• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance of CO2 absorption in a diameter-varying spray tower☆

    2017-05-29 10:48:18XiaomeiWuYunsongYuZhenQinZaoxiaoZhang

    Xiaomei Wu ,Yunsong Yu ,Zhen Qin ,Zaoxiao Zhang ,*

    1 School of Chemical Engineering and Technology,Xi'an Jiaotong University,Xi'an 710049,China

    2 State Key Laboratory of Multiphaseflow in Power Engineering,Xi'an Jiaotong University,Xi'an 710049,China

    1.Introduction

    Global warming and the greenhouse effect have become a huge challenge for the sustainable development of the world[1–3].It is well known that CO2is the major greenhouse gas that contributes to global warming more than 60%,resulting in the necessity to reduce the CO2emission[4,5].Currently,post-combustion CO2capture is a promising choice in the near-to middle-term,since it can be retro fitted to the existing power plants compared to the other approaches[6,7].Among allthe technologies,chemicalabsorption is generally recognized as the most mature technology for industrial application,and monoethanolamine(MEA)is the most widely used absorbent[8,9].

    Conventional MEA absorption process suffers from high energy consumption due to its immense steam consumption in the regeneration process,leading to the extremely high operating cost[3].In order to reduce the cost,apart from choosing good absorbent,it is very important to select effective reactors and proper operating conditions.The application of a spray tower instead of a packed reactor for CO2capture is a relatively recent development.Javedet al.[10]studied the low-concentration CO2spray absorption with NaOH aqueous solution and the experimental results drew a conclusion that the existing of nozzle has greatly improved the mass transfer performance.Kuntzet al.[11,12]compared the mass transfer efficiency of spray towers with packed columns for CO2absorption into MEA solvent and declared thatthe spray tower was capable ofremoving CO2from gas mixture ata higher rate than that of the packed column.Niuet al.[13,14]conducted an experiment for CO2absorption into MEA solution in a spray tower.The experimental results showed that the mole ratio of MEA to CO2was the main factor for absorption performance,and the spray tower can achieve more than 95%CO2removalrate,which verify the feasibility of the spray tower used in CO2capture.Zenget al.[15]studied the absorption of CO2into aqueous ammonia,and found that the performance of spray towers varies with the operating parameters.The overall mass transfer coefficient was measured to provide reference data for the future industrial design.Limet al.[16]studied the relationships between the capture efficiency and the operating parameters and also reported the optimum tower diameter for a given spray nozzle.However,most of the previous experiments were conducted in a cylindrical tower by using a single spray nozzle,whose con figuration differs from that used in actual industry,making the results of these studies far from application.

    This paperfocuses on the enhancementofCO2absorption process by using an improved diameter-varying spray tower.As mentioned in literature,absorption in spray tower mainly occurred in the nozzle exit,hence increasing the space of nozzle exit is a feasible way to improve the absorption performance.The reaction sections of the proposed spray towerare composed oftwo parts:the cylindricalsection and the conical section.The existence of the conical section would increase the effective contacting area and gas–liquid contacting time,which will benefit the absorption performance.A new spray mode of dual-nozzle opposed impinging spray was also proposed to replace the single nozzle spray method,aiming to enhance heat and mass transfer performance.When droplets from two opposite spray nozzles impinge and exchange momentum in the center of the tower,the droplets breakup into smaller size which would cause a rapid increase of interfacial area leading to better heat and mass transfer performance.Experiments were carried out in the spray tower under a wide range of operating conditions to investigate the effects of various operating parameters,including CO2inlet concentration,total gas flow rate,liquid flow rate,MEA concentration,liquid to gas ratio and mole ratio of MEA to CO2on absorption performance.The performance of the proposed spray towerwas evaluated in terms ofthe CO2removalrate and the overall mass transfer coefficient.Additionally,empirical correlations for the mass transfer coefficient of the proposed diameter-varying spray tower absorption system were developed to predict the experimental results.

    2.Experimental Method

    2.1.System description

    The CO2absorption experimental setup is shown in Fig.1(a).It mainly comprises the spray tower,the absorbent distribution system,the flue gas distribution system and the gas analyzing system.The diameter-varying spray tower is uniquely fabricated with two spray nozzles locating on the opposite side and at the upper part.Fig.1(a)only shows one side ofthe gas and liquid inlets for clearprocess description.The detailed structure of the diameter-varying spray tower is shown in Fig.1(b).During the experiment,aqueous MEA solution is pumped through the spray nozzles(0.5 mm orifice diameter,60 deg.spray angle)to form droplets,then droplets from two opposite spray nozzles impinge and exchange momentum in the center of the tower.The droplets would breakup into smaller size,then contact with the gas mixture entered from the bottom of the tower.MEA solution is piped to the spray nozzles using a plunger metering pump(0.8–1.0 MPa),and the flow rate is measured with a calibrated rotameter.CO2and N2are mixed to certain concentrations(8 vol%,12 vol%,16 vol%or 18 vol%)before entering the absorber to act as the flue gas.The flow rate of gas mixture is controlled by a mass flow controller,and the gas mixture is fed through a gas mixing tank to ensure a uniform distribution of species in the gas.Then the gas is introduced into the tower from two bottom inlets and reacts with MEA solution.After absorption,the vent gas from the top of the absorber is dried throw a drying tower with anhydrous silica gel.Then the CO2concentration in the gas mixture is continuously measured atboth gas inlets and gas outlets,using an infrared gas analyzer(model IRME-S,Xi'an Weichuang Instrument Inc.).The reading range of the analyzer is 0–20.0%of CO2by volume with the accuracy of 0.1%of the full-scale reading.Experiments are repeated to validate the reproducibility of the results.

    2.2.Experimental conditions

    The geometry of the diameter-varying dual-nozzle opposed impinging spray tower and the operating parameters in experiments are listed in Table 1.

    Table 1Geometry and operating parameters of the proposed spray tower

    2.3.Mass transfer model

    The CO2removal rate and the overall mass transfer coefficient are chosen to evaluate the absorption performance of the improved spray tower.

    Fig.1.The schematic of experimental setup of CO2 absorption by aqueous MEA in the diameter-varying dual-nozzle opposed impinging spray tower(a),the geometry of proposed spray tower(b).(1.N2 cylinder;2.CO2 cylinder;3.Gas mixing tank;4,8,12.Pressure gauge;5,13.Gas flowmeter;6.dual-nozzle opposed impinging spray tower;7.Liquid receiver;9.Liquid flow meter;10.Pump;11.Feed receiver;14.Drying tower;15.CO2 analyzer;16.Computer.)

    2.3.1.The CO2 removal rate

    The removal rate(η)defines the percentage of CO2in the gas stream that is removed during absorption process,and it is simply determined by the difference between the amounts of CO2entering and leaving the spray tower,which can be expressed by the following equation:

    Fig.2.Effect of liquid flow rate on the CO2 removal rate and the overall mass transfer coefficient.(G L=30 wt%,G=3 m3·h-1,T=20 °C,C G=8 vol%).

    2.3.2.The overall mass transfer coefficient

    The overall mass transfer coefficient(KGae)is a lumped parameter that represents the absorption performance per unit volume of reactor.It is a combination of thermodynamics,kinetics,and hydrodynamics of CO2absorption system.Thus,itis really necessary to introduce the overall mass transfer coefficient to qualify the mass transfer performance of the improved spray tower.The material balance of the spray tower can be expressed as

    whereGIis the inert gas flow rate,P(yCO2,G-y?CO2)is the mass transfer driving force of gas phase,Zis the height of the tower,andYCO2,Gis the mole ratio of CO2in gas phase.

    According to Eq.(4),the overall mass transfer coefficient can be expressed as

    where λ1,λ2are proportionality coefficient,d1is the diameter of cylindrical absorption section,andd2is the equivalent diameter of the conical absorption section.

    3.Results and Discussions

    3.1.Effect of liquid fl ow rate

    The effects ofliquid flow rate on the CO2removalrate and the overall mass transfer coefficient were investigated.As can be seen from Fig.2,the CO2removal rate and the overall mass transfer coefficient increase from 62.1%to 93.1%and 0.167 to 0.452 kmol·m-3·h-1·kPa-1respectively,as the liquid flow rate increases from 40 L·h-1to 100 L·h-1.This give rise to the number of droplets produced by the spray nozzles increases and the size of droplets becomes smaller,as the liquid flow rate increases.In this sense,the interfacial area between the gas and liquid phases increases,leading to a better mass transfer performance between MEA and CO2molecules.Besides,with the increase of liquid flow rate,the droplets flow rate increased and the boundary layer of liquid phase decreased.So the resistance for gas diffusion to the liquid phase decreased and the mass transfer performance is enhanced.As has mentioned above,both the CO2removal rate and the overall mass transfer coefficient increased with the liquid flow rate.However,the increasing tendency dropped rapidly at the higher range of liquid flow rate,this is because the reduction in droplet size by the increasing of liquid flow rate becomes insignificantand the increase ofeffective interfacial area is limited.Hence,the mass transfer performance cannot be enhanced furthermore at higher liquid flow rate.

    3.2.Effect of MEA concentration

    Fig.3 shows the pro file of the CO2removal rate and the overall mass transfer coefficient under different MEA concentrations.As shown in Fig.3,the CO2removal rate and the overall mass transfer coefficient increase from 84.2%to 94.0%and 0.312 to 0.472 kmol·m-3·h-1·kPa-1respectively,as the MEA concentration increases from 10 wt%to 40 wt%.This is attributed to the fact that the increase of the MEA concentration yields more active MEA molecules available to diffuse toward the gas–liquid surface and then react with CO2molecules,which will enlarge the reaction enhancementfactor and lead to a better mass transfer performance.Nevertheless,from the point of industrial application,the viscosity of solution increases significantly at higher MEA concentration.As for the packed tower,the increase of liquid viscosity seriously affects the distribution of absorbents on the packing,which would block the absorption process.Forthe spray tower this side effect becomes insignificant because the absence of packing.However,the increase of liquid viscosity would do harm to the droplets distribution of spray nozzles and severe corrosion would occur in the equipment(like pipes,pumps,nozzles,and tower).These side effects would block the improvement of absorption performance and increase the capital cost for the maintenance.Hence,the absorption rate and cost should be balanced when increasing the concentration of MEA.

    Fig.3.Effect of MEA concentration on the CO2 removal rate and the overall mass transfer coefficient.(L=80 L·h-1,G=3 m3·h-1,T=20 °C,C G=8 vol%).

    3.3.Effect of gas fl ow rate

    Fig.4 shows the effect of gas flow rate on the CO2removal rate and the overall mass transfer coefficient.The experimental results show that when the gas flow rate increases from 1.0 m3·h-1to 5.0 m3·h-1,the overall mass transfer coefficient increases from 0.150 to 0.574 kmol·m-3·h-1·kPa-1,however,the CO2removal rate decreases from 93.5%to 86.8%.According to the gas–liquid mass transfer theory,the mass transfer coefficient increases with the increase of gas flow rate.This is because as the total gas flow rate increases,the amount of CO2molecules available to contact and react with MEA molecules increased,which will lead to an increase of the overall mass transfer coefficient.However,the mole ratio of MEA to CO2decreases with the increasing total gas flow rate,which means that more CO2molecules will contact and react with limited MEA molecules bringing about a decrease of the CO2removal rate.Therefore,in order to keep the CO2removal rate at a higher value,it is important to maintain the mole ratio of MEA to CO2at a suitable point.

    Fig.4.Effect of gas flow rate on the CO2 removal rate and the overall mass transfer coefficient.(L=80 L·h-1,C L=30 wt%,T=20 °C,C G=8 vol%).

    3.4.Effect of CO2 concentration

    The effect of CO2concentration on the CO2removal rate and the overall mass transfer coefficient was shown in Fig.5.Experimental results show that the CO2removal rate and the overall mass transfer coefficient decrease from 92.2%to 84.0%and 0.427 to 0.292 kmol·m-3·h-1·kPa-1respectively,as the CO2concentration increases from 8 vol%to 18 vol%in a fixed 80 L·h-1liquid flow rate.In general,according to the two- film theory,the gas phase driving force and gas phase mass transfer coefficient increase with the increase of CO2concentration,which will enhance the absorption process.Whereas,the mole ratio of MEA to CO2decreased with the increasing CO2inlet concentration,which means more CO2molecules react with limited active MEA molecules and this will cause the reduction of CO2removal rate.Thus,the CO2removal rate decreased slightly with the increasing of CO2inlet concentration in the spray tower.Moreover,the gas phase driving forceP(yCO2,G-y?CO2)increased with the increase of CO2concentration,which willlead to the decrease ofthe overall mass transfer coefficient.

    3.5.Effect of liquid to gas ratio

    As have been mentioned above,the liquid to gas ratio affects the absorption performance to some extent.The effect of liquid flow rate and inlet gas flow rate discussed above can be summarized as the effect of liquid to gas ratio.As is depicted in Fig.6,the CO2removal rate and the overall mass transfer coefficient increase from 62.1%to 93.1%and 0.167 to 0.452 kmol·m-3·h-1·kPa-1respectively,as the liquid to gas ratio increases from 0.0136 to 0.0335.Due to the increase of liquid to gas ratio,the thinner boundary layer of liquid phase and larger contacting area would decrease the mass transfer resistance and accelerate the reaction process.However,under the larger values of liquid to gas ratio,the grow tendency becomes slow.

    3.6.Effect of mole ratio of MEA to C O2

    Fig.5.Effect of CO2 concentration on the CO2 removal rate and the overall mass transfer coefficient.(G L=30 wt%,G=3 m3·h-1,T=20 °C,L=80 L·h-1,C G=8 vol%).

    Fig.6.Effect of liquid to gas ratio on the CO2 removal rate and the overall mass transfer coefficient.(C L=30 wt%,T=20°C,C G=8 vol%).

    As have been mentioned above,the mole ratio of MEA to CO2also affects the absorption performance obviously.The effect of MEA concentration and CO2concentration discussed above can be summarized as the effect of mole ratio of MEA to CO2.Fig.7 shows that in a fixed liquid to gas ratio of 0.0267,the CO2removal rate and the overall mass transfer coefficient increase from 81.7%to 89.9%and 0.278 to 0.371 kmol·m-3·h-1·kPa-1respectively,as the mole ratio of MEA to CO2increases from 6.39 mol·mol-1to 25.5 mol·mol-1.At the same liquid to gas ratio,the increase of MEA to CO2mole ratio allows more active MEA molecules to contact and react with CO2molecules,causing the increase of CO2removal rate and the overall mass transfer coef ficient.It can be concluded that both the liquid to gas ratio and mole ratio of MEA to CO2are key factors,which affect the performance of CO2absorption process.

    4.Mass Transfer Correlations

    Mass transfer coefficient correlation is considered to be a very important parameter for the absorption column design,as well as for effectively operating and the prediction of experimental results.The equation ofKGaeused in this paper has been widely accepted and applied in both packed columns and spray towers[17–21].However,KGaevaries with the types of absorber,types of packing,and operating conditions.Therefore,it is necessary to develop an effective predictive correlation ofKGaefor the improved spray tower.

    4.1.Development of correlations for the improved spray tower

    Many researchers have developed correlations to predict the mass transfer performance for different packings and systems.The total resistance of absorption process consists of gas phase resistance and liquid phase resistance,which can be presented as

    The right-hand side term of the equation represents the gas and liquid film resistance,respectively.When the system is controlled by the resistance in the liquid phase,the equation can be simplified as

    Furthermore,according to Astarita[22],the enhancement factor of chemical reaction β can be expressed as

    where αeqrepresents CO2loading of solution in equilibrium withPCO2,α represents the CO2loading in solution.

    When the gas film controls the system,the equation can be simplified as

    The correlation for overall mass transfer coefficientKGaeis expressed as

    whereLrepresents liquid flow rate,Grepresents gas flow rate,bandcare the coefficients.When the liquid film controls the system,the value ofbis 0.3–0.7 and the value ofcis only 0.06–0.08.However,when the gas film controls the system,the value ofcincreases to 0.67–0.80[23].

    Based on the correlations discussed above,theKGaecan be expressed as

    The relationship can be expressed by plotting the term ofKGae/LbGcagainst the term of(αeq-α)C/PCO2.By trial and error,the optimum values ofbandcwere found to beb=0.68 andc=0.075,and the plotis shown in Fig.8.Based on linearregression analysis,the predictive correlation forKGaefor CO2absorption into aqueous MEA in the diameter-varying dual-nozzle opposed impinging spray tower is expressed as

    The predictedKGaeare in good agreement with the experimental results under varies CO2concentrations and the corresponding values ofAandBare shown in Table 2.However,this model is provided only for the purpose of predicting unknownKGaevalues based on the experimental conditions as shown in Table 1 and only for this type of spray tower.

    Fig.8.Relationship between K G a e/LbGc and(αeq-α)C/P CO2 for the diameter-varying dualnozzle opposed impinging spray tower.

    Table 2Calculated coefficient for predictive mass transfer correlation

    5.Conclusions

    A diameter-varying spray tower and a new spray mode of dualnozzle opposed impinging spray have been developed to enhance the performance of CO2absorption process.Experiments were performed to validate its mass transfer performance,in terms of the CO2removal rate(η)and the overallmass transfer coefficient(KGae).The experimental results indicate that the liquid to gas ratio and mole ratio of MEA to CO2are major factors affecting the absorption performance.Both the CO2removal rate and the overall mass transfer coefficient increase with the liquid flow rate,MEA concentration,liquid to gas ratio and mole ratio ofMEA to CO2and decrease with the inlet CO2concentration.However,with the increase of total gas flow rate,the overall mass transfer coefficient increases,but the CO2removal rate decreases.Under the experimental conditions,the maximums of η andKGaeare 94.0%and 0.574 kmol·m-3·h-1·kPa-1respectively.Furthermore,new correlations were developed to predict the overall mass transfer coefficient under different CO2concentrations for the diametervarying dual-nozzle opposed impinging spray tower absorption system in this study.The predicted results are in good agreement with the experimental results,which can be used in the tower design,effectively operating and the prediction of experimental results.

    Nomenclature

    Acoefficient

    aeeffective contacting area,m2·m-3

    Bcoefficient

    bcoefficient

    Camine concentration,kmol·m-3

    ccoefficient

    d1the diameter of cylindrical absorption section,m

    d2the equivalent diameter of the conical absorption section,m

    Ggas flow rate,m3·m-2·h-1

    GIinert gas flow rate,kmol·m-2·h-1

    HHenry's coefficient,kPa·m3·kmol-1

    KGoverall mass transfer coefficient of gas phase,kmol·m-2·h-1

    KGaevolumetric overall mass transfer coefficient,

    kmol·m-3·h-1·kPa-1

    kGgas phase mass transfer coefficient,kmol·m-2·h-1

    kL0liquid phase mass transfer coefficient,kmol·m-2·h-1

    Lliquid flow rate,m3·m-2·h-1

    Psystem pressure,kPa

    PCO2CO2partial pressure,kPa

    S1the cross-sectional area of cylindrical absorption section,m2

    S2the equivalent cross-sectional area of the conical absorption section,m2

    YCO2,GCO2mole ratio in gas phase

    Y1,Y2inlet and outlet mole ratio in gas phase

    y?CO2equilibrium mole fraction of CO2

    yCO2,GCO2mole fraction in gas phase

    y1,y2inlet and outlet mole fraction in gas phase

    Zheight of the spray tower,m

    α solution CO2loading,mol CO2·mol amine-1

    αeqCO2loading of solution in equilibrium withPCO2,mol CO2·mol amine-1

    β enhancement factor of chemical reaction

    η CO2removal rate

    λ1proportionality coefficient

    λ2proportionality coefficient

    [1]W.M.Budzianowski,Explorative analysis of advanced solvent processes for energy efficient carbon dioxide capture by gas–liquid absorption,Int.J.Greenh.Gas Control49(2016)108–120.

    [2]G.Manzolin,E.Macchi,M.Binotti,Integration of SEWGS for carbon capture in natural gas combined cycle.Part A:Thermodynamic performances,Int.J.Greenh.Gas Control5(2)(2011)200–213.

    [3]G.T.Rochelle,Amine scrubbing for CO2capture,Science25(2009)1652–1654.

    [4]X.M.Wu,Y.S.Yu,C.Y.Zhang,G.X.Wang,B.Feng,Identifying the CO2capture performance of CaCl2-supported amine adsorbent by the improved field synergy theory,Ind.Eng.Chem.Res.53(24)(2014)10225–10237.

    [5]Y.S.Yu,Y.Li,H.F.Lu,Z.X.Zhang,Synergy pinch analysis of CO2desorption process,Ind.Eng.Chem.Res.50(24)(2011)13997–14007.

    [6]B.Y.Li,Y.H.Duan,D.Luebke,Advances in CO2capture technology:A patent review,Appl.Energy102(2013)1439–1447.

    [7]M.Wang,A.S.Joel,C.Ramshaw,Process intensification forpost-combustion CO2capture with chemical absorption:A critical review,Appl.Energy158(2015)275–291.

    [8]P.Brown,B.E.Gurkan,T.A.Hatton,Enhanced gravimetric CO2capacity and viscosity for ionic liquids with cyanopyrrolide anion,AIChE J.61(7)(2015)2280–2285.

    [9]Y.S.Yu,Y.Li,H.F.Lu,Z.X.Zhang,Multi- field synergy study of CO2capture process by chemical absorption,Chem.Eng.Sci.65(10)(2010)3279–3292.

    [10]K.H.Javed,T.Mahmud,E.Purba,The CO2capture performance of a high-intensity vortex spray scrubber,Chem.Eng.J.162(2)(2010)448–456.

    [11]J.Kuntz,A.Aroonwilas,Performance of spray column for CO2capture application,Ind.Eng.Chem.Res.47(1)(2008)145–153.

    [12]J.Kuntz,A.Aroonwilas,Mass-transfer efficiency of a spray column for CO2capture by MEA,Energy Procedia1(1)(2009)205–209.

    [13]Z.Q.Niu,Y.C.Guo,W.Y.Lin,Experimental study on absorption of carbon dioxide influe gas by monoethanolaminefine spray,Proc.Chin.Soc.Electr.Eng.32(2010)41–45.

    [14]Z.Q.Niu,Y.C.Guo,W.Y.Lin,Carbon dioxide removal efficiencies by fine sprays of MEA,NaOH and aqueous ammonia solution,J.Tsinghua Univ.07(2010)1130–1134.

    [15]Z.Q.Niu,Y.C.Guo,W.Y.Lin,Comparison ofcapture efficiencies ofcarbon dioxide by fine spray of aqueous ammonia and MEA solution,Chem.J.Chin.Univ.03(2010)514–517.

    [16]Y.Lim,M.Choi,K.Han,Performance characteristics of CO2capture using aqueous ammonia in a single-nozzle spray tower,Ind.Eng.Chem.Res.52(43)(2013)15131–15137.

    [17]K.Maneeintr,R.O.Idem,P.Tontiwachwuthikul,Comparative mass transfer performance studies of CO2absorption into aqueous solutions of DEAB and MEA,Ind.Eng.Chem.Res.49(6)(2010)2857–2863.

    [18]A.Aroonwilas,P.Tontiwachwuthikul,Mass transfer coefficients and correlation for CO2absorption into 2-amino-2-methyl-1-propanol(AMP)using structured packing,Ind.Eng.Chem.Res.37(2)(1998)569–575.

    [19]A.Aroonwilas,A.Veawab,Characterization and comparison of the CO2absorption performance into single and blended alkanolamines in a packed column,Ind.Eng.Chem.Res.43(9)(2004)2228–2237.

    [20]A.Naami,M.Edali,T.Sema,R.Idem,P.Tontiwachwuthikul,Mass transfer performance of CO2absorption into aqueous solutions of 4-diethylamino-2-butanol,monoethanolamine,andN-methyldiethanolamine,Ind.Eng.Chem.Res.51(18)(2012)6470–6479.

    [21]K.Fu,T.Sema,Z.Liang,Investigation of mass-transfer performance for CO2absorption into diethylenetriamine(DETA)in a randomly packed column,Ind.Eng.Chem.Res.51(37)(2012)12058–12064.

    [22]G.Astaria,D.W.Savage,A.Bisio,Gas treating with chemical solvents,John Wiley,USA,1983.

    [23]A.Benamor,M.K.Aroua,Modeling of CO2solubility and carbamate concentration in DEA,MDEA and their mixtures using the Deshmukh-Mather model,Fluid Phase Equilib.231(2)(2005)150–162.

    欧美丝袜亚洲另类 | 久久狼人影院| 久久久久久久午夜电影| 亚洲色图 男人天堂 中文字幕| 成人国语在线视频| 久久精品国产综合久久久| 久久精品91蜜桃| 国产主播在线观看一区二区| 亚洲av第一区精品v没综合| 久久这里只有精品19| 最新美女视频免费是黄的| 欧美不卡视频在线免费观看 | 妹子高潮喷水视频| 黄片小视频在线播放| 免费搜索国产男女视频| 老司机午夜福利在线观看视频| 啦啦啦韩国在线观看视频| 一级a爱视频在线免费观看| 美女免费视频网站| 欧美日韩亚洲综合一区二区三区_| 精品熟女少妇八av免费久了| 黄片播放在线免费| 黑人巨大精品欧美一区二区mp4| av在线播放免费不卡| 少妇裸体淫交视频免费看高清 | 久久中文字幕人妻熟女| 97超级碰碰碰精品色视频在线观看| 亚洲色图综合在线观看| 国产高清视频在线播放一区| 亚洲精品国产精品久久久不卡| 91国产中文字幕| 亚洲精品国产色婷婷电影| 激情在线观看视频在线高清| 午夜a级毛片| 黄频高清免费视频| 人妻久久中文字幕网| 色播在线永久视频| 国产精品久久久久久亚洲av鲁大| 免费在线观看完整版高清| 亚洲精品粉嫩美女一区| 真人一进一出gif抽搐免费| 精品欧美国产一区二区三| 天堂影院成人在线观看| 午夜两性在线视频| 男女床上黄色一级片免费看| 69精品国产乱码久久久| 久久 成人 亚洲| 欧美亚洲日本最大视频资源| 女生性感内裤真人,穿戴方法视频| 成人手机av| 最新美女视频免费是黄的| 欧美成人午夜精品| 天堂动漫精品| 一级作爱视频免费观看| 啦啦啦观看免费观看视频高清 | 欧美色欧美亚洲另类二区 | 精品第一国产精品| 日韩欧美一区视频在线观看| 国产av在哪里看| ponron亚洲| 亚洲伊人色综图| 男人舔女人下体高潮全视频| 国产蜜桃级精品一区二区三区| 一二三四社区在线视频社区8| 免费高清视频大片| 国产精品爽爽va在线观看网站 | 午夜精品国产一区二区电影| 午夜福利18| 午夜福利欧美成人| 黄色女人牲交| 88av欧美| 91av网站免费观看| 1024视频免费在线观看| 操出白浆在线播放| 亚洲国产中文字幕在线视频| 日韩欧美在线二视频| 亚洲精品美女久久久久99蜜臀| 国产精品久久久人人做人人爽| 久久人人精品亚洲av| 亚洲欧美日韩无卡精品| 亚洲国产精品sss在线观看| 黄色女人牲交| 搡老妇女老女人老熟妇| 日韩一卡2卡3卡4卡2021年| 亚洲 欧美一区二区三区| 女性被躁到高潮视频| 亚洲精品在线观看二区| 午夜福利18| 亚洲国产毛片av蜜桃av| 国产精品香港三级国产av潘金莲| 免费高清视频大片| 69av精品久久久久久| 桃红色精品国产亚洲av| 无人区码免费观看不卡| 欧美人与性动交α欧美精品济南到| 午夜精品久久久久久毛片777| 麻豆国产av国片精品| 给我免费播放毛片高清在线观看| 国产亚洲av嫩草精品影院| 亚洲欧美激情综合另类| 伦理电影免费视频| 伦理电影免费视频| 亚洲精品国产色婷婷电影| 黄色a级毛片大全视频| 久久 成人 亚洲| 搞女人的毛片| 久久国产精品影院| 国产精品99久久99久久久不卡| 成年版毛片免费区| 国产一区二区三区视频了| 亚洲全国av大片| 亚洲中文字幕一区二区三区有码在线看 | 亚洲一区中文字幕在线| 亚洲国产精品合色在线| 黄网站色视频无遮挡免费观看| 久久久久久人人人人人| 午夜免费成人在线视频| 一进一出好大好爽视频| 黄色视频,在线免费观看| 久久久久久亚洲精品国产蜜桃av| 亚洲精品一卡2卡三卡4卡5卡| 精品乱码久久久久久99久播| 久久久精品国产亚洲av高清涩受| 欧美激情久久久久久爽电影 | 欧美最黄视频在线播放免费| 91成人精品电影| 69av精品久久久久久| 91大片在线观看| 老熟妇仑乱视频hdxx| 变态另类丝袜制服| 成年女人毛片免费观看观看9| 成人国产综合亚洲| 欧美激情极品国产一区二区三区| 大码成人一级视频| 亚洲熟女毛片儿| 99在线人妻在线中文字幕| 非洲黑人性xxxx精品又粗又长| 女人爽到高潮嗷嗷叫在线视频| 一a级毛片在线观看| 嫁个100分男人电影在线观看| 啦啦啦观看免费观看视频高清 | 成人18禁在线播放| 身体一侧抽搐| 免费看美女性在线毛片视频| 国产av一区在线观看免费| 国产午夜福利久久久久久| 久久香蕉国产精品| 国产成人啪精品午夜网站| 亚洲中文字幕日韩| 天天添夜夜摸| 久久久久精品国产欧美久久久| 亚洲精品在线美女| 国产精品av久久久久免费| 老司机福利观看| 一边摸一边做爽爽视频免费| av在线天堂中文字幕| 熟女少妇亚洲综合色aaa.| 国产视频一区二区在线看| 午夜福利,免费看| 国产麻豆69| 不卡av一区二区三区| av视频免费观看在线观看| 精品熟女少妇八av免费久了| 亚洲av五月六月丁香网| 国产一区二区在线av高清观看| 99久久精品国产亚洲精品| 亚洲一区中文字幕在线| 亚洲精品国产精品久久久不卡| 欧美丝袜亚洲另类 | 亚洲av电影不卡..在线观看| 侵犯人妻中文字幕一二三四区| 十八禁网站免费在线| 极品人妻少妇av视频| 久久精品亚洲熟妇少妇任你| 男女床上黄色一级片免费看| 性欧美人与动物交配| 免费无遮挡裸体视频| 亚洲激情在线av| 亚洲人成电影免费在线| 9热在线视频观看99| 欧美黑人欧美精品刺激| 成熟少妇高潮喷水视频| 久久人人97超碰香蕉20202| 精品免费久久久久久久清纯| 人妻丰满熟妇av一区二区三区| av天堂在线播放| av超薄肉色丝袜交足视频| 国内精品久久久久精免费| 亚洲成人精品中文字幕电影| 国产精华一区二区三区| 天天一区二区日本电影三级 | 99久久99久久久精品蜜桃| 精品国产一区二区三区四区第35| 欧美成狂野欧美在线观看| 9191精品国产免费久久| 亚洲视频免费观看视频| 性欧美人与动物交配| 成人特级黄色片久久久久久久| 琪琪午夜伦伦电影理论片6080| 校园春色视频在线观看| 欧美亚洲日本最大视频资源| 老鸭窝网址在线观看| 午夜免费鲁丝| 日韩 欧美 亚洲 中文字幕| 麻豆国产av国片精品| 亚洲最大成人中文| 亚洲无线在线观看| 久久影院123| 午夜影院日韩av| 日韩高清综合在线| 国产成人系列免费观看| 波多野结衣一区麻豆| 无限看片的www在线观看| 国产私拍福利视频在线观看| 欧美中文日本在线观看视频| 精品国产超薄肉色丝袜足j| 俄罗斯特黄特色一大片| 50天的宝宝边吃奶边哭怎么回事| 国产xxxxx性猛交| 亚洲色图 男人天堂 中文字幕| 欧美绝顶高潮抽搐喷水| 亚洲av成人av| 国产激情久久老熟女| 一区二区三区高清视频在线| cao死你这个sao货| 搡老熟女国产l中国老女人| 精品国产美女av久久久久小说| 黄色片一级片一级黄色片| 免费无遮挡裸体视频| 视频区欧美日本亚洲| 国产高清videossex| 亚洲 国产 在线| 色播亚洲综合网| 一区二区三区国产精品乱码| 欧美激情 高清一区二区三区| 成人国语在线视频| 大型黄色视频在线免费观看| 又大又爽又粗| 日韩国内少妇激情av| 99国产精品免费福利视频| 可以免费在线观看a视频的电影网站| 欧美日韩黄片免| 搡老妇女老女人老熟妇| 久久精品国产综合久久久| 亚洲男人天堂网一区| 久久精品国产99精品国产亚洲性色 | 亚洲片人在线观看| e午夜精品久久久久久久| 妹子高潮喷水视频| 久久久久久久精品吃奶| 91在线观看av| 99在线人妻在线中文字幕| 日本三级黄在线观看| 神马国产精品三级电影在线观看 | 夜夜爽天天搞| 成人欧美大片| 亚洲,欧美精品.| 精品日产1卡2卡| 久久婷婷成人综合色麻豆| 成人免费观看视频高清| 午夜精品在线福利| 欧美黄色片欧美黄色片| 日韩高清综合在线| 久久久久精品国产欧美久久久| 国产精品一区二区精品视频观看| 国产私拍福利视频在线观看| 亚洲五月婷婷丁香| 九色国产91popny在线| 国产一级毛片七仙女欲春2 | 99精品欧美一区二区三区四区| 18禁裸乳无遮挡免费网站照片 | 亚洲免费av在线视频| 一本综合久久免费| 久久人人精品亚洲av| 国产精品久久视频播放| 欧美国产日韩亚洲一区| 色哟哟哟哟哟哟| 国产精品精品国产色婷婷| 桃色一区二区三区在线观看| 99国产精品一区二区三区| 国产精品久久久av美女十八| 欧美色视频一区免费| 又紧又爽又黄一区二区| 国产亚洲精品久久久久5区| 啦啦啦韩国在线观看视频| 免费av毛片视频| 少妇的丰满在线观看| 午夜精品国产一区二区电影| 午夜精品久久久久久毛片777| 黑人巨大精品欧美一区二区mp4| 18禁美女被吸乳视频| 色综合婷婷激情| 久久精品影院6| 制服人妻中文乱码| 女人被躁到高潮嗷嗷叫费观| 亚洲av第一区精品v没综合| 一级毛片高清免费大全| 久久狼人影院| 亚洲人成电影免费在线| 老熟妇仑乱视频hdxx| 午夜福利视频1000在线观看 | 男人操女人黄网站| 成人特级黄色片久久久久久久| 免费搜索国产男女视频| 亚洲午夜精品一区,二区,三区| 国产一区二区三区在线臀色熟女| 看片在线看免费视频| 日韩欧美三级三区| 正在播放国产对白刺激| 国产又爽黄色视频| 可以免费在线观看a视频的电影网站| 此物有八面人人有两片| 女警被强在线播放| 色哟哟哟哟哟哟| 嫁个100分男人电影在线观看| 老司机在亚洲福利影院| 国产精品一区二区精品视频观看| 精品免费久久久久久久清纯| 99国产精品一区二区三区| 国产精品精品国产色婷婷| 久久国产亚洲av麻豆专区| 99国产精品免费福利视频| 国产aⅴ精品一区二区三区波| 亚洲国产看品久久| 成熟少妇高潮喷水视频| av在线播放免费不卡| 国产单亲对白刺激| 巨乳人妻的诱惑在线观看| 性欧美人与动物交配| 日本五十路高清| 操出白浆在线播放| 日韩免费av在线播放| 国产熟女午夜一区二区三区| 一区二区三区高清视频在线| 国产极品粉嫩免费观看在线| 亚洲av成人不卡在线观看播放网| bbb黄色大片| 国产高清视频在线播放一区| 可以在线观看的亚洲视频| 999久久久精品免费观看国产| 18禁裸乳无遮挡免费网站照片 | 亚洲 国产 在线| 欧美日韩一级在线毛片| 久久人人97超碰香蕉20202| 欧美日韩一级在线毛片| 91字幕亚洲| 国产熟女午夜一区二区三区| ponron亚洲| 99精品久久久久人妻精品| 精品国产超薄肉色丝袜足j| 嫁个100分男人电影在线观看| 又紧又爽又黄一区二区| 午夜福利视频1000在线观看 | 97超级碰碰碰精品色视频在线观看| 欧美+亚洲+日韩+国产| 真人一进一出gif抽搐免费| 999久久久精品免费观看国产| 午夜福利视频1000在线观看 | 亚洲欧美激情综合另类| 无遮挡黄片免费观看| aaaaa片日本免费| 亚洲精品在线观看二区| 性欧美人与动物交配| 在线视频色国产色| 久久草成人影院| 搡老岳熟女国产| 亚洲欧美精品综合久久99| 大型黄色视频在线免费观看| 免费搜索国产男女视频| 亚洲一卡2卡3卡4卡5卡精品中文| 无人区码免费观看不卡| 亚洲va日本ⅴa欧美va伊人久久| 村上凉子中文字幕在线| 大香蕉久久成人网| 丝袜美足系列| 色综合亚洲欧美另类图片| 亚洲欧美激情综合另类| 亚洲电影在线观看av| 欧美日韩亚洲综合一区二区三区_| 黑人欧美特级aaaaaa片| 亚洲国产精品sss在线观看| 久久久国产成人免费| 欧美不卡视频在线免费观看 | 久热这里只有精品99| 欧美日韩福利视频一区二区| 欧美性长视频在线观看| 亚洲久久久国产精品| 婷婷丁香在线五月| 男人舔女人的私密视频| 国产成人影院久久av| 咕卡用的链子| 亚洲激情在线av| 国产亚洲欧美精品永久| www.自偷自拍.com| 在线观看日韩欧美| 国产亚洲精品av在线| 久热这里只有精品99| 国产成人av教育| 老汉色∧v一级毛片| 人成视频在线观看免费观看| 欧美国产精品va在线观看不卡| 岛国视频午夜一区免费看| 免费在线观看亚洲国产| 久久久久久免费高清国产稀缺| 精品国产乱码久久久久久男人| 伦理电影免费视频| 国产av在哪里看| 两性夫妻黄色片| 又黄又粗又硬又大视频| 中文字幕人妻丝袜一区二区| 一卡2卡三卡四卡精品乱码亚洲| 嫩草影视91久久| 久久九九热精品免费| 亚洲va日本ⅴa欧美va伊人久久| 亚洲中文av在线| 伦理电影免费视频| 亚洲第一av免费看| 久久久精品国产亚洲av高清涩受| 夜夜看夜夜爽夜夜摸| 欧美日韩亚洲综合一区二区三区_| 50天的宝宝边吃奶边哭怎么回事| 日本 av在线| 日韩一卡2卡3卡4卡2021年| 亚洲精品中文字幕在线视频| 麻豆av在线久日| 亚洲国产精品合色在线| 精品国产乱码久久久久久男人| 99国产精品99久久久久| av视频免费观看在线观看| 亚洲精品国产色婷婷电影| 亚洲第一青青草原| 成人精品一区二区免费| 狠狠狠狠99中文字幕| 在线观看66精品国产| 嫁个100分男人电影在线观看| 悠悠久久av| 免费在线观看亚洲国产| 日韩精品免费视频一区二区三区| 久久人人爽av亚洲精品天堂| 91精品国产国语对白视频| 美女高潮到喷水免费观看| 国产亚洲精品综合一区在线观看 | 亚洲熟妇中文字幕五十中出| 国产精品一区二区免费欧美| 淫秽高清视频在线观看| 亚洲一区中文字幕在线| 成人手机av| 伊人久久大香线蕉亚洲五| 久久精品国产99精品国产亚洲性色 | 国产精品av久久久久免费| 欧美日韩瑟瑟在线播放| 日本 欧美在线| 中文亚洲av片在线观看爽| 男人操女人黄网站| 亚洲成人精品中文字幕电影| 欧洲精品卡2卡3卡4卡5卡区| 日本精品一区二区三区蜜桃| 看免费av毛片| 午夜亚洲福利在线播放| 国产亚洲精品久久久久久毛片| 精品欧美国产一区二区三| 亚洲精品在线观看二区| 国产精品久久电影中文字幕| 长腿黑丝高跟| 又黄又粗又硬又大视频| 亚洲人成电影观看| 天天躁夜夜躁狠狠躁躁| 人妻久久中文字幕网| 精品乱码久久久久久99久播| 国产亚洲精品综合一区在线观看 | 国内毛片毛片毛片毛片毛片| 老司机在亚洲福利影院| 99香蕉大伊视频| 女人高潮潮喷娇喘18禁视频| 国产精品 欧美亚洲| 国产成人精品久久二区二区免费| а√天堂www在线а√下载| 国产精品免费视频内射| 可以在线观看的亚洲视频| 国产成人系列免费观看| 国产精品一区二区免费欧美| 极品教师在线免费播放| 欧美精品亚洲一区二区| 两性夫妻黄色片| 激情视频va一区二区三区| 国产精品美女特级片免费视频播放器 | 后天国语完整版免费观看| 此物有八面人人有两片| 欧洲精品卡2卡3卡4卡5卡区| 天堂√8在线中文| 亚洲国产日韩欧美精品在线观看 | 国内久久婷婷六月综合欲色啪| 亚洲久久久国产精品| 香蕉久久夜色| 十八禁人妻一区二区| 男人舔女人的私密视频| 熟女少妇亚洲综合色aaa.| www.999成人在线观看| 成人永久免费在线观看视频| 桃红色精品国产亚洲av| 神马国产精品三级电影在线观看 | 深夜精品福利| 国产精品一区二区免费欧美| 久久天堂一区二区三区四区| 亚洲国产精品久久男人天堂| 午夜影院日韩av| 一进一出抽搐动态| 国产欧美日韩一区二区三区在线| 久久午夜亚洲精品久久| 妹子高潮喷水视频| 亚洲色图 男人天堂 中文字幕| 亚洲精品国产区一区二| 国产精华一区二区三区| 在线观看www视频免费| 亚洲色图 男人天堂 中文字幕| 欧美亚洲日本最大视频资源| 一区在线观看完整版| 亚洲精品国产区一区二| 中文字幕人妻熟女乱码| 成人av一区二区三区在线看| tocl精华| 亚洲精品中文字幕在线视频| 久9热在线精品视频| 91字幕亚洲| 两人在一起打扑克的视频| 无遮挡黄片免费观看| 97超级碰碰碰精品色视频在线观看| 亚洲少妇的诱惑av| 99久久精品国产亚洲精品| 无遮挡黄片免费观看| 欧美成人免费av一区二区三区| avwww免费| 高清在线国产一区| 十八禁网站免费在线| 精品卡一卡二卡四卡免费| 亚洲av熟女| 国产精品免费视频内射| 视频在线观看一区二区三区| 国产高清视频在线播放一区| 亚洲国产中文字幕在线视频| 色综合站精品国产| 在线十欧美十亚洲十日本专区| 亚洲色图 男人天堂 中文字幕| 搡老岳熟女国产| 中文字幕久久专区| 亚洲国产精品成人综合色| 日本免费一区二区三区高清不卡 | 国产精品二区激情视频| 在线十欧美十亚洲十日本专区| 国产熟女午夜一区二区三区| avwww免费| 一区二区三区国产精品乱码| 久久精品成人免费网站| 国产精品影院久久| √禁漫天堂资源中文www| 亚洲熟妇熟女久久| 国产精品99久久99久久久不卡| 久久久精品国产亚洲av高清涩受| 男人舔女人下体高潮全视频| 精品高清国产在线一区| 18禁裸乳无遮挡免费网站照片 | 日韩欧美一区二区三区在线观看| 黑人操中国人逼视频| 国产精品久久视频播放| 男女午夜视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品久久二区二区91| 亚洲精品国产区一区二| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久午夜电影| 在线观看免费视频日本深夜| 欧美中文日本在线观看视频| 美女高潮喷水抽搐中文字幕| 久久久久国产精品人妻aⅴ院| 国产极品粉嫩免费观看在线| 国产欧美日韩一区二区三| 国产亚洲精品av在线| 两性夫妻黄色片| 国产不卡一卡二| 久久 成人 亚洲| 日韩大码丰满熟妇| 美女免费视频网站| 一级毛片高清免费大全| 十八禁人妻一区二区| 搡老岳熟女国产| 91精品国产国语对白视频| 丝袜人妻中文字幕| 亚洲自拍偷在线| 国产激情欧美一区二区| 久久久久久久久久久久大奶| 亚洲av成人不卡在线观看播放网| 久久国产精品人妻蜜桃| 男女下面插进去视频免费观看| 午夜精品国产一区二区电影| av天堂久久9| 91av网站免费观看| 午夜精品国产一区二区电影| 欧美大码av| 亚洲一码二码三码区别大吗| 精品电影一区二区在线| 制服人妻中文乱码| 亚洲av熟女| 婷婷精品国产亚洲av在线| 午夜免费鲁丝| 色精品久久人妻99蜜桃| 人人妻人人澡欧美一区二区 | 51午夜福利影视在线观看| 99久久久亚洲精品蜜臀av| 正在播放国产对白刺激| 亚洲欧美一区二区三区黑人| 老熟妇仑乱视频hdxx| 最新美女视频免费是黄的| 99国产精品一区二区蜜桃av| 国产av在哪里看| 亚洲 欧美一区二区三区|