplication since it possesses higher activity compared with other catalysts.Moreover,its reaction temperature is relatively mild.The liquid-phase reversible transesterification reaction considered is.

    The kinetics for the forward and reverse reactions catalyzed by sodium methoxide are based on those given by Zhang[22].

    whereris the reaction rate of PC(mol·L-1·min-1),Ciis the concentration of theicomponent(mol·L-1),Ris gas constant(J·mol-1·K-1),andTis temperature(K).

    2.2.Thermodynamic model

    The phase equilibrium of this reaction system is complex due to the existence of a binary azeotrope mixture of DMC and MeOH.In order to accurately describe the phase equilibriums of the system,UNIQUAC model is used and its parameters are obtained to fit the vapor–liquid data.The experimental data for the pair of MeOH/DMC were obtained from literatures[24].The vapor–liquid equilibrium data for the pairs of DMC/PC and DMC/PG were obtained from literature[25].The model parameters of MEOH/PG and all other physical properties were obtained directly from Aspen Plus.Table 1 summarizes the UNIQUAC binary interaction parameters used in the simulation.The calculated boiling points of pure components and azeotropic compositions by using UNIQUAC model are presented in Tables 2 and 3,respectively,which indicates that the UNIQUAC model is suitable for this system.

    Table 1UNIQUAC model parameters for the DMC process

    Table 2Boiling points of pure components at atmospheric pressure

    Table 3Comparisons of predicted and experimental azeotrope for MeOH/DMC at different pressures

    3.Steady-state Optimization

    3.1.Reactive distillation process

    The process for the production of DMC by reactive distillation is shown in Fig.1.In this flowsheet,the reactant PC(stream F1)is fed into the top part of the reaction section,and the fresh MeOH(stream F2)and a recycled stream rich in MeOH are fed into the bottom and middle of the reaction section,respectively.The top productof the reactive distillation(RD)column is a mixture of product DMC and unreacted MeOH,while co-productpropylene glycolleaves outthe bottom of the RD column.The distillate of the RD column is fed into the high pressure(HP)column,which produces high-purity DMC in the bottoms and a distillate stream whose composition is near that of the azeotrope.The distillate(stream R1)is recycled back to the RD column.Due to the very low catalyst concentration(about 0.15 wt%),the catalyst component was ignored in the simulation for simplification.

    Based on the industrial data provided by Feiyang Chemical Co.,Ltd.(in China),a detail simulation was performed in our previous study[21].The results indicate that the proposed process is feasible for the synthesis of DMC.However,the feed molar ratio of MeOH to PC(≈5.6:1)is much higher than that of stoichiometric ratio in the transesterification reaction and the PC conversion is not very high(about 96.5%),which means that more energy is required to further purify the co-product PG and recover excess methanol.Hence,in this study the feed molar ratio will be optimized while ensuring the desired PC conversion rate of 99.9%and the desired DMC purity of 99.5 mass%.Since the solubility of sodium methylate in the PC or PG is relative low,sodium methylate is dissolved in the methanol firstly and then is introduced into the RD column with PC.To avoid clogging pipes or internals in the RD column due to the crystallization of the sodium methylate,the mass concentration of MeOH in the fresh PC feed is another constrain.

    There are many design variables needed to be optimized in this process.In the RD column,such design variables involve the total number oftrays(NRD),PC feed location(NF1),MeOHfeed location(NF2),and recycle streamfeed location(NFR).For the HP column,the totalnumber of trays(NHP)and the feed location(NFHP)also need to be optimized.Moreover,the operating pressure is an important process parameter for the distillation system.Zhanget al.found that the transesterification of PC and MeOH is an exothermic reaction and the optimum reaction temperature ranges from 333.2 to 341.2 K [22].And the transesterification reaction mainly takes place on the 5th stage(as shown in Fig.4).When the RDcolumn is operating atatmospheric pressure,the temperature on the 5th stage is 339.2 K.So the RD column is operating at atmospheric pressure in this work.Note that all produced dimethyl carbonate that leaves the reactive section zone goes at the top of the RD column with the methanol.And the HP column that is used to separate dimethyl carbonate from methanol produces highpurity dimethyl carbonate in the bottom and produces a distillate that has a composition near the azeotropic composition.The composition of the azeotrope(DMC/MeOH)varies with the change of pressure.If the HP column is operating at high pressure,the methanol recycled back to the RD column would have a less concentration of DMC.This would reduce theflow rate ofthe recycle streamand hence significantly reduce energy consumption.However,the disadvantage in operating at high pressure is a high base temperature.Considering the heating utility(1.8 MPa steam)and the minimum temperature difference in the heat transfer(ΔT=20 K),the 1.1 MPa pressure seems to be about the optimum because going above this pressure does notshiftthe azeotrope significantly and raises the base temperature.

    In order to achieve the economic optimization of the distillation column system,total annual cost(TAC)is usually used.The TAC is defined as follows:

    Fig.1.The optimized flowsheet for the production of DMC.

    The main pieces of equipment of the distillation column system are column vessels(high and diameter)and two heat exchangers(condenser and reboiler).Since the costs of the vessels and heat exchangers are usually greatly more than the costs of auxiliary items such as pumps,pipes,valves and the reflux drums,auxiliary items are not considered in the optimization of the columns[26].Thus,the sum of the column vessel capital cost and the heat exchanger cost is the capital cost.The parameters for evaluating the cost of equipment and energy cost are shown in Table 4[27].

    3.2.Flowsheet convergence

    Because stream R1,containing MeOH and DMC,is recycled back to the RD column,it is not easy to estimate reasonable distillate flow rate for both the RD and HP columns.As we all know,when recycle streams are present,the convergence of steady-state simulators becomes very difficult.To ensure the convergence of the simulation,the distillate of the RD column and the HP column must be estimated in advance.In order to solve such a complicated matter,therefore,a simple and effective method based on the mass balance is proposed.

    Table 4Basis of economics

    For the RD column,DMC leaving the RD column is the sum of the DMC formed in the transesterification reactionRDMCand the DMC in the recycle streamD2,DMC.

    wherem1is the mass composition of MeOH in the azeotropic mixture(DMC and MeOH)under the atmospheric pressure.

    According to the purity of the product DMC,the amount of MeOH in the distillate of the HP column,D2,MeOH,is estimated by Eq.(4).

    In the same way,D2,DMCis estimated by Eq.(5).

    wherem2is the mass composition of MeOH in the recycle stream.

    Thus,the procedure to estimate the flow rate of the recycle stream between the RD and HP columns is described as follows:

    (1)Give the mass composition of MeOH in the recycle stream(m2)and supposeD2,DMCis equal to 0.

    (2)The amountofDMC in the distillate ofthe RDcolumn is computed with Eq.(2).

    (3)The amountofMeOHin the distillate ofthe RDcolumn is calculated using Eq.(3).

    (4)The mass flow rate of the recycle stream is calculated with Eqs.(4)and(5).

    (5)Go back to the step 2,repeat steps(2)–(4)until the calculated values(D2,DMCorD2,MeOH)remain unchanged.

    Once the values ofD1,DMC,D2,DMC,D2,DMC,andD2,MeOHare determined,the distillates of the RD column and the HP column(D1andD2)are easy to be obtained.

    3.3.Optimization

    Note that the variablem2is the most sensitive design variable in terms of TAC optimization,because it determines the amount of the recycle stream and the difficulty of separating in the HP column and thus affects the energy consumption of the entire system.So,the optimization ofm2was set at the outmost iterative loop.Another issue that needs to be addressed is that during each simulation run the holdup in the reactive tray must be iteratively estimated to consist with the one obtained from the tray sizing calculation.The detail optimization procedure is presented in Fig.2.

    By using above iterative optimization procedure,the values of the design variables were found:feed location of the RD column,total stages ofthe RDcolumn,feed location ofthe HP column,and totalstages of the HP column.The effects of variables on TAC are displayed in Figs.3 and 4.Because the overhead vapor at the top of the HP column can be used as the heat source of the reboiler of the RD column,the TAC of the RD column does not include energy cost and reboiler cost and thus is significantly lower than the TAC of the HP column(Table 5).The resulting optimal flow sheet with flow and composition is shown in Figs.1 and 5 shows component generation amounts pro file in the RD column,and the corresponding temperature and vapor composition pro files are presented in Fig.6.Note that the feed molar ratio of MeOH to PC is 2.61:1 and close to stoichiometric ratio in the transesterification reaction.The conversion ofPC underoptimalconditions reached as high as 99.9%and energy saving of 18.6%was achieved compared to the result given in the literature[21].

    Fig.3.Effect of the MeOH composition(m2)in the recycle stream on the TAC.

    Fig.2.Sequential iterative optimization produce.

    Fig.4.Relationship between TAC and design variables:(a)RD and(b)HP column.

    Table 5Column specifications for original and optimal designs

    Fig.5.Component generation amount pro file in the RD column.

    4.Overall Control Strategies

    In the following,the proper overallcontrolstrategy ofthe process for the production of DMC will be investigated.Aspen Dynamics was used for the control study.Before the Aspen Plus steady state simulation was exported to Aspen Dynamics as a pressure-driven simulation,all the pumps and control valves needed in the process should be added and the volume of vessels should be determined.So,the tray-sizing function in Aspen Plus was used to calculate the size of the RD column and the HP column.The sizes of the reflux drum and the sump were determined by using heuristic methods recommended by Luyben[28]:all are sized to provide 5 min of holdup when at 50%level.The pressure drops inside both the RDcolumn and the HP column were automatically calculated in Aspen Dynamics to accountforliquid hydraulics and vapor traffic.

    The main control objective is to maintain the conversion of PC(≥99.9%)and the DMC product specification(≥99.5%mass).The overall control strategies of this system will be developed in order to hold above specifications in spite of the fluctuations of feed flow and feed composition that frequently exist in the practical processes.Since temperature control is usually used instead of composition control in chemical industrial applications,temperature control is preferred in the control strategy development.

    4.1.Inventory control

    In this system,there are twelve control degrees of freedom:PC feed flow,MeOH feed flow,RD reboiler duty,RD bottom flow,RD distillate,RD reflux,RD condenser duty,HP bottom flow,HP reboiler duty,HP distillate,HP reflux,and HP condenserduty.In orderto keep the totalmaterial balance,eight degrees of freedom are used for the inventory control loops.That is,the reflux drum levels of the RD column and the HP column are controlled by manipulating their distillate flows,while base levels of the columns are controlled by manipulating the corresponding bottom flow rates.The pressures of both condensers are controlled by manipulating the condenser duties.Fresh PC feed(stream F1)is flow controlled and used as a throughput manipulator to change its set point when production rate changes are needed.The total MeOH feed is flow controlled by manipulating a control valve at fresh feed stream while the set point of this flow control loop is adjusted to maintain suitable MeOH/PC feed ratio into the RD column.This set point can be reset by other controller,which willbe discussed detailin nextchapter.Forthe control loops of the flow rate,pressure,and liquid level,their controller parameters are con figured by empirical values as shown in Table 6.

    4.2.Quality control loops

    The remaining manipulated variables include reflux flows and reboiler duties.In the HP column,the reflux flow rate is controlled byR/Dratio.It is important to select a sensitive tray location for temperature control.The steady state temperature pro files of both columns are presented in Fig.6.In the HP column,the location where temperature changes rapidly from tray to tray is around tray 40,so the temperature on this tray is controlled by reboiler heat input.In order to improve the dynamic performance of the control loop,a“T40C”controller is on “cascade”with the “QR/F”ratio.The output value from the“T40C”controller is the ratio of reboiler heat input in the HP column to the distillate of the RD column.However,in the RD column there is a moderate change in temperatures from tray to tray.Therefore,a more sensitive tray temperature should be selected as controlled variable.In this work,sensitivity analyses were performed on the RD column.To determine the steady state gains of tray temperature in the linear region,small changes in the design value(PC feed flow rate±10%and reboiler heat duty±0.5%)were carried out.Results are displayed in Fig.7.For the disturbances of PC feed flow rate,there are two symmetrical peaks of temperature change on the 5th and 25th trays,while only one symmetrical peak of temperature change on the 5th tray when the disturbances of reboiler heat duty are introduced.So,the 5th tray was considered as a temperature control tray.

    A suitable feed ratio between the reactants must be maintained when operating a reactive distillation column.Feed ratio control is the simplest way to maintain stoichiometric balance.But PC feed(F1 stream)contains MeOH,so “Multiply”control model in Aspen Dynamic cannot be used directly in this case.Furthermore,MeOH feed must ensure that there is sufficient MeOH concentration in the bottom of the RD column.In order to satisfy the above requirements,a temperature/flow rate cascade control structure is explored,and the tray selected for temperature controlis located in the bottom where the temperature changes quickly.Fig.9(a)shows that the set point of the MeOH flow controller is adjusted by the output of the temperature controllers(T45C)in the RD column.

    In addition,note that the temperature difference(ΔT)between the condenser of the HP column and the base of the RD column is quite large(413.6–370.9=42.7 K)and the reboiler heat input of the RD column,Qr=5.57 MW,is lowerthan the condenserheatremovalofthe HP column,Qc=5.95 MW.Therefore,the overhead vaporin the HPcolumn can be used as the heat source of the reboiler of the RD column,and the excess heat in the condenser in the HP column is removed by an auxiliary condenser.Here,assuming that the heat-transfer area of the condenser/reboiler is 229.8 m2and the overall heat-transfer coefficientUis 0.002045 GJ·(h·m2·K)-1,the heat duty of the auxiliary condenser,0.38 MW,can be determined.In this way,the temperature on the 5th tray in the RD column is controlled by manipulating the reflux.The set point of this T5temperature controller is 339.2 K.Supposing there is a 1 min time delay in the temperature measurement,close loop relay-feedback testing and Tyreus–Luyben tuning yields the tuning parameters(Kc=28.08,τ=7.92 min).And the auxiliary condenser duty can be manipulated to control the operating pressure of the HP column.Implementing this structure in Aspen Dynamics requires“ flowsheet equations”as shown in Fig.8.Fig.9(a)gives the plantwide control structure(CS1)and their set points are displayed in Fig.9(b).

    Fig.6.Temperature and liquid composition pro file in(a)the RD column and(b)the HP column.

    Table 6Conventional PI controller parameter

    Fig.7.Sensitive analysis of the RD column.

    4.3.Closed-loop simulation results of CS1

    The control performance is tested for feed flow disturbance.Fig.10 gives dynamic response for the control structure under-10%PC feed flow rate disturbance.It is found the control structure performs nicely in holding high purity of DMC product and conversion of the PC.However,when+10%PC feed flow disturbance is introduced at 2 h,the conversion of PC decreases sharply and the system goes wrong after running 4.5 h.

    Usually when the feed rate is increased,the reboiler heat duty should increase.In this control system,however,increasing PC feed flow rate produces an immediate decrease in the distillate from the RD column as expected.The temperature on the 40th tray in the HP column willincrease as the feed is decreased(as shown in Fig.11).Because the temperature on the 40th tray is controlled by the reboilerheatinput and the temperature controller is “reverse acting”,an increase in temperature should cause the controller to decrease the required heat duty of the reboiler.Since the heat duty of the condenser/reboiler depends on the product of ΔT,the heat transfer area,and the overall heat-transfer coefficient,decreasing the reboiler heat input in the HP column should produce a decrease in operating pressure in the HP column and thus overhead temperature,which in turn leads to a reduction in reboiler heatduty in the RDcolumn.Therefore,the interaction among these factors makes the system gradually deviate from the normal operating state.So an improved control strategy is required to provide a correct adjustment in reboiler heat input.

    Fig.9.(a)Control strategy(CS1)for partially heat-integrated process.(b)Controller faceplates.

    4.4.Improved control structure

    Fig.12(a)displays the improved controlstructure CS2.Itonly differs from the CS1 structure in the following aspects:(1)the reflux flow rate in the RD column is controlled byR/Dratio;(2)the temperature on the 5th tray in the RD column is controlled by manipulating the reboiler heatinputto the HP column;and(3)in the HP column the temperature on the 40th tray is controlled by manipulating the reflux flow rate.All the controllers are retuned and tuning parameters are presented in Table 7.

    Fig.12.(a)Control strategy(CS2)for partially heat-integrated process.(b)Controller faceplates.

    Table 7Controller tuning parameters for control structure CS1 and CS2

    Fig.13 gives dynamic responses for the control structure under±10%PC feed flow rate disturbances,whilefig.14 for±10%PC feed composition disturbances.The solid blue line demonstrates the response for negative step changes,while the dashed red line shows the response for positive step changes.Both the disturbances are introduced at2 h.Itis observed that CS2 can adjustthe MeOH feed to accommodate PC changes,as was desired.Except for T5in the RD column which shows a small deviation from its base case value,both T45in the RD column and T40in the HP column returned to their set point values.The responses of PC conversion show asymmetric behavior for positive and negative PC feed composition disturbances but meet the design requirement.In addition,both DMC product composition in the HP column and MeOH composition in the bottom of the RD column also meet their corresponding specifications.The above results demonstrate that the proposed temperature controls can maintain product quality and provide a robust operation.

    5.Conclusions

    Dimethyl carbonate is an environmentally benign and biodegradable chemical.A novel process including a RD column with an excess of reactant MeOH and a high-pressure distillation column is used to obtain high PC reaction conversion and high purity dimethyl carbonate product.The optimal process is determined by minimizing the total TAC.To estimate the flow rate and composition of the recycle stream in a pressure-swing distillation system,a simple and effective method is proposed and adopted in the process optimization.The optimization results show that the feed molar ratio of MeOH to PC is 2.61:1 and close to stoichiometric ratio in the transesterification reaction,and the modification process can save energy consumption by 18.6%with the propylene carbonate conversion of 99.9%.

    Dynamic simulation results illustrate that the temperature/ flow rate cascade control plus with simple temperature control can keep not only productpurity butalso conversion ofthe reactantattheirdesired values in the face of the disturbances in reactant feed flow and feed composition.

    Fig.13.Dynamic responses under±10%PC feed flow rate disturbances.

    Fig.14.Dynamic responses under±10%PC composition disturbances.

    [1]S.J.Wang,C.C.Yu,H.P.Huang,Plant-wide design and control of DMC synthesis process via reactive distillation and thermally coupled extractive distillation,Comput.Chem.Eng.34(2010)361–373.

    [2]T.J.Bruno,A.Wolk,A.Naydich,M.L.Huber,Composition-explicit distillation curves for mixtures of diesel fuel with dimethyl carbonate and diethyl carbonate,Energy Fuel23(2009)3989–3997.

    [3]B.Yang,D.Wang,H.Y.Lin,J.Sun,X.P.Wang,Synthesis of dimethyl carbonate from urea and methanol catalyzed by the metallic compounds at atmospheric pressure,Catal.Commun.7(2006)472–477.

    [4]P.Kumar,V.Srivastava,I.Mishra,Dimethyl carbonate synthesis from propylene carbonate with methanol using Cu–Zn–Al catalyst,Energy Fuel29(2015)2664–2675.

    [5]H.Matsuda,H.Takahara,S.Fujino,et al.,Selection of entrainers for the separation of the binary azeotropic system methanol+dimethyl carbonate by extractive distillation,Fluid Phase Equilib.310(2011)166–181.

    [6]Y.Fang,W.Xiao,Experimental and modeling studies on a homogeneous reactive distillation system for dimethyl carbonate synthesis by transesterification,Sep.Purif.Technol.34(2004)255–263.

    [7]K.Y.Hsu,Y.C.Hsiao,I.L.Chien,Design and control of dimethyl carbonate–methanol separation via extractive distillation in the dimethyl carbonate reactive distillation process,Ind.Eng.Chem.Res.49(2010)735–749.

    [8]W.Fan,X.Wang,W.Li,W.Xiao,Adsorption separation of dimethyl carbonate and methanol azeotrope,Chem.Eng.38(2010)10–13.

    [9]X.Li,Y.Lian,Z.Zhang,Q.Jia,Separation of dimethylcarbonate–methanol mixture by extractive distillation,Chem.Eng.40(2012)14–25.

    [10]M.A.Pacheco,C.L.Marshall,Review of dimethyl carbonate manufacture and its characteristics as a fuel additive,Energy Fuel11(1997)2–29.

    [11]J.U.Repke,F.Forner,A.Klein,Separation of homogeneous azeotropic mixtures by pressure swing distillation,Chem.Eng.Technol.28(2005)1151–1157.

    [12]H.M.Wei,F.Wang,J.L.Zhang,et al.,Design and control of dimethyl carbonate–methanol separation via pressure-swing distillation,Ind.Eng.Chem.Res.52(2013)11463–11478.

    [13]W.Won,X.Feng,L.Darren,Separation of dimethyl carbonate/methanol/water mixtures by pervaporation using crosslinked chitosan membranes,Sep.Purif.Technol.31(2003)129–140.

    [14]W.Won,X.Feng,L.Darren,Pervaporation with chitosan membranes:Separation of dimethyl carbonate/methanol/water mixtures,J.Membr.Sci.29(2002)493–508.

    [15]J.U.Repke,A.Klein,D.Bogle,G.Wozny,Pressure swing batch distillation for homogeneous azeotropic separation,Chem.Eng.Res.Des.85(2007)492–501.

    [16]G.Modla,P.Lang,Feasibility of new pressure swing batch distillation methods,Chem.Eng.Sci.63(2008)2856–2874.

    [17]P.Varbanov,A.Klein,J.U.Repke,G.Wozny,Minimising the startup duration for mass-and heat-integrated two-column distillation systems:a conceptual approach,Chem.Eng.Prog.47(2008)24–56.

    [18]W.L.Luyben,Design and control of a fully heat-integrated pressure-swing azeotropic distillation system,Ind.Eng.Chem.Res.47(2008)2681–2695.

    [19]W.L.Luyben,Pressure-swing distillation for minimum-and maximum-boiling homogeneous azeotropes,Ind.Eng.Chem.Res.51(2012)10881–10886.

    [20]C.Li,X.Zhang,S.Zhang,Q.Xu,Vapor–liquid equilibria and process simulation for separation of dimethyl carbonate and methanol azeotropic system,Chin.J.Process.Eng.3(2003)453–458.

    [21]Z.X.Huang,J.L.Li,L.Y.Wang,et al.,Novel procedure for the synthesis of dimethyl carbonate by reactive distillation,Ind.Eng.Chem.Res.7(2014)3321–3328.

    [22]S.Zhang,Y.Luo,Studies on the kinetics and technological conditions ofthe synthesis of dimethyl carbonate,Chem.React.Eng.Technol.1(1991)10–19.

    [23]J.Holtbruegge,M.Leimbrink,P.Lutze,A.Górak,Synthesis of dimethyl carbonate and propylene glycol by transesterification of propylene carbonate with methanol:catalyst screening,chemical equilibrium and reaction kinetics,Chem.Eng.Sci.104(2013)347–360.

    [24]Y.Shi,H.Liu,K.Wang,et al.,Measurements of isothermal vapor–liquid equilibrium of binary methanol/dimethyl carbonate system under pressure,Fluid Phase Equilib.23(2005)1–10.

    [25]H.Luo,J.Zhou,W.Xiao,K.Zhu,Isobaric vapor–liquid equilibria of alkyl carbonates with alcohols,Fluid Phase Equilib.175(2000)91–105.

    [26]W.L.Luyben,Comparison of pressure swing and extractive distillation methods for methanol recovery systems in the TAME reactive distillation process,Ind.Eng.Chem.Res.44(2005)5715–5725.

    [27]W.L.Luyben,Principles and Case Studies of Simultaneous Design,Wiley&Sons Inc.,New Jersey,2011.

    [28]W.L.Luyben,Design and control of the ethyl benzene process,AIChE J.57(2011)655–670.

    亚洲av二区三区四区| 寂寞人妻少妇视频99o| 成年免费大片在线观看| 久久ye,这里只有精品| 97人妻精品一区二区三区麻豆| 人人妻人人澡人人爽人人夜夜| av专区在线播放| 直男gayav资源| 久久精品久久精品一区二区三区| 七月丁香在线播放| 日韩av在线免费看完整版不卡| 大香蕉久久网| 免费人成在线观看视频色| 熟女人妻精品中文字幕| 久久韩国三级中文字幕| 99久久精品热视频| 亚洲精品乱码久久久久久按摩| 在线天堂最新版资源| 国产精品不卡视频一区二区| 国产成人a区在线观看| 亚洲精品乱码久久久v下载方式| 99热这里只有精品一区| 最近的中文字幕免费完整| 日韩av免费高清视频| 国产精品av视频在线免费观看| 国产黄片美女视频| av在线老鸭窝| 亚洲精品乱码久久久v下载方式| 欧美xxxx性猛交bbbb| 一个人观看的视频www高清免费观看| 国产国拍精品亚洲av在线观看| 国产一区二区三区av在线| 午夜福利在线观看免费完整高清在| 色5月婷婷丁香| 亚洲人成网站高清观看| 亚洲精品成人av观看孕妇| 日韩免费高清中文字幕av| 久久人人爽av亚洲精品天堂 | 中文字幕制服av| 香蕉精品网在线| 成年人午夜在线观看视频| 最近中文字幕高清免费大全6| 2018国产大陆天天弄谢| 男女下面进入的视频免费午夜| 国产乱人视频| 成人毛片60女人毛片免费| 尾随美女入室| 成人美女网站在线观看视频| 又爽又黄无遮挡网站| 亚洲综合精品二区| 青青草视频在线视频观看| 亚洲欧美成人综合另类久久久| 日产精品乱码卡一卡2卡三| 成人毛片a级毛片在线播放| av天堂中文字幕网| 色综合色国产| 岛国毛片在线播放| 国产精品一区二区三区四区免费观看| 三级男女做爰猛烈吃奶摸视频| 大香蕉久久网| 欧美激情久久久久久爽电影| 欧美日本视频| 一个人看视频在线观看www免费| 国产精品99久久久久久久久| 美女被艹到高潮喷水动态| 伊人久久国产一区二区| 精品人妻熟女av久视频| 一二三四中文在线观看免费高清| 国产欧美另类精品又又久久亚洲欧美| 日韩一本色道免费dvd| 欧美亚洲 丝袜 人妻 在线| 亚洲成人精品中文字幕电影| 一级毛片 在线播放| 最近最新中文字幕免费大全7| 精品一区二区免费观看| 日韩不卡一区二区三区视频在线| www.色视频.com| 日本与韩国留学比较| 久久国产乱子免费精品| 又粗又硬又长又爽又黄的视频| 高清av免费在线| 高清日韩中文字幕在线| 久久国产乱子免费精品| 97超视频在线观看视频| 狂野欧美激情性xxxx在线观看| 最近最新中文字幕免费大全7| 26uuu在线亚洲综合色| 久久久久久九九精品二区国产| 免费大片黄手机在线观看| 亚洲国产日韩一区二区| 国产一区二区三区综合在线观看 | 一区二区三区乱码不卡18| 国精品久久久久久国模美| 女人十人毛片免费观看3o分钟| 深爱激情五月婷婷| 在线观看三级黄色| 国产男人的电影天堂91| 午夜免费鲁丝| 乱系列少妇在线播放| 丝瓜视频免费看黄片| 免费av观看视频| 最近最新中文字幕大全电影3| 各种免费的搞黄视频| 国产成人一区二区在线| 精品久久久久久久末码| 麻豆久久精品国产亚洲av| 特大巨黑吊av在线直播| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲成人一二三区av| 一级a做视频免费观看| 看免费成人av毛片| 下体分泌物呈黄色| 日本wwww免费看| 国产一区二区三区综合在线观看 | 听说在线观看完整版免费高清| 91久久精品电影网| 国产黄片美女视频| 亚洲国产日韩一区二区| 人妻一区二区av| 国产色婷婷99| 又爽又黄a免费视频| 高清毛片免费看| 欧美 日韩 精品 国产| 在线免费十八禁| 毛片女人毛片| 99久国产av精品国产电影| 欧美激情在线99| 欧美一区二区亚洲| 一级a做视频免费观看| 大码成人一级视频| 一本色道久久久久久精品综合| 国内揄拍国产精品人妻在线| 亚洲熟女精品中文字幕| 久久精品久久久久久噜噜老黄| av免费观看日本| 成人黄色视频免费在线看| 哪个播放器可以免费观看大片| 欧美日韩精品成人综合77777| 国内揄拍国产精品人妻在线| 高清日韩中文字幕在线| 国产精品国产三级国产av玫瑰| 高清av免费在线| 国国产精品蜜臀av免费| 在线观看美女被高潮喷水网站| 男男h啪啪无遮挡| 亚洲,一卡二卡三卡| 婷婷色麻豆天堂久久| 亚洲欧美精品专区久久| 午夜福利视频精品| 一边亲一边摸免费视频| 大香蕉久久网| 永久免费av网站大全| 欧美成人精品欧美一级黄| 午夜激情久久久久久久| 精品国产一区二区三区久久久樱花 | 秋霞伦理黄片| 少妇人妻精品综合一区二区| 一本色道久久久久久精品综合| 美女脱内裤让男人舔精品视频| 国产成人精品一,二区| 一本久久精品| 国产成人精品婷婷| freevideosex欧美| 色5月婷婷丁香| 国产乱来视频区| 免费观看无遮挡的男女| 最新中文字幕久久久久| 免费看光身美女| 男人狂女人下面高潮的视频| 久久人人爽av亚洲精品天堂 | 亚洲av中文字字幕乱码综合| 国产精品久久久久久精品电影| 免费看日本二区| 亚洲精品日韩av片在线观看| 人妻少妇偷人精品九色| 亚洲精品久久久久久婷婷小说| 在现免费观看毛片| videossex国产| 国产精品秋霞免费鲁丝片| 色哟哟·www| 国产成人精品婷婷| 国产成年人精品一区二区| 国产精品女同一区二区软件| 在线观看一区二区三区| 亚洲精品亚洲一区二区| 色吧在线观看| 亚洲av一区综合| 久久97久久精品| 王馨瑶露胸无遮挡在线观看| 亚洲国产色片| 少妇 在线观看| 美女视频免费永久观看网站| 免费看不卡的av| 欧美变态另类bdsm刘玥| 国产av码专区亚洲av| 99久久九九国产精品国产免费| 搞女人的毛片| 国产精品不卡视频一区二区| 国产色爽女视频免费观看| 不卡视频在线观看欧美| 深夜a级毛片| 国产综合精华液| 国产淫片久久久久久久久| 精品久久久噜噜| 人妻制服诱惑在线中文字幕| 国产黄色免费在线视频| 99热国产这里只有精品6| 国产精品av视频在线免费观看| 免费电影在线观看免费观看| 成人特级av手机在线观看| 一级毛片电影观看| 国产高清有码在线观看视频| 欧美性感艳星| 亚洲成人av在线免费| 制服丝袜香蕉在线| 免费观看av网站的网址| 中文资源天堂在线| 夫妻性生交免费视频一级片| 国产黄色免费在线视频| 免费不卡的大黄色大毛片视频在线观看| 国产视频首页在线观看| 天天躁日日操中文字幕| 97精品久久久久久久久久精品| 久久精品国产鲁丝片午夜精品| 国产毛片在线视频| 大话2 男鬼变身卡| 久久精品久久久久久噜噜老黄| 亚洲精品国产成人久久av| 我要看日韩黄色一级片| 国模一区二区三区四区视频| 熟女av电影| 国产伦精品一区二区三区视频9| 久久国内精品自在自线图片| 天堂网av新在线| 寂寞人妻少妇视频99o| 嫩草影院精品99| 国产 精品1| 亚洲人成网站在线观看播放| 亚洲伊人久久精品综合| 韩国高清视频一区二区三区| 午夜福利在线观看免费完整高清在| 一级二级三级毛片免费看| 久久精品国产亚洲av天美| 欧美精品人与动牲交sv欧美| 亚洲婷婷狠狠爱综合网| 尾随美女入室| 国产av不卡久久| 久久99热6这里只有精品| av天堂中文字幕网| 黄色怎么调成土黄色| 亚洲人成网站高清观看| 99精国产麻豆久久婷婷| 亚洲成色77777| 精品亚洲乱码少妇综合久久| 五月开心婷婷网| 中文天堂在线官网| 3wmmmm亚洲av在线观看| 69av精品久久久久久| 国产精品蜜桃在线观看| 熟女av电影| 午夜福利网站1000一区二区三区| 在线观看三级黄色| 美女内射精品一级片tv| 伊人久久国产一区二区| 天天一区二区日本电影三级| 国产一区二区三区av在线| 国产成人精品婷婷| 国产精品一区www在线观看| 青春草视频在线免费观看| 老司机影院毛片| 精品国产露脸久久av麻豆| 一区二区av电影网| 在线观看美女被高潮喷水网站| 简卡轻食公司| 成人午夜精彩视频在线观看| 在线看a的网站| 久久久久精品久久久久真实原创| a级毛片免费高清观看在线播放| 一级黄片播放器| 亚洲精品一二三| 亚洲欧美精品专区久久| 亚洲最大成人av| 18禁裸乳无遮挡动漫免费视频 | 看十八女毛片水多多多| 亚洲欧美精品专区久久| 噜噜噜噜噜久久久久久91| 国产色婷婷99| 欧美xxⅹ黑人| 日韩三级伦理在线观看| 丰满少妇做爰视频| 亚洲精品一区蜜桃| 十八禁网站网址无遮挡 | 亚洲av在线观看美女高潮| 亚洲av中文av极速乱| 婷婷色综合www| 伊人久久精品亚洲午夜| 亚洲最大成人av| 精品久久久噜噜| 国产精品av视频在线免费观看| 国产亚洲一区二区精品| 久久久午夜欧美精品| 99久国产av精品国产电影| 国产精品.久久久| 亚洲最大成人av| 欧美一级a爱片免费观看看| 又大又黄又爽视频免费| 三级国产精品片| 制服丝袜香蕉在线| 免费观看的影片在线观看| 三级经典国产精品| 一区二区三区四区激情视频| 中文资源天堂在线| 久久久久久伊人网av| 亚洲av免费高清在线观看| 成人美女网站在线观看视频| 新久久久久国产一级毛片| 免费看av在线观看网站| 日韩一区二区三区影片| 人妻少妇偷人精品九色| 春色校园在线视频观看| 狂野欧美激情性xxxx在线观看| 18禁在线播放成人免费| 久久久久久久精品精品| 69av精品久久久久久| videossex国产| 乱系列少妇在线播放| 国产精品久久久久久久久免| 久久久久久久亚洲中文字幕| 麻豆成人av视频| 免费看日本二区| 久久久久久久久久人人人人人人| 五月玫瑰六月丁香| 国产69精品久久久久777片| 大陆偷拍与自拍| 精品久久久久久久人妻蜜臀av| 蜜臀久久99精品久久宅男| 日韩免费高清中文字幕av| 成人亚洲精品一区在线观看 | 亚洲综合色惰| 国产在线一区二区三区精| 美女主播在线视频| 中文字幕免费在线视频6| 亚洲精品日韩在线中文字幕| 亚洲欧美日韩另类电影网站 | 国产亚洲5aaaaa淫片| 美女cb高潮喷水在线观看| 欧美最新免费一区二区三区| 午夜老司机福利剧场| 成人亚洲精品一区在线观看 | 毛片女人毛片| 免费观看在线日韩| 热99国产精品久久久久久7| 国产精品一区二区在线观看99| 天美传媒精品一区二区| 国产欧美亚洲国产| 国精品久久久久久国模美| 久久精品国产亚洲av涩爱| 激情 狠狠 欧美| 波多野结衣巨乳人妻| 大片电影免费在线观看免费| 亚洲三级黄色毛片| 日本猛色少妇xxxxx猛交久久| 国产成人精品一,二区| 免费不卡的大黄色大毛片视频在线观看| 别揉我奶头 嗯啊视频| 又大又黄又爽视频免费| 精品亚洲乱码少妇综合久久| 亚洲一级一片aⅴ在线观看| 国产在线一区二区三区精| 久久99热这里只有精品18| 精品99又大又爽又粗少妇毛片| 亚洲精品日韩av片在线观看| 亚洲人成网站在线播| 男女下面进入的视频免费午夜| 如何舔出高潮| 免费播放大片免费观看视频在线观看| 亚洲精品乱码久久久v下载方式| 26uuu在线亚洲综合色| 精品99又大又爽又粗少妇毛片| 99热国产这里只有精品6| 亚洲人成网站在线播| 国内揄拍国产精品人妻在线| 亚洲国产精品国产精品| 日韩三级伦理在线观看| 午夜免费观看性视频| 久久精品综合一区二区三区| 亚洲国产精品999| 国产精品精品国产色婷婷| 午夜免费男女啪啪视频观看| 听说在线观看完整版免费高清| 色5月婷婷丁香| 少妇裸体淫交视频免费看高清| 99re6热这里在线精品视频| 嫩草影院新地址| 高清视频免费观看一区二区| 一区二区三区四区激情视频| 国产男女超爽视频在线观看| 免费观看的影片在线观看| 亚洲av日韩在线播放| 国产精品嫩草影院av在线观看| 你懂的网址亚洲精品在线观看| 18禁裸乳无遮挡免费网站照片| 免费观看在线日韩| 精品久久久久久久久av| 久久久国产一区二区| 黄色欧美视频在线观看| 97在线视频观看| 久久久欧美国产精品| 久久久精品欧美日韩精品| 欧美+日韩+精品| 久久久久久久精品精品| 国产黄片美女视频| 99久久精品国产国产毛片| 欧美三级亚洲精品| 亚洲国产精品成人久久小说| 国产极品天堂在线| 亚洲欧洲日产国产| 亚洲欧美成人精品一区二区| 亚洲精品久久午夜乱码| 国产男女超爽视频在线观看| 五月天丁香电影| 午夜福利网站1000一区二区三区| 免费在线观看成人毛片| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久精品古装| 日本色播在线视频| 亚洲人成网站在线播| 国产精品久久久久久精品电影| 国产一区有黄有色的免费视频| av在线观看视频网站免费| 91精品国产九色| 在线观看一区二区三区| 国产高清三级在线| 日本猛色少妇xxxxx猛交久久| kizo精华| 91久久精品国产一区二区成人| 五月开心婷婷网| 插阴视频在线观看视频| 亚洲欧美精品自产自拍| 51国产日韩欧美| 自拍偷自拍亚洲精品老妇| 亚洲av不卡在线观看| 五月伊人婷婷丁香| 成年免费大片在线观看| 十八禁网站网址无遮挡 | 美女内射精品一级片tv| 亚洲在线观看片| 精华霜和精华液先用哪个| 秋霞在线观看毛片| 你懂的网址亚洲精品在线观看| 偷拍熟女少妇极品色| 久久精品夜色国产| 99久久精品一区二区三区| 国产精品久久久久久精品电影| 久久久久久久久久久丰满| 亚洲熟女精品中文字幕| 久久精品夜色国产| 91午夜精品亚洲一区二区三区| 日本欧美国产在线视频| 国产精品久久久久久久电影| 一二三四中文在线观看免费高清| 日韩在线高清观看一区二区三区| 国产男人的电影天堂91| 高清在线视频一区二区三区| 欧美日韩精品成人综合77777| 99热这里只有是精品在线观看| 国产乱人视频| 2021少妇久久久久久久久久久| 欧美日韩综合久久久久久| 亚洲,一卡二卡三卡| 国产伦在线观看视频一区| 一级a做视频免费观看| 免费少妇av软件| 搡女人真爽免费视频火全软件| 中文字幕亚洲精品专区| 国产精品成人在线| 在线免费观看不下载黄p国产| 亚洲av欧美aⅴ国产| 高清欧美精品videossex| 国产av码专区亚洲av| 一区二区三区四区激情视频| 在线精品无人区一区二区三 | 欧美另类一区| 成人一区二区视频在线观看| 亚洲av福利一区| 国产亚洲av片在线观看秒播厂| 精品久久久久久电影网| 女的被弄到高潮叫床怎么办| 久久99精品国语久久久| 少妇人妻精品综合一区二区| 日韩一本色道免费dvd| 亚洲欧美中文字幕日韩二区| 日本黄大片高清| 春色校园在线视频观看| 国产熟女欧美一区二区| 18禁裸乳无遮挡免费网站照片| 国产高清不卡午夜福利| 六月丁香七月| av天堂中文字幕网| av国产久精品久网站免费入址| 国产黄片美女视频| 六月丁香七月| 老司机影院毛片| 丰满少妇做爰视频| 国产熟女欧美一区二区| 亚洲综合精品二区| 日本免费在线观看一区| 丰满少妇做爰视频| 国产有黄有色有爽视频| 最后的刺客免费高清国语| 九九在线视频观看精品| 男男h啪啪无遮挡| 国产精品.久久久| 性插视频无遮挡在线免费观看| 大香蕉久久网| 欧美xxxx黑人xx丫x性爽| 欧美三级亚洲精品| 国产片特级美女逼逼视频| 欧美xxⅹ黑人| 国产老妇伦熟女老妇高清| 日韩欧美 国产精品| 精品一区二区三区视频在线| 日本免费在线观看一区| 男人和女人高潮做爰伦理| 美女脱内裤让男人舔精品视频| 午夜免费鲁丝| 91精品一卡2卡3卡4卡| 久久综合国产亚洲精品| 搞女人的毛片| 国产av国产精品国产| 成人高潮视频无遮挡免费网站| 成人漫画全彩无遮挡| 久久亚洲国产成人精品v| 亚洲精品国产成人久久av| 看黄色毛片网站| 成人特级av手机在线观看| 99久久精品一区二区三区| 国产黄a三级三级三级人| 国产精品麻豆人妻色哟哟久久| 亚洲一级一片aⅴ在线观看| 丝袜喷水一区| 国产成人91sexporn| av黄色大香蕉| 免费电影在线观看免费观看| 亚洲天堂国产精品一区在线| www.色视频.com| 亚洲图色成人| 草草在线视频免费看| av在线app专区| 久久久久久伊人网av| 亚洲图色成人| 亚洲综合色惰| tube8黄色片| 免费电影在线观看免费观看| 亚洲人成网站高清观看| 国产亚洲91精品色在线| 国产伦精品一区二区三区四那| 激情 狠狠 欧美| 欧美激情久久久久久爽电影| 精品国产三级普通话版| 亚洲国产色片| 久久久午夜欧美精品| 国产中年淑女户外野战色| 亚洲高清免费不卡视频| 国产精品国产三级国产av玫瑰| 欧美极品一区二区三区四区| 一本色道久久久久久精品综合| 久久这里有精品视频免费| 有码 亚洲区| 一级毛片aaaaaa免费看小| 校园人妻丝袜中文字幕| 国产老妇女一区| 99久国产av精品国产电影| freevideosex欧美| 日本黄色片子视频| 中文欧美无线码| 麻豆乱淫一区二区| 精品视频人人做人人爽| 国产精品人妻久久久影院| 大又大粗又爽又黄少妇毛片口| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美另类一区| 国产日韩欧美在线精品| 亚洲一级一片aⅴ在线观看| 大又大粗又爽又黄少妇毛片口| 精品一区在线观看国产| 国产成人a区在线观看| 777米奇影视久久| 18+在线观看网站| 久久97久久精品| 水蜜桃什么品种好| 免费高清在线观看视频在线观看| 欧美日韩亚洲高清精品| 99久久精品热视频| 国产成人a区在线观看| 中国国产av一级| 网址你懂的国产日韩在线| videossex国产| 91久久精品电影网| 男人狂女人下面高潮的视频| av免费观看日本| 久久精品国产亚洲网站| 黄片无遮挡物在线观看| 乱码一卡2卡4卡精品| 97超视频在线观看视频| av黄色大香蕉| 高清日韩中文字幕在线| 亚洲丝袜综合中文字幕| 久久久久久久精品精品| 你懂的网址亚洲精品在线观看| 精品一区二区三区视频在线| 精品熟女少妇av免费看| 麻豆乱淫一区二区| 精品一区二区免费观看| 国产大屁股一区二区在线视频|