• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An optimal filter based MPC for systems with arbitrary disturbances☆

    2017-05-28 10:23:07HaokunWangZuhuaXuJunZhaoAipengJiang

    Haokun Wang ,Zuhua Xu *,Jun Zhao Aipeng Jiang ,*

    1 School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China

    2 National Laboratory of Industrial Control Technology,Department of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China

    1.Introduction

    Model predictive control(MPC)has been the most successful advanced control technique applied to the process industries[1,2].Similar to many other model based control algorithms,the performance of MPC is directly related to model accuracy.To achieve the desired performance,e.g.offset-free tracking,in the presence of model mismatch and/or unmeasured disturbances,a disturbance model is often required to cover the difference between the measured and the predicted output[3-10].

    Integrated white noise models are usually used to describe the unmeasured disturbances to achieve offset-free control.The noise covariances are assumed to be unknown but can be obtained from the steady-state operation data[10-12].To estimate the state of the system with unmeasured disturbances,Kalman filter(KF)is widely adopted.In these approaches,system state is augmented with a disturbance term as an additional component of the state,and then applies the KF to the augmented system.Some rank conditions must be satisfied to ensure detectability of the augmented system.It is convenient to use integrated white noise models,since the modeling effort is directed to obtaining noise covariances[12].If such covariances are available,it is possible to show that there exist KF gains for different disturbance models that achieve the same closed-loop performance[12],because different augmented systems are different non-minimal realizations of the same input/output process[7].Thus,existing approaches are often adequate for handling unmeasured disturbances that enter a plant if proper statistics are available.

    Though routinely adopted,the use of integrated white noise model with unknown covariances may limit closed-loop performance,especially the performance of disturbance rejection.In practical situations non-stationary disturbances are ubiquitous in the form of temporary oscillations,intermittent drifts,abrupt jumps,etc.Moreover,disturbance behavior like fluctuations of feed flow rates or feed compositions from upstream units,variations in operating conditions or product grades,changes in ambient weather conditions,etc.,are commonly witnessed patterns in process industries.In such cases,the disturbances are nonstationary in nature whose properties are time-varying,and hence it might not be possible to capture the noise dynamics just with integrated white noise models.On the other hand,sluggish transient behavior of the filter may degrade the disturbance rejection performance directly because of the bad choice of filter gains.The estimation performance of the augmented KF is related to the noise covariances.Although better estimation performance can be obtained by trial-and-error,there is no clear guideline available to choose a proper covariance in practice.One possible remedy is to calculate such covariances online from the steady-state operation data[10-12].However,steady-state operation data become unavailable if the controlled plant changes in operating conditions or loads.Even if the plant runs in the steady state,a symmetric semi-definite least-squares problem must be solved online to obtain such statistics,and this will increase the computational complexity more or less.

    The purpose of this study is to propose an alternative approach to handle unmeasured disturbances that have arbitrary statistics.The motivation for this study comes from applications in the control of systems that experience strong unmeasured disturbances,however,dynamic models and/or statistics of such disturbances are difficult to obtain.In this paper,two types of optimal(in the minimum-variance unbiased(MVU)sense) filters are first introduced,and then some properties of the proposed optimal filters are analyzed.The main feature of the proposed MPC is that prior knowledge of disturbance dynamics is not required.Thus,disturbances with unknown statistics can be easily handled.As a result,part of the disturbance modeling effort can be reduced.We show that the proposed MPC can achieve offset-free control in the presence of asymptotically constant unmeasured disturbances.The introduced filters provide optimal filtering performance,and this enables the controller to better reject unmeasured disturbances.

    2.Preliminaries and Motivation

    2.1.Disturbance models

    In practice,the following linear model is often used to describe local or global dynamics of a system:

    The objective is to design an MPC based on linear model(1)to have yktrack the reference signalrin the presence of model mismatch and/or unmeasured disturbances.To achieve offset-free control,one popular approach is to augment the linear model by disturbance terms,and then design an observer to estimate both the states and the disturbances:

    where dk∈?ndis the disturbance term,and Bdand Cdare disturbance matrices with appropriate dimensions.Dynamics of the process noise wkcan be lumped into the disturbance term by assuming that Qk≈0.The use of model(2)provides more convenience,since both input disturbance model and output disturbance model can be represented simultaneously.A common choice of disturbance model is output disturbance model(Bd=0 and Cd=I).However,as pointed out by Shinskey[13],pure output disturbances are unlikely to occur in the process industries.In fact,the load always enters at the manipulated variable.Therefore,the following input disturbance model is often used:

    Moreover,the input disturbance model(3)can represent not only input non-linearities,but also model mismatch and time-varying behaviors[7].

    2.2.Linear model predictive control

    There are three main parts in the current formulations of MPC:state estimator,dynamic constrained regulator and target calculator.To guarantee a zero offset steady state,a target calculator is used to calculate the steady-state targets for the regulator[14]:

    The regulation problem can be formulated by the following quadratic programming with constraints and penalties(Wx≥0and Wu≥0)[12,14]:

    where uN=(uk,···,uk+N?1).The control horizon and the prediction horizon are assumed to be the same numberN,and disturbances will continue unchanged during the prediction horizon.

    2.3.Kalman filter for the augmented system

    In existing linear offset-free MPC schemes,the disturbance term dkis often assumed to originate from the following integrated white noise model:

    Then the following steady-state KF can be used to estimate both the state and the disturbance:

    It is easy and straightforward to model disturbances using model(6),because only covariances are required.The covariances of ξk,wk,and vkare usually assumed to be unknown,however,they can be estimated from steady-state operation data[10-12].It should be noted that Skis a user-de fined parameter which is related to the estimation performance.Selecting a proper Skis of critical importance to the KFs.

    2.4.Motivation

    As mentioned previously,it might not be possible to capture the noise dynamics just with integrated white noise model(6)in practice.Estimation performance of the filter(Eq.(8))is usually tuned by trial-and-error,since there is no clear guideline available to choose a proper covariance.Bad choice of filter gains will degrade the estimation performance,and hence limits the control performance,especially the performance of disturbance rejection.Thus,the simple idea arises:is it possible to obtain better filtering performance if assumption(6)is relaxed?To answer the question we must identify a filter that can estimate both state and disturbances when no information(dynamic model or statistics)of disturbances is available.Fortunately,we can use linear filtering techniques[15-17]to solve the above-mentioned estimation problem.In the following section,we will focus on the design of linear optimal filters for systems with unmeasured disturbances.

    3.Optimal Filter Design

    By assuming that the disturbance is originated from integrated white noise model(6),output disturbance and/or input disturbance can be handled in one general framework(Eq.(8)).However,optimal filtering cannot be guaranteed with traditional KFs if dkde fies the assumed statistics.Linear MVU filtering has been proven to be a useful tool to estimate the system state and the unknown disturbance[15-17].In this section,we introduce linear MVU filters for handling dkwith arbitrary statistics.To obtain optimal filtering performance,we have to design different filters for systems(2)and(3)separately.First,optimal filter for the input disturbance model(3)is considered.Then,optimal filter for system(2)is discussed.Compared with the optimal filter for system(3),the design of optimal filter for system(2)becomes much more complicated,as the estimate error is correlated with system noise.At last,to show how the optimal filters handle disturbances with unknown statistics,the relationship between optimal filters and weighted least-squares techniques is illustrated.

    Throughout this study,we assume that(A,C)is observable,(A,Q1k/2)is stabilizable,the initial state x0is of mean^x0and covariance P0,and is independent of vkfor allk.

    3.1.Optimal filter for systems with input disturbance model

    Considering the input disturbance model(3)with unknown disturbance statistics,the following recursive filter with control input can be used:

    Including disturbance term as an additional state and assuming that disturbances are estimable,system(3)can be recast as:

    The weighted least-squares solution(see[18],Chap.2.2.3)to Eq.(13)is

    Substituting the gains Kkand MkofMVU filter(Eq.(9))into Eq.(14),

    From Eq.(14)we can see that unmodeled dynamics and unmeasured disturbances are lumped into the augmented states x1,kin the least-squares sense.

    3.2.Optimal filter for systems with input and output disturbance models

    For input and output disturbance models(2),the following MVU filter for system(2)is proposed by Gillijns and De Moor[16]:

    Similarly,MVU filter(Eq.(15))can be rewritten as:

    Then,the weighted least-squares solution to Eq.(20)can be obtained:

    Substituting Ldand Lxinto Eq.(19),one can verify that the MVU filter(Eq.(15))is equivalent to Eq.(21).

    Similarly,from Eq.(21)we can see that unmodeled dynamics and unmeasured disturbances are lumped into the augmented states x2,kin the least-squares sense.This enables the MVU filters to handle disturbances with unknown statistics.Therefore,the disturbance modeling effort can be alleviated.

    4.Analysis of Filter Properties

    In this section,some properties of the optimal filters are analyzed.First,how many disturbances should be chosen is discussed.Second,the choice of disturbance model is addressed.Subsequently,we will demonstrate that the same estimated output can be obtained when using different disturbance models.Finally,asymptotic stability conditions are discussed.

    4.1.Choice of disturbance number

    From unbiasedness conditions(10)and(17),and note that Bd∈ ?nx×ndand Cd∈ ?ny×nd,we know that the number of disturbances needs to be smaller or equal to the number of the output,that isnd≤ny.The MVU filters(Eqs.(9))and(15)can be rewritten as Eqs.(14)and(21),respectively.To ensure the existence of the optimal filters discussed in Section 3,both H1and H2must have full column rank.This also impliesnd≤ny,since(A,C)is observable.

    Now we examine the choice of the disturbance in KF based approaches.The following rank condition must be satisfied to ensure the detectability of the augmented system(7)[3,4,6,7,9]:

    Obviously,Eq.(22)also requires thatnd≤ny.This is equivalent to the unbiasedness conditions of optimal filters.To cover all the dynamics of the output,it is reasonable to choosend=ny.

    4.2.Choice of disturbance model

    After the number of disturbance is determined,we next show how to choose disturbance model pair(Bd,Cd).Usually,there is no clear guideline available to determine the disturbance model(Bd,Cd).If we use optimal filters,one is free to choose any disturbance model so long as unbiasedness conditions are satisfied.The disturbance model is often determined by experience,however,it can also be determined by solving an appropriateH∞control problem[7]or by online identification[19].

    Ifnu=ny,it is easy to combine the output disturbance model and the input disturbance model,then choose as the disturbance model.In fact,disturbance model(23)is often completely adequate for handling unmeasured disturbances that enter the system.However,this does not guarantee the optimality of the disturbance model.Disturbance modeling is still an open issue.If the sources and/or dynamics of disturbances are known,a better disturbance model may be found.

    4.3.Asymptotic stability analysis

    We are usually concerned with asymptotic stability for the filter.In the following,asymptotic stability of the optimal filters willbe discussed.

    4.3.1.Asymptotic stability of filter(Eq.(9))

    Asymptotic stability of MVU filter(Eq.(9))has been discussed by Darouach and Zasadzinski[20].Sufficient conditions of asymptotic stability were also developed by Fang and de Callafon[21].Here,we give a simple result,which is equivalent to the results in[21].Now,we rewrite Eq.(11)as:

    is a sufficient condition of asymptotic stability for MVU filter(Eq.(9))[21],where λi(X)is theith eigenvalue of X.

    4.3.2.Asymptotic stability of filter(Eq.(15))

    From Eq.(18),the estimated errors can be written as:

    is a sufficient condition of asymptotic stability for MVU filter(Eq.(15)).

    4.4.Global optimality analysis

    It is well-known that standard KF is globally optimal,since there is no explicit constraint.This is not the case if additional constraint is imposed.In the design of MVU filters,we have shown that optimal gains are obtained by minimizing the error variance subject to unbiasedness constraints.As pointed out by Kerwin and Prince[22],the global linear minimum variance unbiased estimate may not lie within the recursive framework.Therefore,the global optimality of MVU filters needs to be reconsidered.

    Now,we express the estimate of both the state and the disturbance as the most general combination of measurements and the mean of initial state:

    where Fx,Fd,Γx,i,and Γd,iare combination coefficients.In existing results[15,22-24],it was proven that the optimal estimation of both the state and the disturbance for systems(3)and(2)can be written in the form of linear recursive filter as shown in Eqs.(9)and(15).Global optimality means that the proposed MVU filters are globally optimal among all possible linear filters.This enables the MPC with optimal filters to obtain better control performance,especially the performance of disturbance rejection.

    5.Offset-free Tracking

    In this section,we use the optimal filters discussed in Section 3 to replace KFs in existing approaches.The basic construction of the proposed MPC and existing schemes is the same and the only difference is the choice of the filter.We will show that the proposed MPC can achieve offset-free control in the presence of asymptotically constant unmeasured disturbances.

    5.1.Offset-free output estimation

    The above results imply that the estimated output is irrelevant to the choice of the disturbance model(Bd,Cd)if optimal filters are used.This indicates that the estimated output can track the system output in the presence of unmeasured disturbance and model mismatch.

    5.2.Offset-free tracking

    The offset-free tracking problem will be addressed in the proposed framework.Note that offset-free control cannot be achieved in the stochastic framework.Here we assume Qk≈0 and Rk≈0.A simple proof for offset-free control is given in the following theorem.Before the discussion,we need to make four assumptions.

    Assumption 1.The target problem(4)has a unique feasible solution,and the regulation problem(5)is feasible for allk.

    Assumption 2.The reference is asymptotically constant(rk→r∞),the closed-loop system reaches steady state(xk→x∞,uk→u∞,and yk→y∞).

    Assumption 3.There exists a proper Bdsuch that conditions(10)and(24)for MVU filter(Eq.(9))are satisfied.

    Assumption 4.There exists a proper disturbance model(Bd,Cd)such that conditions(17)and(25)for MVU filter(Eq.(15))are satisfied.

    Theorem 1.If Assumptions 1–3 hold,^xk|k?1is an unbiased estimate ofxk,and the unmeasured disturbance reaches the steady-state valuedk→d∞,then the MPC(Eqs.(4)and(5))with MVU filter(Eq.(9))for system(3)can achieve the offset-free control(y∞→r∞).

    Proof.Because the closed-loop system reaches steady state and the unbiasedness condition holds,unbiased estimation of xkand dkcan be obtained from the MVU filter(Eq.(9)).Therefore,we have^x∞=x∞and^d∞=d∞.The target problem(4)has a unique feasible solution which implies Cxs=r∞and xs=x∞.On the other hand,from Eq.(26)we can obtain y∞=^y∞=C^x∞.This means the predicted output^y∞is equal to the real output y∞at the steady state,i.e.y∞=^y∞=r∞.Therefore,at steady state we get the offset-free stabilization,which completes the proof.

    Remark 1.By trading input non-linearities as unknown inputs,MVU filter(Eq.(9))can also be used for the control of Hammerstein systems with unknown input non-linearities[25].The proof of Theorem 1 is similar to that in Wanget al.[25].

    Theorem 2.If Assumptions 1–2 and 4 hold,^xk|k?1is an unbiased estimate ofxk,and the unmeasured disturbance reaches the steady-state valuedk→d∞,thentheMPC(Eqs.(4)and(5))withMVUfilter(Eq.15)forsystem(2)can achieve the offset-free control goal(y∞→r∞).

    Proof.Because the unbiasedness condition(17)holds,unbiased estimation of xkand dkcan be obtained from the MVU filter(Eq.(15)),and we can then obtain^x∞=xsand^d∞=ds.The target problem(4)has a unique feasible solution implies Cxs+Cd^d∞=r∞and xs=x∞.Then the rest of the proof is similar to Theorem 1,and is omitted for brevity.

    Remark 2.When augmented KF based approaches are adopted,offsetfree control can also be guaranteed,see Muske and Badgwell[16](Theorem 4)and Maederet al.[14](Theorem 1).

    The above results show that using both the input and output disturbance models(2)and input disturbance model(3)can achieve offset-free control in the proposed framework.

    6.Illustrative Examples

    To illustrate the performance of the proposed MPC,two examples are considered in this section.The purpose of the first one is to illustrate that even accurate disturbance model is used,the best performance cannot be guaranteed using traditional approaches.And then a distillation column model is used to show that the proposed MPC is adequate for handling model mismatch and unmeasured disturbances.

    6.1.A SISO example

    Here,consider an unconstrained SISO system with:A=0.3679,B=0.6321,and C=1.To demonstrate the performance of the proposed approach,we compare the proposed MPC with two KF based approaches.In KF based approaches,the system is augmented as Eq.(8),and we choose(Bd=0,Cd=I)for the output disturbance model and(Bd=B,Cd=0)for the input disturbance model.In the proposed approach,MVU filter(Eq.(15))with disturbance model(23)(Bd=B,Cd=I)is used,which can be seen as a combination of both the input and the output disturbance models.The test is under the same parameters Rk≈0,Qk≈0,Sk=I,Wx=I,Wu=I,and Rs=I.Steady-state KFs are used for both the two KF based approaches,and the corresponding filter gains are:[0;1]and[1;1.582].The set-point tracking performance of the three approaches yields no significant difference.Because disturbance rejection is much more important than set-point tracking response[13],we only consider the disturbance rejection performance in the following discussions.

    6.1.1.Input step disturbance rejection

    First,we add a step unmeasured disturbance to the input at time 1.We compare the above-mentioned three approaches,and the corresponding disturbance rejection performance is shown in Fig.1.From Fig.1 we can see that the approach based on the optimal filter performs better than the other two approaches.Note that an input disturbance model is an accurate description of disturbances in this case.However,as shown in Fig.1,the approach based on the input disturbance model does not provide the best performance.

    Fig.1.Input disturbance rejection.

    6.1.2.Output step disturbance rejection

    Here,we add the same step unmeasured disturbance to the output at sampling time 1.We also consider the above three approaches,and the filter gains are the same as for the former test.The comparison of performance for output disturbance rejection is plotted in Fig.2.

    Fig.2.Output disturbance rejection.

    In fact,an output disturbance model is an accurate description of disturbances.However,as shown in Fig.2,the output disturbance based approach provides the worst performance.The optimal filter based approach performs better than the two KF based approaches.

    It is obvious that an integrated disturbance model cannot describe step disturbances exactly,and the resulting performance is not optimal.The results presented in the above tests clearly show that best control performance cannot be guaranteed even accurate disturbance models are adopted.Better performance can be obtained if we use optimal filters to replace the KFs.

    6.1.3.Stochastic disturbance rejection

    We know that if dkis modeled by integrated white noise model,KF based approaches will perform very well,because KF is optimal in this case.However,such integrated white noise models are hardly warranted in practice,because the nature of the disturbances is often unknown.Now,we use a stochastic disturbance with unknown statistics as shown in Fig.3 to replace the step disturbance used in the previous tests.

    Fig.3.Unmeasured stochastic disturbance.

    Table 1Rejection performance under input stochastic disturbance

    Performance after we added the same disturbance to the output is shown in Table 2.Similarly,we can see that the proposed approach provides the best performance.

    From the above tests,we can see that the proposed MPC is adequate for rejecting both the deterministic and the stochastic disturbances that enter the system from either the input or the output.

    Table 2Rejection performance under output stochastic disturbance

    6.2.Binary distillation column

    In this example,we consider the binary distillation column model presented by Skogestad[26].The con figuration is shown in Fig.4.

    Fig.4.Binary distillation column con figuration.

    We assume that continuous analyzers are available for measuring the composition of the distillate and bottom streams.The condenser level and the reboiler level can be easily controlled by two PIcontrollers.To simplify the control system design,we choose reflux flow(L)and vapor flow(V)as the manipulated variables,and choose overhead composition(xD)and bottom composition(xB)as the controlled variables.We consider three unmeasured disturbances:feed rate(F),feed composition(zF),and feed liquid fraction(qF).The corresponding steady-state conditions are shown in Table 3.

    Table 3Steady-state conditions for the distillation column

    The linear continuous-time modelis obtained by linearizing the first principles model at the steady-state points shown in Table 3.Then the linear continuous-time model was converted to a discrete-time model with a sample time of 1 min.At last,a linear discrete-time model with 8 states is obtained using model reduction algorithm.And this model is used for MPC in this example.

    6.2.1.Set-point tracking

    Now we consider the set-point tracking performance of the proposed MPC with disturbance model(23).We change the set-point of the overhead composition from its steady state to 0.95,and then back to 0.98.Moreover,we also change the set-point of the bottom composition from0.01 to 0.05,and then back to 0.02.The linear model used here cannot provide accurate description of process dynamics.To achieve offset-free control,we augment the model as Eq.(8).Similar to the first example,we compare the proposed MPC with the KF based MPCs.The test is under the same parameters:Qk≈0,Qk≈0,Sk=I,Wx=I,Wu=0,and Wy=1000×I.The tracking performance is shown in Figs.5 and 6.In fact,there is no significant difference in the three approaches.

    Fig.5.Tracking performance of MPC using different disturbance models for the distillation column(controlled variables).

    Fig.6.Tracking performance of MPC using different disturbance models for distillation column(manipulated variables).

    6.2.2.Disturbance rejection

    Now we examine the disturbance rejection performance of the proposed MPC.Here we consider three unmeasured disturbances as shown in Fig.7.We also use the same parameters as before.Moreover,the disturbance rejection performance is shown in Figs.8–10.

    Fig.7.Unmeasured disturbances for the disturbance rejection test in the distillation column.

    Fig.8.Disturbance rejection performance of MPC using different disturbance models for the distillation column(overhead composition).

    Fig.9.Disturbance rejection performance of MPC using different disturbance models for the distillation column(bottom composition).

    Fig.10.Disturbance rejection performance of MPC using different disturbance models for the distillation column(manipulated variables).

    The output disturbance model gives the worst performance from Figs.8–10.This type of disturbance model has been criticized by many authors[13,27].As shown in Section 2.1,the input disturbance model can cover model mismatch and unmeasured disturbances,thus,the input disturbance model often provides better performance than the output disturbance model.Here we can see that the input disturbance model based MPC and the proposed MPC have a similar rejection performance,but the proposed approach is slightly better.From this test,we can see that the proposed MPC is adequate for handling model mismatch and unmeasured disturbances for non-linear plants.

    7.Conclusions

    The use of optimal filters for linear offset-free MPC is discussed in this study.As distinct from existing approaches,the proposed method does not require any assumptions about the dynamics of disturbances,and disturbances are allowed to have arbitrary statistics.As a result,disturbance modeling requires less work and is more practical to implement.Moreover,we show that the proposed MPC can achieve offset-free control.Tracking performance using this approach is often comparable with the KF based approaches,and the proposed approach performs better in rejecting unmeasured disturbances,which is often more important than the tracking performance in many implementations.

    [1]B.W.Bequette,Non-linear model predictive control:A personal retrospective,Can.J.Chem.Eng.85(4)(2007)408–415.

    [2]S.J.Qin,T.A.Badgwell,A survey of industrial model predictive control technology,Control.Eng.Pract.11(7)(2003)733–764.

    [3]T.A.Badgwell,K.R.Muske,Disturbance model design for linear model predictive control,Proceedings of the American Control Conference,Anchorage,2002,pp.1621–1625.

    [4]U.Maeder,Borrelli,M.Morari,Linear offset-free model predictive control,Automatica45(10)(2009)2214–2222.

    [5]M.Morari,U.Maeder,Nonlinear offset-free model predictive control,Automatica48(9)(2012)2059–2067.

    [6]K.R.Muske,T.A.Badgwell,Disturbance modeling for offset-free linear model predictive control,J.Process Control12(5)(2002)617–632.

    [7]G.Pannocchia,A.Bemporad,Combined design of disturbance model and observer for offset-free model predictive control,IEEE Trans.Autom.Control52(6)(2007)1048–1053.

    [8]G.Pannocchia,E.C.Kerrigan,Offset-free receding horizon control of constrained linear systems,AIChE J.51(12)(2005)3134–3146.

    [9]G.Pannocchia,J.B.Rawlings,Disturbance models for offset-free model predictive control,AIChE J.49(2)(2003)426–437.

    [10]M.R.Rajamani,J.B.Rawlings,Estimation of the disturbance structure from data using semidefinite programming and optimal weighting,Automatica45(1)(2009)142–148.

    [11]B.J.Odelson,M.R.Rajamani,J.B.Rawlings,A new autocovariance least-squares method for estimating noise covariances,Automatica42(2)(2006)303–308.

    [12]M.R.Rajamani,J.B.Rawlings,S.J.Qin,Achieving state estimation equivalence for misassigned disturbances in offset-free model predictive control,AIChE J.55(2)(2009)396–407.

    [13]F.G.Shinskey,Feedback Controllers for the Process Industries,McGraw-Hill Professional,1994.

    [14]K.R.Muske,J.B.Rawlings,Model predictive control with linear models,AIChE J.39(2)(1993)262–287.

    [15]S.Gillijns,B.De Moor,Unbiased minimum-variance input and state estimation for linear discrete-time systems,Automatica43(1)(2007)111–116.

    [16]S.Gillijns,B.De Moor,Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough,Automatica43(5)(2007)934–937.

    [17]P.K.Kitanidis,Unbiased minimum-variance linear state estimation,Automatica23(6)(1987)775–778.

    [18]T.Kailath,A.H.Sayed,B.Hassibi,Linear Estimation,Prentice-Hall,Upper Saddle River,NJ,2000.

    [19]Z.Xu,Y.Zhu,K.Han,J.Zhao,J.Qian,A multi-iteration pseudo linear regression method and an adaptive disturbance model for MPC,J.Process Control20(4)(2010)384–395.

    [20]M.Darouach,M.Zasadzinski,Unbiased minimum variance estimation for systems with unknown exogenous inputs,Automatica33(4)(1997)717–719.

    [21]H.Z.Fang,R.A.de Callafon,On the asymptotic stability of minimum-variance unbiased input and state estimation,Automatica48(12)(2012)3183–3186.

    [22]W.Kerwin,J.Prince,On the optimality of recursive unbiased state estimation with unknown inputs,Automatica36(9)(2000)1381–1383.

    [23]Y.Cheng,H.Ye,Y.Wang,D.Zhou,Unbiased minimum-variance state estimation for linear systems with unknown input,Automatica45(2)(2009)485–491.

    [24]H.Wang,J.Zhao,Z.Xu,Z.Shao,Input and state estimation for linear systems with a rank-de ficient direct feedthrough matrix,ISA Trans.57(2015)57–62.

    [25]H.Wang,J.Zhao,Z.Xu,Z.Shao,Model predictive control for Hammerstein systems with unknown input nonlinearities,Ind.Eng.Chem.Res.53(18)(2014)7714–7722.

    [26]S.Skogestad,Dynamics and control of distillation columns:A tutorial introduction,Chem.Eng.Res.Des.75(6)(1997)539–562.

    [27]P.Lundstr?m,J.H.Lee,M.Morari,S.Skogestad,Limitations of dynamic matrix control,Comput.Chem.Eng.19(4)(1995)409–421.

    欧美黑人欧美精品刺激| 亚洲在线自拍视频| 成人国产综合亚洲| 午夜福利高清视频| 香蕉av资源在线| 日日干狠狠操夜夜爽| 欧美日韩一级在线毛片| 久久人妻av系列| 欧美精品啪啪一区二区三区| 美女午夜性视频免费| 极品教师在线免费播放| 美女高潮的动态| 夜夜躁狠狠躁天天躁| 欧美激情久久久久久爽电影| 亚洲成人中文字幕在线播放| 成人午夜高清在线视频| 日韩欧美在线二视频| 欧美乱色亚洲激情| 五月伊人婷婷丁香| 亚洲国产精品成人综合色| 一本一本综合久久| 窝窝影院91人妻| 国产极品精品免费视频能看的| 国产精品久久久人人做人人爽| 日日干狠狠操夜夜爽| 狂野欧美激情性xxxx| 国产亚洲精品av在线| 国产高潮美女av| 久久天堂一区二区三区四区| 啪啪无遮挡十八禁网站| 曰老女人黄片| 日本五十路高清| 国产精品日韩av在线免费观看| 美女cb高潮喷水在线观看 | 亚洲色图av天堂| 亚洲av五月六月丁香网| 啦啦啦免费观看视频1| 国产精品久久久av美女十八| 少妇裸体淫交视频免费看高清| 在线观看免费午夜福利视频| 国产人伦9x9x在线观看| 国产免费男女视频| 色在线成人网| 狠狠狠狠99中文字幕| 两性夫妻黄色片| 国产日本99.免费观看| 最新美女视频免费是黄的| 国产伦精品一区二区三区四那| 国产极品精品免费视频能看的| 精品国产三级普通话版| 欧美在线一区亚洲| 中亚洲国语对白在线视频| 美女扒开内裤让男人捅视频| 国产毛片a区久久久久| 97碰自拍视频| 亚洲熟妇熟女久久| 真人一进一出gif抽搐免费| 亚洲国产中文字幕在线视频| 欧美激情久久久久久爽电影| 午夜a级毛片| cao死你这个sao货| 色av中文字幕| 日韩精品中文字幕看吧| 欧美日本亚洲视频在线播放| 最近最新中文字幕大全免费视频| 国产成人欧美在线观看| 国产伦一二天堂av在线观看| 男女下面进入的视频免费午夜| 极品教师在线免费播放| 女人被狂操c到高潮| 精品久久久久久久人妻蜜臀av| 国产高清视频在线播放一区| 哪里可以看免费的av片| 男人和女人高潮做爰伦理| 欧洲精品卡2卡3卡4卡5卡区| 国产免费男女视频| 在线永久观看黄色视频| 51午夜福利影视在线观看| 亚洲人成伊人成综合网2020| 99久久精品一区二区三区| 精品国产亚洲在线| 岛国视频午夜一区免费看| 欧美zozozo另类| 黄片大片在线免费观看| 伦理电影免费视频| 久久国产精品影院| 亚洲国产看品久久| 亚洲黑人精品在线| svipshipincom国产片| 欧美乱色亚洲激情| 午夜福利欧美成人| 亚洲国产精品成人综合色| 亚洲第一欧美日韩一区二区三区| 在线十欧美十亚洲十日本专区| av在线蜜桃| 久久久久久久久久黄片| 毛片女人毛片| 欧美极品一区二区三区四区| 激情在线观看视频在线高清| 女人高潮潮喷娇喘18禁视频| 日韩欧美免费精品| 精品一区二区三区四区五区乱码| 国产亚洲精品综合一区在线观看| 国产精品综合久久久久久久免费| 亚洲精品美女久久久久99蜜臀| 久久久国产精品麻豆| 久久久色成人| 欧美最黄视频在线播放免费| 12—13女人毛片做爰片一| 亚洲av美国av| 国产欧美日韩一区二区精品| 丁香六月欧美| 一进一出抽搐gif免费好疼| 97超视频在线观看视频| 久久久久国内视频| 99热这里只有是精品50| 成人特级黄色片久久久久久久| av欧美777| 成人午夜高清在线视频| 国产久久久一区二区三区| 一个人看的www免费观看视频| 午夜福利欧美成人| 99久久无色码亚洲精品果冻| 黄色丝袜av网址大全| 国产精品久久久久久久电影 | 亚洲国产精品sss在线观看| a级毛片a级免费在线| 国产美女午夜福利| 一区二区三区国产精品乱码| 999久久久国产精品视频| www.999成人在线观看| 又大又爽又粗| 麻豆一二三区av精品| 国产高潮美女av| 18禁国产床啪视频网站| 真人一进一出gif抽搐免费| 国内精品久久久久精免费| 亚洲国产高清在线一区二区三| 少妇丰满av| 性色avwww在线观看| 久久久久精品国产欧美久久久| 网址你懂的国产日韩在线| 国产精品香港三级国产av潘金莲| 一边摸一边抽搐一进一小说| 日韩大尺度精品在线看网址| 亚洲av成人不卡在线观看播放网| bbb黄色大片| 18禁黄网站禁片午夜丰满| 国产精品久久久久久亚洲av鲁大| 色在线成人网| 男女做爰动态图高潮gif福利片| 亚洲熟妇中文字幕五十中出| 俄罗斯特黄特色一大片| 亚洲18禁久久av| 欧美最黄视频在线播放免费| 麻豆成人午夜福利视频| 国产成人一区二区三区免费视频网站| 老司机午夜福利在线观看视频| 久久午夜综合久久蜜桃| 久久久久免费精品人妻一区二区| 少妇熟女aⅴ在线视频| 成人国产综合亚洲| 精品国产超薄肉色丝袜足j| 巨乳人妻的诱惑在线观看| 欧美午夜高清在线| 国产精品九九99| 久久中文字幕一级| 热99在线观看视频| 天堂√8在线中文| 18禁国产床啪视频网站| 成年女人永久免费观看视频| 视频区欧美日本亚洲| 欧美zozozo另类| 在线观看午夜福利视频| 久久这里只有精品19| 国产精品美女特级片免费视频播放器 | 成人av在线播放网站| 欧美zozozo另类| 美女 人体艺术 gogo| 午夜亚洲福利在线播放| 欧美zozozo另类| 成人鲁丝片一二三区免费| 亚洲在线自拍视频| 欧美高清成人免费视频www| 很黄的视频免费| 九色国产91popny在线| 久久精品国产99精品国产亚洲性色| 99热精品在线国产| 日本熟妇午夜| 亚洲专区字幕在线| 天堂av国产一区二区熟女人妻| 熟女少妇亚洲综合色aaa.| 后天国语完整版免费观看| 99热6这里只有精品| 真人一进一出gif抽搐免费| 少妇的丰满在线观看| 中文在线观看免费www的网站| 99久久99久久久精品蜜桃| 变态另类成人亚洲欧美熟女| 国产亚洲av高清不卡| 999久久久精品免费观看国产| 亚洲成人中文字幕在线播放| 一进一出抽搐gif免费好疼| 亚洲自偷自拍图片 自拍| 亚洲色图av天堂| 中文亚洲av片在线观看爽| 欧美日韩精品网址| 精品国产亚洲在线| 国产精品综合久久久久久久免费| 一进一出好大好爽视频| 亚洲欧美日韩卡通动漫| 欧美av亚洲av综合av国产av| 搡老熟女国产l中国老女人| 日韩欧美在线乱码| 老鸭窝网址在线观看| 美女 人体艺术 gogo| 欧美3d第一页| 黄色丝袜av网址大全| 久久国产精品影院| 国内揄拍国产精品人妻在线| 男女之事视频高清在线观看| 三级毛片av免费| 黄色丝袜av网址大全| 一级黄色大片毛片| 国产欧美日韩一区二区三| 国产成人精品久久二区二区91| av片东京热男人的天堂| 9191精品国产免费久久| 午夜福利在线观看免费完整高清在 | 97超视频在线观看视频| 国产淫片久久久久久久久 | 国产成人精品久久二区二区91| 在线观看免费视频日本深夜| 欧美丝袜亚洲另类 | 亚洲欧美精品综合一区二区三区| ponron亚洲| 男人舔女人的私密视频| 身体一侧抽搐| 中文亚洲av片在线观看爽| 黄片小视频在线播放| 色综合亚洲欧美另类图片| 国产熟女xx| 亚洲色图av天堂| 日韩欧美国产一区二区入口| 国产91精品成人一区二区三区| 我要搜黄色片| 欧美成狂野欧美在线观看| 国产亚洲欧美98| 精品国产乱子伦一区二区三区| 日本熟妇午夜| 亚洲精品在线观看二区| 国产三级黄色录像| 亚洲熟妇中文字幕五十中出| 哪里可以看免费的av片| 国产成人影院久久av| 亚洲黑人精品在线| 成人av在线播放网站| 亚洲成a人片在线一区二区| 美女被艹到高潮喷水动态| 久久人人精品亚洲av| 亚洲精华国产精华精| 久久伊人香网站| 中文资源天堂在线| 天天躁狠狠躁夜夜躁狠狠躁| 露出奶头的视频| 精品久久蜜臀av无| 又黄又爽又免费观看的视频| 噜噜噜噜噜久久久久久91| 免费搜索国产男女视频| 精品久久久久久久久久久久久| 日本黄大片高清| 久久久久久国产a免费观看| 亚洲美女视频黄频| 男人舔女人下体高潮全视频| 国产一区二区三区在线臀色熟女| 亚洲七黄色美女视频| 午夜免费激情av| 欧美黄色淫秽网站| ponron亚洲| 女人被狂操c到高潮| 国产成人av激情在线播放| 国产成+人综合+亚洲专区| 国产精品久久久久久久电影 | 99久久精品国产亚洲精品| 国产高清videossex| 看片在线看免费视频| 欧美又色又爽又黄视频| 天天躁日日操中文字幕| 人妻丰满熟妇av一区二区三区| 国产三级在线视频| 久久久色成人| 亚洲一区二区三区不卡视频| 久久这里只有精品中国| 欧美日韩一级在线毛片| 国产精品一区二区精品视频观看| 久久香蕉国产精品| 日本撒尿小便嘘嘘汇集6| 成人高潮视频无遮挡免费网站| 男人舔女人下体高潮全视频| 日韩av在线大香蕉| 在线免费观看不下载黄p国产 | 啦啦啦韩国在线观看视频| 成人av一区二区三区在线看| 亚洲av熟女| 免费观看精品视频网站| 国产男靠女视频免费网站| 国产精品久久久久久人妻精品电影| 国内精品久久久久精免费| 精品久久久久久,| 99riav亚洲国产免费| 91九色精品人成在线观看| 亚洲国产精品sss在线观看| 国产三级黄色录像| 法律面前人人平等表现在哪些方面| 婷婷亚洲欧美| 中文字幕熟女人妻在线| xxx96com| 神马国产精品三级电影在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品国内亚洲2022精品成人| 国产不卡一卡二| 在线观看免费午夜福利视频| 国产精品99久久99久久久不卡| 丰满人妻一区二区三区视频av | 国产黄片美女视频| a级毛片a级免费在线| 欧洲精品卡2卡3卡4卡5卡区| 999久久久国产精品视频| 99热只有精品国产| 别揉我奶头~嗯~啊~动态视频| 免费在线观看视频国产中文字幕亚洲| 精品乱码久久久久久99久播| 免费在线观看亚洲国产| 婷婷亚洲欧美| 国产一区二区三区视频了| 九色成人免费人妻av| 欧美另类亚洲清纯唯美| 一级黄色大片毛片| 久久久水蜜桃国产精品网| 这个男人来自地球电影免费观看| 99久久精品国产亚洲精品| 91久久精品国产一区二区成人 | 桃红色精品国产亚洲av| 特大巨黑吊av在线直播| 99国产精品99久久久久| 黄色 视频免费看| 亚洲精品一区av在线观看| 精华霜和精华液先用哪个| 亚洲九九香蕉| 亚洲 国产 在线| 老汉色av国产亚洲站长工具| 99久久无色码亚洲精品果冻| 女人被狂操c到高潮| 99国产精品99久久久久| 欧美日韩瑟瑟在线播放| 不卡一级毛片| 国产高潮美女av| 黄片小视频在线播放| 毛片女人毛片| 亚洲在线观看片| 精品国产超薄肉色丝袜足j| 国产91精品成人一区二区三区| 99国产精品一区二区蜜桃av| 91麻豆av在线| 岛国在线观看网站| 亚洲成人中文字幕在线播放| 精品国产乱码久久久久久男人| 亚洲第一欧美日韩一区二区三区| 精品一区二区三区四区五区乱码| 久久精品亚洲精品国产色婷小说| 欧美日本亚洲视频在线播放| 国产主播在线观看一区二区| 久久亚洲真实| 岛国在线观看网站| 午夜福利高清视频| 亚洲熟女毛片儿| 国产欧美日韩精品亚洲av| 国产欧美日韩一区二区精品| 日本一本二区三区精品| 国产精品久久久久久久电影 | 日韩欧美在线二视频| 国产毛片a区久久久久| 日韩成人在线观看一区二区三区| 中文字幕熟女人妻在线| 国产成人av教育| 婷婷亚洲欧美| 国产又色又爽无遮挡免费看| 麻豆av在线久日| xxx96com| 免费看a级黄色片| 国内毛片毛片毛片毛片毛片| 成人亚洲精品av一区二区| 全区人妻精品视频| 90打野战视频偷拍视频| 在线观看日韩欧美| 久久久久久久久中文| 亚洲自拍偷在线| 俺也久久电影网| 天堂网av新在线| 亚洲精品在线观看二区| 香蕉丝袜av| 亚洲第一欧美日韩一区二区三区| 天天一区二区日本电影三级| 亚洲国产精品sss在线观看| 99久久无色码亚洲精品果冻| 亚洲一区高清亚洲精品| 婷婷亚洲欧美| 欧美在线黄色| 欧美成人性av电影在线观看| 法律面前人人平等表现在哪些方面| 国产精品98久久久久久宅男小说| 美女高潮喷水抽搐中文字幕| 操出白浆在线播放| 9191精品国产免费久久| av中文乱码字幕在线| a级毛片a级免费在线| 国产精品亚洲av一区麻豆| 国内精品一区二区在线观看| 久久这里只有精品中国| www.www免费av| 级片在线观看| 成人国产一区最新在线观看| 中文字幕熟女人妻在线| 美女扒开内裤让男人捅视频| 在线观看66精品国产| 亚洲18禁久久av| 国产亚洲欧美98| 亚洲人成网站在线播放欧美日韩| 色在线成人网| 国模一区二区三区四区视频 | 亚洲精品在线观看二区| 国产成人精品无人区| xxx96com| 欧美+亚洲+日韩+国产| 国产黄色小视频在线观看| 观看免费一级毛片| 日本五十路高清| 老鸭窝网址在线观看| 久久久精品大字幕| 成人国产一区最新在线观看| 观看美女的网站| svipshipincom国产片| 男人舔女人的私密视频| 舔av片在线| 法律面前人人平等表现在哪些方面| av天堂中文字幕网| 天堂√8在线中文| 91麻豆av在线| 三级国产精品欧美在线观看 | 亚洲一区二区三区不卡视频| 深夜精品福利| 亚洲欧美精品综合久久99| 日韩人妻高清精品专区| avwww免费| 搡老妇女老女人老熟妇| 国产欧美日韩精品一区二区| 黄色女人牲交| 99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 欧美成人性av电影在线观看| 国产成人精品久久二区二区免费| 99精品欧美一区二区三区四区| 精品久久蜜臀av无| 国产精品综合久久久久久久免费| 久久天躁狠狠躁夜夜2o2o| 麻豆一二三区av精品| 香蕉av资源在线| www.精华液| 亚洲av成人不卡在线观看播放网| 18禁裸乳无遮挡免费网站照片| 欧美乱码精品一区二区三区| 久久久成人免费电影| 国产麻豆成人av免费视频| 中文亚洲av片在线观看爽| 久久久久久久精品吃奶| 亚洲午夜理论影院| 97超视频在线观看视频| 成人三级做爰电影| 好男人电影高清在线观看| 99riav亚洲国产免费| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品粉嫩美女一区| 午夜久久久久精精品| 一a级毛片在线观看| 亚洲成a人片在线一区二区| 三级国产精品欧美在线观看 | 亚洲一区二区三区不卡视频| 99在线人妻在线中文字幕| 国产aⅴ精品一区二区三区波| 97碰自拍视频| 国产精品久久久久久人妻精品电影| 亚洲av片天天在线观看| 国产私拍福利视频在线观看| 性欧美人与动物交配| 亚洲一区二区三区色噜噜| 亚洲av熟女| 亚洲一区二区三区不卡视频| 国产精品一区二区三区四区久久| 欧美中文综合在线视频| 人人妻人人澡欧美一区二区| 一进一出抽搐动态| 亚洲中文字幕一区二区三区有码在线看 | 天天躁狠狠躁夜夜躁狠狠躁| 99久久精品国产亚洲精品| 悠悠久久av| 欧美激情在线99| 91老司机精品| 久久精品aⅴ一区二区三区四区| aaaaa片日本免费| 日韩免费av在线播放| 精品欧美国产一区二区三| 黑人巨大精品欧美一区二区mp4| 久久久久久久精品吃奶| 午夜日韩欧美国产| 亚洲国产欧美人成| 中文在线观看免费www的网站| 精品国产三级普通话版| 久久久久国产一级毛片高清牌| 午夜福利18| 97超级碰碰碰精品色视频在线观看| 午夜视频精品福利| 成年人黄色毛片网站| 黑人巨大精品欧美一区二区mp4| 国产伦人伦偷精品视频| 99热精品在线国产| 中文字幕人妻丝袜一区二区| 日韩欧美在线二视频| 久久精品aⅴ一区二区三区四区| 国产v大片淫在线免费观看| 人人妻人人澡欧美一区二区| 欧美日韩福利视频一区二区| 一区二区三区激情视频| 色精品久久人妻99蜜桃| 一个人看的www免费观看视频| 亚洲aⅴ乱码一区二区在线播放| 搡老熟女国产l中国老女人| 床上黄色一级片| 亚洲av成人精品一区久久| 国产高清视频在线观看网站| 观看免费一级毛片| 久久精品国产清高在天天线| 国产精品永久免费网站| 男女做爰动态图高潮gif福利片| 人妻久久中文字幕网| 成人三级黄色视频| 首页视频小说图片口味搜索| 日本与韩国留学比较| e午夜精品久久久久久久| 国产乱人视频| 可以在线观看的亚洲视频| 亚洲国产高清在线一区二区三| 中国美女看黄片| 老熟妇乱子伦视频在线观看| 色播亚洲综合网| 岛国在线观看网站| cao死你这个sao货| 久久久久国产精品人妻aⅴ院| 亚洲一区二区三区不卡视频| 久久婷婷人人爽人人干人人爱| 校园春色视频在线观看| 一区福利在线观看| 精品久久久久久成人av| 国产免费av片在线观看野外av| 国产人伦9x9x在线观看| 美女黄网站色视频| 精品久久久久久久久久免费视频| 老汉色av国产亚洲站长工具| 成人欧美大片| 色综合站精品国产| 国产亚洲精品综合一区在线观看| 亚洲性夜色夜夜综合| 黑人操中国人逼视频| 色综合站精品国产| 欧美高清成人免费视频www| 午夜亚洲福利在线播放| 欧美绝顶高潮抽搐喷水| 制服丝袜大香蕉在线| 黄色日韩在线| 午夜免费激情av| 一区二区三区高清视频在线| 在线看三级毛片| 欧美av亚洲av综合av国产av| 欧美黄色淫秽网站| 一级a爱片免费观看的视频| 久久草成人影院| 国产精品香港三级国产av潘金莲| 欧美中文综合在线视频| 欧美午夜高清在线| 国产aⅴ精品一区二区三区波| 久久久久久久久久黄片| 高潮久久久久久久久久久不卡| 天堂√8在线中文| 精品久久久久久久人妻蜜臀av| 天天添夜夜摸| 亚洲最大成人中文| 日本 欧美在线| 久久精品91蜜桃| 一级作爱视频免费观看| 国内精品美女久久久久久| 精品熟女少妇八av免费久了| 亚洲精品在线观看二区| 欧美黄色淫秽网站| 国产高清激情床上av| 久久人妻av系列| 欧美一区二区国产精品久久精品| 在线观看舔阴道视频| 国产黄色小视频在线观看| 欧美不卡视频在线免费观看| 国模一区二区三区四区视频 | 精品国产乱码久久久久久男人| 亚洲在线观看片| 欧美黄色片欧美黄色片| 日日摸夜夜添夜夜添小说| 亚洲av成人av| 久久午夜综合久久蜜桃|