• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of the dividing wall column to olefin separation influidization methanol to propylene(FMTP)process☆

    2017-05-29 10:48:10XiaolongGeBotongLiuXigangYuanYiqingLuoKuoKsongYu

    Xiaolong Ge ,Botong Liu ,Xigang Yuan ,*,Yiqing Luo ,Kuo-Ksong Yu

    1 College of Chemical Engineering and Materials and Science,Tianjin Key Laboratory of Marine Resources and Chemistry,Tianjin University of Science and Technology,Tianjin 300457,China

    2 State Key Laboratory of Chemical Engineering,Tianjin University,Tianjin 300354,China

    1.Introduction

    Distillation is extensively used in separating multi-component mixture.However,high energy consumption and capital cost make the practitioners strive to find effective solution to further promote its energy efficiency.Dividing wall column(DWC),also known as the fully thermally coupled distillation column(Petlyuk column)[1],which was firstly established in 1985,is regarded as the most practical technology for saving energy over the past three decades[2,3].

    Initially,the DWC was used in final distillation,where the medium boiling component is the main component of interest.In this case the intermediate component usually needs to be separated from small amounts of light and heavy components.Currently,its application range has been largely expanded:hydrocarbons,alcohols,aromatics,ketones,aldehydes,amines,cryogenic air separation and C7+aromatics from olefin/paraffin[4–6].Obviously,there are no restrictions with respect to the type of chemicals.

    Before investigating the operability of DWC,parameters including stage number in each column section,reflux ratio,side stream flowrate,liquid and vapor split ratio, flowrate of distillate should be specified.Various methods have been proposed for optimal design of DWC[7–10].With respect to control structure,three-point control structure with constant vapor and liquid split ratio was initially proposed by Wolf and Skogestad[11].Based on this criterion,various three-point control structures could be derived by pairing the controlled and manipulated variable differently.In 1999,Halvorson and Skogestad[12] firstly proposed the concept of employing liquid split ratio as manipulated variable,which was further developed by Ling and Luyben[13–15],Kiss and Rewagad[16].By employing liquid split ratio to control the prefractionator in directcomposition,temperature and temperature difference control structure,minimum energy requirement can be achieved.Besides conventional PID control structures,advanced control structures such as generic model control(GMC)[17,18]and model predictive control(MPC)[19]were proposed,which show shorter settling time for some cases.However,their practicability need to be further validated.Precious studies mainly concentrate on separating ternary mixture into three products with only one main component in each product[20].The energy saving performance for separating multi components into three products with more than one component in each product has not been extensively studied.Moreover,as for control structure design,contradict conclusion is usually derived because a fair comparison is impossible by employing differentseparation system.

    In the presentwork,DWC was used to separate the feed mixture that is composed of 28 components into three products.Firstly,the energy consumption of DWC and conventional column sequence for olefin separation was compared,with each con figuration at their optimal operation conditions.Then a pilot DWC is designed in detail to determine the location of partition wall,the height of each column section and auxiliary internals.Finally,considering feed disturbance with four cases, five PID control schemes were proposed and their performance was compared.

    2.Comparison Between the Performance of DWC and Conventional Columns

    The conventional column sequence and DWC for separating ethylene-ethane-propylene in a process of fluidization methanol to propylene(FMTP)is shown in Fig.1.The FEED1 is vapor flow while the stream FEED2 is almost saturated liquid with liquid fraction 0.994.Mass balance and feed property for the designed DWC is displayed in Table 1.For simplification,the original 28 components mixture was regarded as feed mixture composed of seven main components.The mass fraction of the three products to total feed is 0.408:0.138:0.454 and the three products specification is shown in Table 2.As illustrated in Table 2,non-sharp split is conducted between ethylene and propene,while sharp split is conducted between propane and 1-butene.The annual production capacity of the pilot DWC with diameter 1.2 m/0.8 m is 217.8 thousand tons per year.

    Before detailed design,the structural parameters and operating conditions of DWC need to be determined.There are seven structural variables and five operating variables needed to be optimized,including stage number in seven column sections,distillate flowrate,side stream flowrate,reflux ratio,vapor and liquid split ratio.This turned to be a mixed integer nonlinear programming problem(MINLP),which could be effectively solved by combining simulation software with stochastic algorithm such as genetic algorithm,which has been reported by our research before[10].With respect to detailed design,the flow resistance in the two sides of dividing wall was checked rigorously to ensure vapor and liquid split ratio at their optimal design value.

    Fig.1.Flowsheet for separating olefin mixture in a process of fluidization methanol to propylene(FMTP):(a)conventional column sequence(b)DWC.

    Table 1Mass balance and property for the designed pilot dividing wall column

    Table 2Three products specification

    Compared to the direct column sequence for separating this mixture,DWC can save hotand cold utility by 30.2%and 25.7%,respectively,which is shown in Table 3.The cold utility forthe designed pilotdividing wallcolumn is refrigeration(-20°C)and the hot utility is low pressure steam(160 °C,0.5 MPa).The moderately lowrefrigeration system(5 °C)cannot be used for cooling because all of the condensers'temperature is below this value.Increasing the pressure can make the column use Refrigerated Water(15 °C to 25 °C)and Cooling Water(30 °C to 45 °C),however,energy demand would increase dramatically[21].

    The reason why the DWC can save energy is that“remixing effect”existed in the conventional column sequence could be eliminated in DWC.The composition pro files of propene in the first column of the conventional column sequence and prefractionator of DWC are displayed in Fig.2.The composition of propene increases toward the bottom of the prefractionator in DWC.However,in the conventional column sequence,the composition of propene first increases toward to the bottom of the column,if we move further down to the bottom,the composition starts to decrease,which refers to “remixing effect”.

    Table 3Comparison between dividing wall column(DWC)and conventional distillation column

    3.Detailed Design of the Pilot Dividing Wall Column

    The energy saving performance of DWC consists in using an optimal vapor split ratio,which was significantly influenced by the partition wall location in the column shell and flow resistance in the two sides of partition wall[22,23].The partition wall's location in the shell can be determined by precisely balancing the pressure drop in two sides of dividing wall.

    Fig.3.Detailed drawing of the pilot dividing wall column.

    Fig.2.Composition pro file of propene:(a)the first column of the conventional column sequence(b)prefractionator of DWC.

    Table 4Four cases for feed condition

    Fig.4.Sensitivity and singular value decomposition analysis for(a)main column(b)prefractionator.

    Due to the vapor phase of FEED1,the vapor load of the column section above FEED1 is significantdifferent from the column section below FEED1.If uniform column diameter is used,operating difficulty such as weeping and flooding in some column sections may occur.Therefore,column sections with different diameters are used to design the pilot DWC.The diameter of the column section above FEED1 is 1.2 m while the diameter below FEED1 is 0.8 m.

    The procedure for determining the location of partition wall was as followed: firstly the vapor split ratio is fixed at optimal value.Then by changing the location of partition wall,the vapor velocity in the two sides of dividing wall would change,thus the pressure drop can be calculated.This pressure rating procedure is an iteration process,which terminates until the pressure drop in the two sides of dividing wall becomes the same.For packed column,the pressure drop of the collector and liquid distributor,packing can be determined easily by correlations which can be found in the literature and book[24].

    Fig.5.SVD analyses for selecting differential temperature stage for(a)temperature difference control structure(TDC)(b)double temperature difference control structure(DTDC).

    For rigorous simulation,the diameterofeach column section was set in “Tray Rating”module in the simulation software,e.g.the diameter of common rectifying section was set as 1.2 m and that of common stripping column section set as 0.8 m.For the prefractionator,the column section above FEED1 was determined as 0.849 m and that below FEED1 was 0.566 m,which means the partition wall set at the center of the column.For this DWC,the stage number in the two sides ofpartition wallis different.There are 30 stages in the prefractionator and 39 stages in the side stream column section.Similar to prefractionator,the side stream column section was divided into two parts according to its corresponding stage number proportion with prefractionator.The diameter of upper part was determined as 0.849 m while that of lower part was determined as 0.566 m.

    By hydraulic rating,each column section could operate at appropriate flooding factor with dividing wall set at the center of the column.The pressure drops in the two sides of partition wall are 12.62 kPa and 11.486 kPa,respectively,which ensures vapor split ratio at optimal design value.

    The detailed drawing for the designed pilot dividing wall column is shown in Fig.3,including the associated packed beds and all auxiliary devices,i.e.liquid collectors and distributors,an external liquid splitter,and packing support grids.The liquid distributors are narrow through type with drip tubes and liquid collectors are determined as chevron type.The criterion for selecting column internals type could be found in literature[25–27].

    Fig.6(continued).

    4.Control Structure Design

    The olefin mixture is the ef fluent of fluidized bed,which results in feed flow rate and composition change.There are four cases for feed disturbance,which are shown in Table 4.

    In orderto circumventfeed disturbance, five control structures were proposed,i.e.,direct composition control(CC),temperature control(TC),composition-temperature cascade control(CC-TC),temperature difference control(TDC),double temperature difference control(DTDC).As for TC,TDC and DTDC,sensitivity criterion and singular value decomposition(SVD)criterion was used to determine the controlled stage location[28–30].To implement sensitivity analysis,a small change was made to the manipulated variable(R,QR,Sandrl),the change in each temperature tray divided by the change of manipulated variable gives the steady gain for that tray.The main column matrix has 70 rows and 4 columns while prefractionator matrix has 30 rows and 4 columns.Each matrix was decomposed by SVD function in Matlab software into three matrices:K=U∑VT.The four U vectors are plotted against stage number.The result of sensitivity analysis and SVD analysis for main column and prefractionator was shown in Fig.3,from which temperature controlled trays were selected[31].In CC-TC,the controlled temperature stage is the same with that in TC.

    In order to achieve product specification and minimize energy consumption simultaneously,the temperature set point should change as the feed disturbance occurs.However,the controlled temperature is set constant in TC.To handle this problem,DTC and DTDC were proposed because adjacent stage shows similar temperature change as the feed disturbance occurs.In this way,keeping the temperature difference between adjacent trays constant would not result in maximum deviation from original product specification.

    As for TDC,each loop has two stage temperatures.One is determined as the same with stage in TC,which was termed as sensitivity stage.As shown in above-mentioned TC,the four controlled stages are 2,18,and 51 in the main column and stage 8 in the prefractionator,respectively.The steady gain between the four temperatures and four manipulated variables are determined.For example,the four gains areK2,ΔT/ΔR,K2,ΔT/ΔQR,K2,ΔT/ΔS,K2,ΔT/Δrlfor stage 2.The gains for other stages could also be obtained and the gain of stagenwas termed asKn,ΔT/ΔR,Kn,ΔT/ΔQR,Kn,ΔT/ΔS,Kn,ΔT/Δrl.Then the difference between the gains for stage 2 and stagenare calculated,which generates the matrix of gain difference ΔK2,this matrix has 70 rows and 4 columns.SVD analysis gives U1vector which was plotted against stage number.The result was shown in Fig.4.The stage has the largest ΔU1with sensitivity stage was selected as reference stage.However,it should be notedthatthis criterion is notalways effective in selecting differentialtemperature control stage.For example,as shown in Fig.5(a),the reference temperature is selected as stage 4 because itlocates in the same column section with stage 2 and gives better performance than selecting stage 18 which indicates the largest ΔU1.

    Table 5Controller tuning parameters for five control structures

    The procedure for selecting two reference temperatures for DTDC is similar with TDC.The result is shown in Fig.5(b).

    Fig.6 shows thefive controlframes with main regulatory controllers.All of the five control structures are implemented in Aspen Dynamic using conventional PID controllers.

    Fig.7.Comparison of the performance of five control structures for feed disturbance case 2.

    The inventory controllers include level controllers,pressure controllers and flow controllers.The gain of all level controllers is 2.The gain and integral time for all pressure controllers isKC=20 and τC=12min.For flow controllers,KC=0.5 and τC=0.3min is used.

    The four regulatory controllers were tuned using a sequential method.TheQRloop is tuned first with other three controllers on manual mode.Relay-feedback test was run and Tyreus-Luyben rules were used to calculate the ultimate gains and integral time.ThenRloop was tuned withQRloop set automatic.ThenSloop was tuned withQRandRloops on automatic mode.Finally,rlloop was tuned with the other three loops on automatic mode.The tuning results are shown in Table 5.

    Fig.8.Comparison of the performance of five control structures for feed disturbance case 3.

    Figs.7 to 9 give the control structure performance of the proposed five control structures,subject to feed disturbance in Cases 2,3,and 4 shown in Table 4.For all cases,the maximum deviation and settling time is large for CC,which takes 10 h to reach the new steady state.This could be significantly reduced by employing tighter control structure-TC.TDC and TC show similar performance and are superior to DTDC in terms of divergence number.

    Fig.9.Comparison of the performance of five control structures for feed disturbance.

    5.Conclusions

    A pilot dividing wall column with diameter of 1.2 m/0.8 m is designed in detail for olefin separation,which shows 30%energy saving compared to the present conventional distillation sequence.The observation of the “remixing effect”of the intermediate component in the deethanizer column demonstrates the inefficiency in conventional column,which can be eliminated by DWC.The result demonstrates that DWC is also could be employed to separate mixture with low fraction of intermediate product.Moreover,for this specific feed conditions(with one vapor feed),column sections with different diameters are appropriate for operating the pilot DWC.

    Maintaining vapor split ratio at optimal value is the key point to successfully design a DWC.Optimal vapor split ratio could be obtained by optimizing operating parameters firstly,and ensured by appropriately arranging the flow resistance in the two sides of partition wall.As shown and demonstrated in this olefin separation case,this could be done by using the published mathematical correlations for estimating the pressure drop of packings and its associated device,e.g.liquid distributor and collector,respectively.

    To circumvent feed disturbance in operation, five control structures were proposed.Sensitivity analysis and singular value decomposition(SVD)was shown to be effective for selecting the sensitive and reference temperature location.Among the five control schemes,temperature control(TC)and temperature difference control(TDC)shows superior performance,i.e.with lower maximum deviation and shorter settling time.

    Nomenclature

    K gain matrix

    KCcontroller ultimate gain

    ΔK matrix of gain difference

    QRreboiler duty,kW

    RReflux rate,kg·h-1

    rlliquid split ratio

    S side stream mass flow rate,kg·h-1

    xD,propenepropene mass fraction in distillate

    xS,butene1-butene mass fraction in side stream

    xW,propenepropene mass fraction in bottom product

    yP,butene1-butene mass fraction in the vapor stream leaving the prefractionator top

    τCcontroller integral time,min

    [1]F.B.Petlyuk,V.P.,D.M.Slavinski,Thermodynamically optimal method for separating multicomponent mixtures,Int.Chem.Eng.5(3)(1965)555–561.

    [2] ?.Oluji?,M.J?decke,A.Shilkin,G.Schuch,B.Kaibel,Equipmentimprovementtrends in distillation,Chem.Eng.Process.48(6)(2009)1089–1104.

    [3]M.A.Schultz,D.G.Stewart,J.M.Harris,S.P.Rosenblum,M.S.Shakur,D.E.O'Brien,Reduce costs with dividing-wall columns,Chem.Eng.Prog.98(5)(2002)64–71.

    [4]?.Yildirim,A.A.Kiss,E.Y.Kenig,Dividing wallcolumns in chemical process industry:A review on current activities,Sep.Purif.Technol.80(3)(2011)403–417.

    [5]N.Asprion,G.Kaibel,Dividing wall columns:Fundamentals and recent advances,Chem.Eng.Process.49(2)(2010)139–146.

    [6]I.Dejanovi?,L.Matija?evi?,?.Oluji?,Dividing wall column—A breakthrough towards sustainable distilling,Chem.Eng.Process.49(6)(2010)559–580.

    [7]C.Triantafyllou,R.Smith,The design and optimisation of fully thermally coupled distillation columns,Chem.Eng.Res.Des.70(A2)(1992)118–132.

    [8]C.Gutiérrez-Antonio,A.Briones-Ramírez,Pareto front of ideal Petlyuk sequences using a multiobjective genetic algorithm with constraints,Comput.Chem.Eng.33(2)(2009)454–464.

    [9]J.A.Vazquez-Castillo,J.A.Venegas-Sánchez,J.G.Segovia-Hernández,H.Hernández-Escoto,S.Hernández,C.Gutiérrez-Antonio,A.Briones-Ramírez,Design and optimization,using genetic algorithms,of intensified distillation systems for a class of quaternary mixtures,Comput.Chem.Eng.33(11)(2009)1841–1850.

    [10]X.Ge,X.Yuan,C.Ao,K.-K.Yu,Simulation based approach to optimal design of dividing wall column using random search method,Comput.Chem.Eng.68(0)(2014)38–46.

    [11]E.A.Wolff,S.Skogestad,Operation of integrated three-product(Petlyuk)distillation columns,Ind.Eng.Chem.Res.34(6)(1995)2094–2103.

    [12]I.J.Halvorsen,S.Skogestad,Optimal operation of Petlyuk distillation:Steady-state behavior,J.Process Control9(5)(1999)407–424.

    [13]H.Ling,W.L.Luyben,New control structure for divided-wall columns,Ind.Eng.Chem.Res.48(13)(2009)6034–6049.

    [14]H.Ling,W.L.Luyben,Temperature control of the BTX divided-wall column,Ind.Eng.Chem.Res.49(1)(2009)189–203.

    [15]H.Ling,Z.Cai,H.Wu,J.Wang,B.Shen,Remixing control for divided-wall columns,Ind.Eng.Chem.Res.50(22)(2011)12694–12705.

    [16]A.A.Kiss,R.R.Rewagad,Energy efficient control of a BTX dividing-wall column,Comput.Chem.Eng.35(12)(2011)2896–2904.

    [17]R.C.van Diggelen,A.A.Kiss,A.W.Heemink,Comparison of control strategies for dividing-wall columns,Ind.Eng.Chem.Res.49(1)(2009)288–307.

    [18]A.A.Kiss,C.S.Bildea,A control perspective on process intensification in dividingwall columns,Chem.Eng.Process.50(3)(2011)281–292.

    [19]S.-J.Wang,D.S.H.Wong,Controllability and energy efficiency ofa high-purity divided wall column,Chem.Eng.Sci.62(4)(2007)1010–1025.

    [20]G.Niggemann,C.Hiller,G.Fieg,Experimental and theoretical studies of a dividingwall column used for the recovery of high-purity products,Ind.Eng.Chem.Res.49(14)(2010)6566–6577.

    [21]R.Turton,R.C.Bailie,W.B.Whiting,J.A.Shaeiwitz,Analysis,Synthesis and Design of Chemical Processes,Prentice Hall,New York,2008.

    [22]D.Dwivedi,J.P.Strandberg,I.J.Halvorsen,H.A.Preisig,S.Skogestad,Active vapor split control for dividing-wall columns,Ind.Eng.Chem.Res.51(46)(2012)15176–15183.

    [23]X.Ge,C.Ao,X.Yuan,Y.Luo,Investigation of the effect of the vapor split ratio decision in design on operability for DWC by numerical simulation,Ind.Eng.Chem.Res.53(34)(2014)13383–13390.

    [24]I.Dejanovi?,L.Matija?evi?,H.Jansen,Z.A.Oluji?,Designing a packed dividing wall column for an aromatics processing plant,Ind.Eng.Chem.Res.50(9)(2011)5680–5692.

    [25] ?.Oluji?,I.Dejanovi?,B.Kaibel,H.Jansen,Dimensioning multipartition dividing wall columns,Chem.Eng.Technol.35(8)(2012)1392–1404.

    [26]I.Dejanovi?,L.Matija?evi?,I.J.Halvorsen,S.Skogestad,H.Jansen,B.Kaibel,?.Oluji?,Designing four-product dividing wall columns for separation of a multicomponent aromatics mixture,Chem.Eng.Res.Des.89(8)(2011)1155–1167.

    [27]I.Dejanovi?,I.J.Halvorsen,S.Skogestad,H.Jansen,?.Oluji?,Hydraulic design,technical challenges and comparison of alternative con figurations of a four-product dividing wall column,Chem.Eng.Process.84(0)(2014)71–81.

    [28]S.Luan,K.Huang,N.Wu,Operation of dividing-wall columns.1.A simplified temperature difference control scheme,Ind.Eng.Chem.Res.52(7)(2013)2642–2660.

    [29]C.-C.Lin,T.-J.Ho,W.-T.Liu,Distillation in a rotating packed bed,J.Chem.Eng.Jpn35(12)(2002)1298–1304.

    [30]Y.Yuan,K.Huang,Operation of dividing-wall distillation columns.3.A simplified double temperature difference control scheme,Ind.Eng.Chem.Res.53(41)(2014)15969–15979.

    [31]W.L.Luyben,Distillation Design and Control Using Aspen Simulation,Wiley&Sons,USA,2013.

    王馨瑶露胸无遮挡在线观看| 91午夜精品亚洲一区二区三区| 免费av不卡在线播放| 考比视频在线观看| 日韩制服丝袜自拍偷拍| 亚洲四区av| www.熟女人妻精品国产 | 男女国产视频网站| 亚洲精品久久久久久婷婷小说| 五月开心婷婷网| 成人午夜精彩视频在线观看| 精品亚洲成国产av| 久热这里只有精品99| 涩涩av久久男人的天堂| 一级黄片播放器| 秋霞在线观看毛片| 亚洲欧美中文字幕日韩二区| 99九九在线精品视频| 青青草视频在线视频观看| 国产精品国产三级专区第一集| 国产精品.久久久| 黄色配什么色好看| 国产精品国产av在线观看| 亚洲精品国产av蜜桃| 一级黄片播放器| 国产老妇伦熟女老妇高清| 欧美日韩av久久| 欧美日韩国产mv在线观看视频| 黄片播放在线免费| 又粗又硬又长又爽又黄的视频| 成人国产麻豆网| 丝袜人妻中文字幕| 国产男女超爽视频在线观看| 在线观看免费视频网站a站| 晚上一个人看的免费电影| 香蕉精品网在线| 97精品久久久久久久久久精品| 一级毛片电影观看| 草草在线视频免费看| 亚洲精品aⅴ在线观看| 亚洲在久久综合| 亚洲欧美色中文字幕在线| 丝袜在线中文字幕| 欧美国产精品va在线观看不卡| 久久热在线av| 黑人高潮一二区| 国产亚洲欧美精品永久| 看免费av毛片| 美女脱内裤让男人舔精品视频| 亚洲精品乱码久久久久久按摩| 久久人妻熟女aⅴ| 日韩av在线免费看完整版不卡| 大香蕉久久成人网| av福利片在线| 最近最新中文字幕免费大全7| 久久热在线av| 日本欧美国产在线视频| 黄色 视频免费看| 青春草视频在线免费观看| h视频一区二区三区| 国产xxxxx性猛交| 国产无遮挡羞羞视频在线观看| 免费人妻精品一区二区三区视频| 亚洲成色77777| 赤兔流量卡办理| 乱码一卡2卡4卡精品| 18禁动态无遮挡网站| 国产精品一区www在线观看| 精品卡一卡二卡四卡免费| 亚洲,一卡二卡三卡| 国产精品无大码| 国产女主播在线喷水免费视频网站| 免费看不卡的av| av视频免费观看在线观看| 国产xxxxx性猛交| 老熟女久久久| 欧美成人精品欧美一级黄| 人妻系列 视频| 亚洲欧美一区二区三区国产| 下体分泌物呈黄色| 亚洲精品日本国产第一区| 日韩 亚洲 欧美在线| 亚洲精品第二区| 亚洲国产色片| 51国产日韩欧美| 美女国产高潮福利片在线看| 老司机亚洲免费影院| 2021少妇久久久久久久久久久| 精品少妇内射三级| 日韩大片免费观看网站| 精品国产露脸久久av麻豆| 熟女电影av网| 伦精品一区二区三区| 色5月婷婷丁香| 久久毛片免费看一区二区三区| 亚洲伊人色综图| 日韩视频在线欧美| 黑人巨大精品欧美一区二区蜜桃 | 丝袜美足系列| 校园人妻丝袜中文字幕| 久久人人爽av亚洲精品天堂| 国产综合精华液| 丝袜美足系列| 一级毛片我不卡| 美女xxoo啪啪120秒动态图| 夫妻午夜视频| 精品第一国产精品| 多毛熟女@视频| 免费久久久久久久精品成人欧美视频 | 日韩一区二区视频免费看| 国产亚洲av片在线观看秒播厂| 亚洲精品国产av蜜桃| a级毛色黄片| 亚洲五月色婷婷综合| 国产精品嫩草影院av在线观看| 99九九在线精品视频| 91精品伊人久久大香线蕉| 久久精品久久精品一区二区三区| 欧美性感艳星| 欧美精品av麻豆av| 午夜激情久久久久久久| 国产成人免费观看mmmm| 99热国产这里只有精品6| 日本午夜av视频| 大香蕉久久成人网| 男女啪啪激烈高潮av片| 亚洲国产精品一区二区三区在线| 街头女战士在线观看网站| 视频在线观看一区二区三区| 国产有黄有色有爽视频| 99国产综合亚洲精品| 久久国产精品大桥未久av| 久久鲁丝午夜福利片| 99re6热这里在线精品视频| 亚洲性久久影院| 久久亚洲国产成人精品v| 深夜精品福利| 中国美白少妇内射xxxbb| 人妻 亚洲 视频| 久久精品熟女亚洲av麻豆精品| 国产午夜精品一二区理论片| 欧美老熟妇乱子伦牲交| 十八禁网站网址无遮挡| 国产高清不卡午夜福利| 免费高清在线观看日韩| 国产女主播在线喷水免费视频网站| 国产永久视频网站| 只有这里有精品99| av播播在线观看一区| 女人精品久久久久毛片| 欧美精品av麻豆av| 天美传媒精品一区二区| 国产免费视频播放在线视频| 观看美女的网站| 黄色毛片三级朝国网站| 午夜老司机福利剧场| 亚洲欧美清纯卡通| 精品一区二区三区视频在线| 女性被躁到高潮视频| 一边摸一边做爽爽视频免费| 亚洲精品成人av观看孕妇| 天天躁夜夜躁狠狠躁躁| 97在线人人人人妻| 男人添女人高潮全过程视频| 久久久精品免费免费高清| 国产av一区二区精品久久| 少妇被粗大的猛进出69影院 | 亚洲人成77777在线视频| 永久免费av网站大全| 永久免费av网站大全| 纵有疾风起免费观看全集完整版| 汤姆久久久久久久影院中文字幕| 99香蕉大伊视频| 七月丁香在线播放| videossex国产| 日韩免费高清中文字幕av| 中文字幕精品免费在线观看视频 | av有码第一页| 精品国产一区二区三区久久久樱花| 男人操女人黄网站| www.熟女人妻精品国产 | 亚洲精品一区蜜桃| 亚洲少妇的诱惑av| 国产av一区二区精品久久| 亚洲精品美女久久av网站| 国产熟女欧美一区二区| 晚上一个人看的免费电影| 久热久热在线精品观看| 18禁动态无遮挡网站| 国产精品麻豆人妻色哟哟久久| 在线观看一区二区三区激情| h视频一区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 美女xxoo啪啪120秒动态图| 在线观看美女被高潮喷水网站| 国产精品女同一区二区软件| 男男h啪啪无遮挡| 99久久精品国产国产毛片| 国产精品久久久久久久久免| 久久精品熟女亚洲av麻豆精品| 99国产精品免费福利视频| 熟女电影av网| 国产熟女午夜一区二区三区| 又粗又硬又长又爽又黄的视频| 欧美日韩视频高清一区二区三区二| 精品卡一卡二卡四卡免费| 日韩一区二区三区影片| 久久久国产欧美日韩av| 日韩一区二区视频免费看| 成年人免费黄色播放视频| 90打野战视频偷拍视频| 男的添女的下面高潮视频| 草草在线视频免费看| 国产男女内射视频| 男人爽女人下面视频在线观看| 18禁观看日本| 在线观看人妻少妇| 在线天堂中文资源库| 久久久久国产网址| 女性生殖器流出的白浆| 欧美精品一区二区大全| 日日撸夜夜添| 国产免费一区二区三区四区乱码| 午夜激情av网站| 三上悠亚av全集在线观看| 欧美精品高潮呻吟av久久| 亚洲久久久国产精品| 满18在线观看网站| 黄片无遮挡物在线观看| 成人国语在线视频| 黄色怎么调成土黄色| 国产日韩欧美视频二区| h视频一区二区三区| 国产一区二区激情短视频 | 亚洲,一卡二卡三卡| 国产老妇伦熟女老妇高清| 热re99久久精品国产66热6| 国产在线一区二区三区精| 一区二区日韩欧美中文字幕 | 日产精品乱码卡一卡2卡三| 一级毛片 在线播放| av天堂久久9| 亚洲欧美清纯卡通| 青春草国产在线视频| 亚洲精品国产av蜜桃| 日韩一区二区视频免费看| 色94色欧美一区二区| 母亲3免费完整高清在线观看 | 97超碰精品成人国产| 人体艺术视频欧美日本| 超色免费av| √禁漫天堂资源中文www| 大香蕉97超碰在线| 精品亚洲成国产av| 亚洲精品美女久久av网站| 亚洲av国产av综合av卡| 黑人高潮一二区| 卡戴珊不雅视频在线播放| 建设人人有责人人尽责人人享有的| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久人人人人人人| 男的添女的下面高潮视频| 日韩制服骚丝袜av| 免费在线观看黄色视频的| 欧美日韩视频精品一区| 国产极品天堂在线| 男人操女人黄网站| 国产 一区精品| 国产精品无大码| 波多野结衣一区麻豆| 久久99蜜桃精品久久| 亚洲精品久久久久久婷婷小说| 视频在线观看一区二区三区| 亚洲av中文av极速乱| 国产精品偷伦视频观看了| 最新的欧美精品一区二区| 国产免费一级a男人的天堂| 国产高清不卡午夜福利| 成年人免费黄色播放视频| 欧美老熟妇乱子伦牲交| 成人午夜精彩视频在线观看| 亚洲丝袜综合中文字幕| 乱人伦中国视频| 国产精品蜜桃在线观看| 精品人妻一区二区三区麻豆| 乱人伦中国视频| 久久精品久久久久久久性| 熟妇人妻不卡中文字幕| 欧美+日韩+精品| 啦啦啦中文免费视频观看日本| 一级毛片我不卡| 欧美丝袜亚洲另类| 国产精品不卡视频一区二区| 亚洲精品乱码久久久久久按摩| 色吧在线观看| 大片免费播放器 马上看| 18禁观看日本| 女人久久www免费人成看片| 欧美日韩视频精品一区| √禁漫天堂资源中文www| 国产精品久久久久久精品电影小说| 精品亚洲成a人片在线观看| 欧美激情极品国产一区二区三区 | 国产成人a∨麻豆精品| 飞空精品影院首页| 在线天堂中文资源库| 母亲3免费完整高清在线观看 | 捣出白浆h1v1| freevideosex欧美| 2018国产大陆天天弄谢| 国产免费一区二区三区四区乱码| 超碰97精品在线观看| 久久久精品免费免费高清| 亚洲欧美一区二区三区黑人 | 亚洲美女视频黄频| xxxhd国产人妻xxx| 97精品久久久久久久久久精品| 在线观看人妻少妇| 欧美最新免费一区二区三区| av福利片在线| 日本爱情动作片www.在线观看| 亚洲国产欧美日韩在线播放| kizo精华| 一区在线观看完整版| 久久青草综合色| 黄色 视频免费看| 国产伦理片在线播放av一区| 香蕉国产在线看| 久久午夜综合久久蜜桃| 激情视频va一区二区三区| 欧美变态另类bdsm刘玥| 视频在线观看一区二区三区| 又粗又硬又长又爽又黄的视频| 欧美国产精品va在线观看不卡| 91成人精品电影| 欧美最新免费一区二区三区| 日本vs欧美在线观看视频| 热99国产精品久久久久久7| 欧美97在线视频| 国产精品 国内视频| 黑人欧美特级aaaaaa片| 人妻系列 视频| a级片在线免费高清观看视频| 日本-黄色视频高清免费观看| 精品久久蜜臀av无| 人妻人人澡人人爽人人| 久久人人97超碰香蕉20202| 久久亚洲国产成人精品v| 中文天堂在线官网| 黑人高潮一二区| 王馨瑶露胸无遮挡在线观看| 欧美日韩亚洲高清精品| 免费在线观看完整版高清| 亚洲av国产av综合av卡| 欧美少妇被猛烈插入视频| 国产精品国产三级国产专区5o| 精品少妇黑人巨大在线播放| 男人操女人黄网站| 日日爽夜夜爽网站| 亚洲精品av麻豆狂野| 精品久久久精品久久久| 狂野欧美激情性bbbbbb| 建设人人有责人人尽责人人享有的| 亚洲精品一区蜜桃| 欧美激情 高清一区二区三区| 久久久国产精品麻豆| 成年美女黄网站色视频大全免费| 母亲3免费完整高清在线观看 | 在线观看美女被高潮喷水网站| 国产免费一区二区三区四区乱码| 天堂俺去俺来也www色官网| 纯流量卡能插随身wifi吗| 少妇精品久久久久久久| 18禁国产床啪视频网站| 性高湖久久久久久久久免费观看| 久久人妻熟女aⅴ| 国产精品一国产av| 美女国产视频在线观看| 国产av国产精品国产| 久久久久久久大尺度免费视频| 国产一区二区激情短视频 | 黄色 视频免费看| 欧美激情极品国产一区二区三区 | 国产精品一二三区在线看| 久久鲁丝午夜福利片| 极品人妻少妇av视频| 婷婷色综合www| 国产av一区二区精品久久| 两性夫妻黄色片 | 亚洲五月色婷婷综合| 十八禁网站网址无遮挡| 亚洲国产av影院在线观看| 日韩欧美精品免费久久| 国产日韩欧美在线精品| av网站免费在线观看视频| 丰满乱子伦码专区| 国产亚洲一区二区精品| 少妇高潮的动态图| 极品人妻少妇av视频| 国产片特级美女逼逼视频| 少妇被粗大的猛进出69影院 | 免费久久久久久久精品成人欧美视频 | 国精品久久久久久国模美| 老熟女久久久| 男女午夜视频在线观看 | 国产国拍精品亚洲av在线观看| 少妇人妻精品综合一区二区| 久久久久精品人妻al黑| 国产一区亚洲一区在线观看| 国产精品蜜桃在线观看| 国产精品一区二区在线观看99| 亚洲精品色激情综合| 欧美成人午夜精品| 久久鲁丝午夜福利片| 亚洲综合色惰| 人妻少妇偷人精品九色| 亚洲国产精品999| 亚洲国产av影院在线观看| 曰老女人黄片| 国产一区二区三区综合在线观看 | 激情视频va一区二区三区| 久久鲁丝午夜福利片| xxx大片免费视频| 国产精品久久久久久精品古装| 欧美日韩综合久久久久久| 国产片内射在线| 18禁动态无遮挡网站| 午夜福利网站1000一区二区三区| av天堂久久9| 十八禁高潮呻吟视频| 美女大奶头黄色视频| 亚洲 欧美一区二区三区| tube8黄色片| 国产精品无大码| 久久国内精品自在自线图片| 亚洲成av片中文字幕在线观看 | 国产一区二区三区综合在线观看 | 丝瓜视频免费看黄片| 肉色欧美久久久久久久蜜桃| 欧美精品av麻豆av| 精品99又大又爽又粗少妇毛片| 九九在线视频观看精品| 欧美少妇被猛烈插入视频| 在线亚洲精品国产二区图片欧美| 亚洲国产精品成人久久小说| 99re6热这里在线精品视频| 爱豆传媒免费全集在线观看| 在线观看www视频免费| 日本黄大片高清| 午夜91福利影院| 久久久久久久久久成人| √禁漫天堂资源中文www| 国产一区有黄有色的免费视频| 亚洲精品,欧美精品| 国产成人a∨麻豆精品| 亚洲人成网站在线观看播放| 日韩制服骚丝袜av| 亚洲成人一二三区av| 日本-黄色视频高清免费观看| 色视频在线一区二区三区| 免费少妇av软件| 日本色播在线视频| 女性被躁到高潮视频| 久久久久国产网址| 亚洲内射少妇av| 18禁观看日本| 男女啪啪激烈高潮av片| 精品少妇内射三级| 成年人免费黄色播放视频| 国产男女内射视频| 99久久人妻综合| 婷婷色麻豆天堂久久| 久久国内精品自在自线图片| 久久精品国产亚洲av涩爱| 色哟哟·www| 久久久久久人妻| 亚洲av国产av综合av卡| 大香蕉97超碰在线| 精品少妇黑人巨大在线播放| 国产精品欧美亚洲77777| 又黄又爽又刺激的免费视频.| 最黄视频免费看| 水蜜桃什么品种好| 99精国产麻豆久久婷婷| 久久久久久久精品精品| 成人午夜精彩视频在线观看| 国产成人91sexporn| 999精品在线视频| 久久久亚洲精品成人影院| 好男人视频免费观看在线| 国产又色又爽无遮挡免| 色吧在线观看| 女的被弄到高潮叫床怎么办| 亚洲av欧美aⅴ国产| 最近手机中文字幕大全| 香蕉丝袜av| av卡一久久| 91精品三级在线观看| 国产亚洲午夜精品一区二区久久| 成年av动漫网址| 国产精品成人在线| 51国产日韩欧美| 男女下面插进去视频免费观看 | 80岁老熟妇乱子伦牲交| 国产精品欧美亚洲77777| 热99久久久久精品小说推荐| 精品午夜福利在线看| 丝瓜视频免费看黄片| 欧美日韩视频精品一区| 国产日韩欧美视频二区| 国产女主播在线喷水免费视频网站| 一区二区三区乱码不卡18| 捣出白浆h1v1| 久久热在线av| 久久精品aⅴ一区二区三区四区 | 亚洲成色77777| 一二三四中文在线观看免费高清| 国产伦理片在线播放av一区| 亚洲欧洲日产国产| 免费黄频网站在线观看国产| 精品久久久久久电影网| 欧美成人精品欧美一级黄| 欧美精品一区二区免费开放| 日韩一区二区三区影片| 国产女主播在线喷水免费视频网站| 丰满少妇做爰视频| 黄色一级大片看看| 天堂8中文在线网| 午夜福利乱码中文字幕| 中文精品一卡2卡3卡4更新| 极品少妇高潮喷水抽搐| 亚洲美女视频黄频| 中文字幕免费在线视频6| 欧美精品一区二区免费开放| 建设人人有责人人尽责人人享有的| 亚洲av国产av综合av卡| 97人妻天天添夜夜摸| 成人亚洲精品一区在线观看| 黄色怎么调成土黄色| 久久亚洲国产成人精品v| 黑人猛操日本美女一级片| 久久这里有精品视频免费| 国产精品秋霞免费鲁丝片| 女人被躁到高潮嗷嗷叫费观| 黄片无遮挡物在线观看| 九色亚洲精品在线播放| 久久久久久久久久久久大奶| 免费日韩欧美在线观看| 你懂的网址亚洲精品在线观看| 亚洲精品一区蜜桃| av免费观看日本| 建设人人有责人人尽责人人享有的| 国产精品 国内视频| 水蜜桃什么品种好| 人成视频在线观看免费观看| 我要看黄色一级片免费的| 欧美日韩综合久久久久久| 美女内射精品一级片tv| 90打野战视频偷拍视频| 精品国产国语对白av| 成人亚洲精品一区在线观看| 日日爽夜夜爽网站| 亚洲国产日韩一区二区| 久久人人爽av亚洲精品天堂| 国产成人午夜福利电影在线观看| 大片电影免费在线观看免费| 午夜福利视频在线观看免费| 精品久久久久久电影网| 精品亚洲成a人片在线观看| 中国三级夫妇交换| 乱人伦中国视频| 又大又黄又爽视频免费| 晚上一个人看的免费电影| 国产一区二区三区av在线| 欧美成人午夜精品| 欧美日韩视频精品一区| 在线亚洲精品国产二区图片欧美| 一区二区av电影网| 欧美精品高潮呻吟av久久| 丰满乱子伦码专区| 中国美白少妇内射xxxbb| 丰满迷人的少妇在线观看| 日本黄色日本黄色录像| 中文字幕av电影在线播放| 久久久久精品人妻al黑| 天美传媒精品一区二区| 亚洲精品美女久久久久99蜜臀 | 久久影院123| 午夜福利,免费看| 观看美女的网站| 十八禁网站网址无遮挡| 精品少妇内射三级| 老司机影院毛片| 99九九在线精品视频| 熟女电影av网| 大香蕉97超碰在线| 国产免费一级a男人的天堂| 久久人人爽人人片av| 亚洲天堂av无毛| 18禁观看日本| 国产精品国产三级国产av玫瑰| videos熟女内射| 有码 亚洲区| 深夜精品福利| 午夜福利视频精品| av.在线天堂| 最近2019中文字幕mv第一页| 91aial.com中文字幕在线观看| 国产精品蜜桃在线观看| 草草在线视频免费看| 新久久久久国产一级毛片| 久久久久视频综合| h视频一区二区三区| 亚洲情色 制服丝袜| 国产一区二区激情短视频 |