• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Partition coefficient prediction of Baker's yeast invertase in aqueous two phase systems using hybrid group method data handling neural network

    2017-05-28 10:23:11CarlosEduardodeArajoPadilhargioDantasdeOliveiraniorDomingosFabianodeSantanaSouzaJacksonArajodeOliveiraGoreteRibeirodeMacedoEveraldoSilvinodosSantos

    Carlos Eduardo de Araújo Padilha,Sérgio Dantas de Oliveira Júnior,Domingos Fabiano de Santana Souza,Jackson Araújo de Oliveira,Gorete Ribeiro de Macedo,Everaldo Silvino dos Santos*

    Laboratory of Biochemical Engineering,Chemical Engineering Department,Federal University of Rio Grande do Norte(UFRN),Natal,RN,Brazil

    1.Introduction

    Invertase(β-fructofuronoside fructohydrolase;E.C.3.2.1.26)is a glucoenzyme that catalyzes the hydrolysis of sucrose producing an equimolar mixture of glucose and fructose.It can be found in animal,superior plants, filamentous fungi,yeast and bacteria[1–5].The inverted sugar,obtained from the hydrolysis reaction,has a lower crystallinity than sucrose therefore it can be used in the food industry in order to obtain fresh and soft products.Also,it has been used in the production of fruit-jelly,candy,chocolate and biscuits[6,7].

    The partition using Aqueous Two Phase System(ATPS),a kind of liquid–liquid extraction,has been used as a powerful tool during the separation and purification protocol of proteins,nucleic acids,microorganisms as well as plants and animal cells[4,8,9].When compared to the other techniques used in downstream processing ATPS shows many advantages such as a lower cost,reduced interfacial strength,biocompatibility,non-toxicity as well as the possibility of continuous process operation and facility to scale-up[4,10–12].ATPS is mainly built up by mixture of two hydrophilic polymers(e.g.PEG/Dextran)or from a polymer and an inorganic salt with a higher ionic strength(e.g.PEG/potassium phosphate,PEG/sodium citrate,PEG/ammonium sulfate,etc.).After mixing,larger aggregates are built up and the system components will tend to separate in two phase mainly by steric exclusion[13].Most studies with ATPS exploited the effects under partition caused by the physical–chemical properties of the solute such as hydrophobicity,charge,size,concentration and bioaffinity,or by changing the system parameters such as kind,constituents,tie-line length(TLL),pH and temperature[14].In fact,the mechanisms responsible by the biomolecules partition using ATPS are quite complex as well as are not easily predicted.The interactions between the biomolecules and the surrounding phase happen mainly due to Van der Waals forces,hydrogen bond,hydrophobic interaction and also electrostatic forces[13].Even though there has been an advance on the thermodynamic models applied to ATPS such as Flory-Huggins,Wilson,UNIFAC[11,15–17],all of them show limitations in predicting the partition behavior of proteins from broth.

    On the other hand,models based on intelligent systems are playing an important role in the resolution of problems in the field of science and engineering.They have been used when the time and efforts spent to resolution of sophisticated equations as well as the use of simplified theory are not able to predict the data satisfactorily[18–22].The Group Method Data Handling(GMDH)is an inductive modeling method based on the Backpropagation Artificial Neural Network(BPANN)as well as in the natural selection concept[23].The GMDH organizes their own architecture by using a heuristic method of self-organization as well as they can determine the processing layer number and the useful input variables.As a result,a high-order polynomial expression which establishes relevant links between input and output variables is available to the user[24].Thus,this algorithm has been used for modeling,prediction,data mining and system identification[24–28].The mathematical simplicity of GMDH as well as the wide availability of neural network software has increased the interest of research groups regarding the direct modeling of liquid–liquid separation processes[29],including the prediction of partition coefficients of biomolecules[20,30].

    In this sense,the objective of this paper was to develop a hybrid GMDH neural network for predicting partition coefficients of invertase from Baker's yeast using a PEG/MgSO4-ATPS.Partition experimental data were used in the training of hybrid GMDH neural network in which its performance was compared to both an original GMDH network and a BPANN by using different statistical metrics.

    2.Material and Methods

    2.1.Material

    Polyethylene glycol(PEG)with an average molar mass of1500,4000 and 6000;hydrochloric acid,sodium hydroxide,monobasic potassium phosphate anhydrous,dibasic potassium phosphate anhydrous,magnesium sulfate heptahydrate and manganese sulfate monohydrate were acquired from Synth(Diadema,S?o Paulo/Brazil)and used in PEG/MgSO4-Aqueous Two Phase Systems.Baker's yeasts were acquired from a local supplier.Double distilled water used in the experiments was from a MilliQ system.

    2.2.Baker's yeast extract

    Baker's yeast was suspended with 0.2 mol·L?1acetate pH 4.0–5.0 and 0.2 mol·L?1phosphate pH 6.0–7.0 buffers then stirred using a magnetic stirrer for 30 min.The suspension was sonicated for 5 min(Ultrasonic Cleaner,Unique)followed by centrifugation(Centrifuge 5804 R,Eppendorf)at930×gfor 15 min at4°C.The supernatant was withdrawn and freezer stocked at?4 °C until the use in the ATPS experiments.

    2.3.Aqueous Two Phase Systems—ATPS

    Stock solutions of PEG 1500,4000 and 6000(50wt%)as well as MgSO4(25wt%)were prepared using double distilled water.In order to avoid protein precipitation,the solutions containing PEG,MgSO4,the co-solute MnSO4and double distilled water were previously mixed using a conical tube then the cell homogenate was added,according to Karka? and ?nal[4].The system pH was adjusted with 3 mol·L?1HClor3 mol·L?1NaOH.The total weight of the phase system was 10 g and operational conditions used can be observed in Table 1.Tubes were stirred during 45 s at 25°C and then centrifuge at 930×gfor 15 min at 25°C.The phases were collected using an automatic pipette followed by the enzymatic activity assay.

    Partition coefficient is defined as the ratio of the enzymatic activity in the organic(top)phase and enzymatic activity in the aqueous(bottom)phase,as shown in Eq.(1).

    AtandAbare the enzymatic activity(U·ml?1)in the PEG-rich phase and the salt-rich phase,respectively.

    2.4.Enzymatic activity assay

    Invertase activity was determined by measuring the quantity of reducing sugars formed during the hydrolysis of sucrose using the 3,5-dinitrosalicylic acid(DNS)method[31,32].Reaction was carried out using 0.6 ml of 0.2 mol·L?1acetate buffer(pH 5.0),0.2 ml of 0.5 mol·L?1sucrose and 0.2 ml of the invertase solution incubated at 37°C for 30 min.Then,1.0 ml of DNS reagent was added followed by boiling for 10 min.The samples were cooled at room temperature and the reducing sugars were recorded using a spectrophotometer(Thermo Spectronic model Genesys 10UV)at 540 nm.One invertase activity was de fined as the amount of enzyme which released 1.0 μmol of reducing sugars,in terms of glucose,by minute atpH 5.0 and 37°C.For the experiments the initial activity of cell homogenate was 13.4 U·ml?1.

    3.Model Formulation

    3.1.GMDH

    The GMDH algorithm is based on the most suitable selection of the quadratic polynomial expressions generated from the connection of two independent variables.Every interaction a new neuron layer is built and also increasing the order of the polynomial expressions.Generic connections between the input and output variables can be expressed by complex polynomial series such as Volterra–Kolmogorov–Gabor(VKG)[20,23,28,30,33],as shown in Eq.(2).

    X=(1,x1,x2,...,xN)is the input variables vector,a is the weights vector and^yis the predicted output.The generic VKG equation can be simplified to quadratic expressions of only two variables(Eq.(3)),with coefficients given by the column vector a(Eq.(4)).

    Every node leads to a set of coefficients a in which it can be estimated by the training group using the ordinary least squares(OLS)method.The generalization capacity of the network is evaluated by comparing the predicted data with the testing data using any statistical metrics.In the present work,the selection criteria used for the neurons selection has been the absolute average relative deviation(AARD)in percentage,as described in Eq.(5).

    In order to determine the best results,the value ofEwas minimized by taking as nullits derivative concerned to everyaicoefficient(Eq.(6)).

    Resolution of Eq.(6)is a typical problem of minimization with constraints that can be represented by a set of linear equations.Therefore by using the training data,according to Eqs.(7)and(8),the direct solution can be obtained throughout Eq.(9).

    Table 1Partitioning values obtained by hybrid and original GMDH neural network

    3.2.Hybrid GMDH neural network

    In the originalGMDHnetwork the nodes in every layer are the product of two candidates.In this approach the effect of others singular variables are neglected as well as the combinatory effect between them.This leads to the generation of less accuracy to the further nodes as well as reducing the capacity of describing systems with higher level of nonlinearity.In order to overcome the performance of the GMDH models itwas proposed the hybridization of GMDH and traditional neural network.In this case,each node is generated by any combination of the inputs up to polynomial order two,as shown in Eq.(10).Other change used to enhance the model complexity is based on the cross of the nodes of different layers.As the number of possible combinations among the nodes increases the proposed model can follow-up better the trends of nonlinearity of the systems[20,30].Similar to the original GMDH network the estimation of the parameters(a)in the hybrid GMDH network has been carried out by the OLS method.

    4.Results and Discussion

    A hybrid GMDH neural network has been used in order to predict the partition coefficients of invertase from Baker's yeast in the PEG/MgSO4Aqueous Two Phase System.A set of 67 runs has been used for the training step(66.7%of overall data)as well as the testing step(33.3%of overall data).The input variables for the hybrid GMDH neural network were the molar average mass of PEG(x1),pH(x2),PEG(x3),MgSO4(x4),cell homogenate(x5)and MnSO4(x6).In order to observe the real effect of each input variable,all input values were normalized in the range of zero to one.Partition coefficients of invertase were the output variable of the model.In Table 1 the operational conditions of runs,the experimental as well as the predicted partition coefficients obtained using both hybrid and original GMDH neural networks can be found.

    In this study,the structure of hybrid and original GMDH neural networks were developed with four and five layers of neurons,respectively.As can be seen in Fig.1,the hybrid network has six neurons at the input layer,two middle layers(with four and two neurons respectively),followed by output layer.

    Fig.1.Structure of the hybrid(a)and original GMDH(b)neural networks proposed.

    Unlike the conventional GMDH,it can be observed that in the proposed hybrid network there is crossing of the nodes from different layers,as for instance,the interaction of inputx4andx5at 2nd middle layer.The expressions generated concerned to each node at the layers as well as the total correlation function of hybrid and original GMDH neural networks are exhibited in Tables 2 and 3.In the hybrid GMDH model was observed high linear contributions ofx1andx4on theKvalues.This may be because the molecular weight of PEG and MgSO4strongly affected the phase behavior and,consequently,the enzyme partitioning[13,34].On the other hand,the input variables of original GMDH model have the same intensity impact on the response.Moreover,the effects of the cell homogenate were not incorporated in this model.

    Table 2Node expressions for the hybrid GMDH neuralnetwork used to predict the partition coefficients of invertase using ATPS

    Table 3Node expressions for the original GMDH neural network used to predict the partition coefficients of invertase using ATPS

    The statistical metrics Absolute Fraction of Variance(R2),Root Mean Square Error(RMSE),Mean Square Error(MSE),Mean Absolute Deviation(MAD)concerned to the training step as well as the testing step obtained to the hybrid GMDH neural network are reported in Table 4.

    As can be seen in Table 4 the hybrid GMDH neural network model has shown a good adequacy as well as prediction accuracy to predict the partition coefficients of invertase from Baker's yeast in the PEG/MgSO4ATPS.Also,the model showed a good generalization capacity since the statistical criteria values RMSE,MSE and MAD for the testing group were lower than the values for the training group.

    Comparison of the experimental and predicted values for the partition coefficients is shown in Fig.2.

    Table 4Statistical criteria for training and testing of the hybrid GMDH neural network

    Fig.2.Partition coefficients predicted versus experimental for both hybrid GMDH neural network and original GMDH neural network.

    As can be observed in this figure,the results for the proposed hybrid model were quite good even though some deviation can be observed to higher partition coefficients.Overall,partition coefficients lower than one were observed,showing that invertase moved to the salting phase.In fact,according to Karka? and ?nal[4]invertase shows preference to the bottom phase after the addition of the co-solute.

    The performance of the hybrid GMDH model has been also accomplished by the absolute average deviation in percentage(AARD),according to Eq.(5).A model originated from a BPANN with two processing layers each with 10 neurons has been used in order to compare with both the hybrid GMDH and original GMDH neural networks.According to Table 5,it can be observed that the AARD concerned to hybrid GMDH model is lower than the other two models,despite the smaller number of parameters involved.Therefore it shows the best fitting of this model to predict the partition coefficients of invertase of Baker's yeast in the PEG/MgSO4system.Similarly,Pazuki and Kakhki[20]showed that the hybrid GMDH model was superior to GMDH and UNIFAC-FV approaches in predicting the coefficient partition of Penicillin G Acylase in the PEG/potassium phosphate and PEG/sodium citrate.Compared to the other AARD reported in literature the data of the network are larger than those.These results can be justified by the larger range of the partition coefficients value as lower as 0.004 and as higher as 0.171,i.e.,about forty-three fold higher as can be observed in Fig.2.

    Table 5Performance comparison of the hybrid GMDH,original GMDH and BPANN models

    5.Conclusions

    A hybrid GMDH neural network built-up with three layers and nine neurons was used to predict the partition of invertase Baker's yeast in PEG/MgSO4Aqueous Two Phase Systems.The network structure allowed verifying interactions with more than two input variables byturns as well as the crossing of the neurons from different layers then showing a higher model complexity.Despite the nonlinearity degree,the hybrid model has a quite good generalization capacity,when comparing theR2,RMSE,MSE and MAD values of training and testing steps.It was also shown that proposed model has better prediction performance than both the original GMDH model and the BPANN,in terms of AARD.In general,the Hybrid GMDH neural network is a powerful tool to predict the partition coefficients of invertase in ATPS and appears as an interesting option for data treatment of other Aqueous Two Phase Systems.

    Acknowledgments

    The authors thank CAPES and Brazilian National Council of Research(CNPq)(Grant 407684/2013-1)for the financial support.

    [1]S.Talekar,V.Ghodake,A.Kate,N.Samant,C.Kumar,S.Gadagkari,Preparation and characterization of cross-linked enzyme aggregates ofSaccharomyces cerevisiaeinvertase,Aust.J.Basic Appl.Sci.4(2010)4760–4765.

    [2]Z.Lazar,E.Walczak,M.Robak,Simultaneous production of citric acid and invertase byYarrowialipolyticaSUC+transformants,Bioresour.Technol.102(2011)6982–6989.

    [3]M.C.Madhusudhan,K.S.M.S.Raghavarao,Aqueous two phase extraction of invertase from Baker's yeast:Effect of process parameters on partitioning,Process Biochem.46(2011)2014–2020.

    [4]T.Karka?,S.?nal,Characteristics of invertase partitioned in poly(ethylene glycol)/magnesium sulfate aqueous two-phase system,Biochem.Eng.J.60(2012)142–150.

    [5]G.E.A.Awad,H.Amer,E.W.El-Gammal,W.A.Helmy,M.A.Esawy,M.M.M.Elnashar,Production optimization of invertase byLactobacillus brevismm-6 and its immobilization on alginate beads,Carbohydr.Polym.93(2013)740–746.

    [6]E.J.Tomotani,M.Vitolo,Production of high-fructose syrup using immobilized invertase in membrane reactor,J.Food Eng.80(2007)662–667.

    [7]M.Plascencia-Espinosa,A.Santiago-Hernández,P.Pavón-Orozco,V.Vallejo-Becerra,S.Trejo-Estrada,A.Sosa-Peinado,C.G.Benitez-Cardoza,M.E.Hidalgo-Lara,Effect of deglycosylation on the properties of thermophilic invertase purified from the yeastCandida guilliermondiiMplla,Process Biochem.49(2014)1480–1487.

    [8]A.S.Schmidt,A.M.Ventom,J.A.Asenjo,Partitioning and purification of α-amylase in aqueous two-phase systems,Enzym.Microb.Technol.16(1994)131–142.

    [9]D.Z.Wei,J.H.Zhu,X.J.Cao,Enzymatic synthesis of cephalexin in aqueous two-phase systems,Biochem.Eng.J.11(2002)95–99.

    [10]B.R.Babu,N.K.Rastogi,K.S.M.S.Raghavarao,Liquid–liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system,Chem.Eng.Process.47(2008)83–89.

    [11]S.Shahriari,V.Taghikhani,M.Vossoughi,A.A.Safekordi,I.Alemzadeh,G.R.Pazuki,Measurement of partition coefficients of β-amylase and amyloglucosidase enzymes in aqueous two-phase systems containing poly(ethylene glycol)and Na2SO4/KH2PO4at different temperatures,Fluid Phase Equilib.292(2010)80–86.

    [12]L.Ferreira,X.Fan,L.M.Mikheeva,P.P.Madeira,L.Kurgan,V.N.Uversky,B.Y.Zaslavsky,Structural features for differences in protein partitioning in aqueous dextran-polyethylene glycol two-phase systems of different ionic compositions,Biochim.Biophys.Acta1844(2014)694–704.

    [13]J.A.Asenjo,B.A.Andrews,Aqueous two-phase systems for protein separation:A perspective,J.Chromatogr.A1218(2011)8826–8835.

    [14]I.Yücekan,S.?nal,Partitioning of invertase from tomato in poly(ethylene glycol)/sodium sulfate aqueous two-phase systems,Process Biochem.46(2011)226–232.

    [15]H.Hartounian,E.W.Kaler,S.I.Sandler,Aqueous two-phase systems.2.Protein partitioning,Ind.Eng.Chem.Res.33(1994)2294–2300.

    [16]P.A.Pess?a Filho,R.S.Mohamed,Thermodynamic modeling of the partitioning of biomolecules in aqueous two-phase systems using a modified Flory–Huggins equation,Process Biochem.39(2004)2075–2083.

    [17]S.Gautam,L.Simon,Prediction of equilibrium phase compositions and βglucosidase partition coefficient in aqueous two-phase systems,Chem.Eng.Commun.194(2006)117–128.

    [18]A.M.F.Fileti,G.A.Fischer,E.B.Tambourgi,Neural modeling of bromelain extraction by reversed micelles,Braz.Arch.Biol.Technol.53(2010)455–463.

    [19]J.Luo,W.Lin,X.Cai,J.Li,Optimization of fermentation media for enhancing nitriteoxidizing activity by artificial neural network coupling genetic algorithm,Chin.J.Chem.Eng.20(2012)950–957.

    [20]G.Pazuki,S.S.Kakhki,A hybrid GMDH neural network to investigate partition coefficients of Penicillin G Acylase in polymer-salt aqueous two-phase systems,J.Mol.Liq.188(2013)131–135.

    [21]S.Atashrouz,G.Pazuki,Y.Alimoradi,Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system,Fluid Phase Equilib.372(2014)43–48.

    [22]F.Parvizian,M.Rahimi,S.M.Hosseini,Prediction of the characteristics of a new sonochemical reactor using an expert model,Chem.Eng.Commun.203(2016)683–691.

    [23]A.G.Ivakhnenko,Polynomial theory of complex systems,IEEE Trans.Syst.Man Cybern.1(1971)364–378.

    [24]S.Z.Reyhani,H.Ghanadzadeh,L.Puigjaner,F.Recances,Estimation of liquid–liquid equilibrium for a quarternary system using the GMDH algorithm,Ind.Eng.Chem.Res.48(2009)2129–2134.

    [25]S.Ketabchi,H.Ghanadzadeh,A.Ghanadzadeh,S.Fallahi,M.Ganji,Estimation of VLE of binary systems(tert-butanol+2-ethyl-1-hexanol)and(n-butanol+2-ethyl-1-hexanol)using GMDH-type neural network,J.Chem.Thermodyn.42(2010)1352–1355.

    [26]H.Ghanadzadeh,M.Ganji,S.Fallahi,Mathematical model of liquid–liquid equilibrium for a ternary system using the GMDH-type neural network and genetic algorithm,Appl.Math.Model.36(2012)4096–4105.

    [27]T.Kondo,J.Ueno,S.Takao,Hybrid multi-layered GMDH-type neural network using principal component regression analysis and its application to medical image diagnosis of liver cancer,Procedia Comput.Sci.22(2013)172–181.

    [28]C.E.A.Padilha,C.A.A.Padilha,D.F.S.Souza,J.A.Oliveira,G.R.Macedo,E.S.Santos,Prediction of rhamnolipid breakthrough curves on activated carbon and amberlite XAD-2 using artificial neural network and group method data handling models,J.Mol.Liq.206(2015)293–299.

    [29]M.Moghadam,S.Asgharzadeh,On the application of artificial neural network for modeling liquid–liquid equilibrium,J.Mol.Liq.220(2016)339–345.

    [30]S.Abdolrahimi,B.Nasernejad,G.Pazuki,Prediction of partition coefficients of alkaloids in ionic liquids based aqueous biphasic systems using hybrid group method of data handling(GMDH)neural network,J.Mol.Liq.191(2014)79–84.

    [31]G.L.Miller,Use of dinitrosalicylic acid reagent for determination of reducing sugar,Anal.Chem.31(1959)426–428.

    [32]C.F.Assis,L.S.Costa,R.F.Melo-Silveira,R.M.Oliveira,H.A.O.Rocha,G.R.Macedo,E.S.Santos,Chitooligosaccharides antagonize the cytotoxic effect of glucosamine,World J.Microbiol.Biotechnol.28(2012)1097–1105.

    [33]A.Shabri,R.Samsundin,A hybrid GMDH and Box-Jenkins models in time series forecasting,Appl.Math.Sci.8(2014)3051–3062.

    [34]L.Ferreira,P.P.Madeira,L.Mikheeva,V.N.Uversky,B.Zaslavsky,Effect of salt additives on protein partitioning in polyethylene glycol-sodium sulfate aqueous twophase systems,Biochim.Biophys.Acta1834(2013)2859–2866.

    av网站免费在线观看视频| 美女大奶头黄色视频| 久久久久久久久久久久大奶| 91午夜精品亚洲一区二区三区| 午夜日本视频在线| 满18在线观看网站| 大陆偷拍与自拍| 国产在线免费精品| 国产精品.久久久| 国产不卡av网站在线观看| 亚洲精品美女久久久久99蜜臀 | 久久久久人妻精品一区果冻| 中文字幕制服av| 亚洲,欧美,日韩| 交换朋友夫妻互换小说| 日韩三级伦理在线观看| 美国免费a级毛片| 妹子高潮喷水视频| 在线亚洲精品国产二区图片欧美| 中文字幕制服av| 男人舔女人的私密视频| 高清毛片免费看| 极品少妇高潮喷水抽搐| 国产在线视频一区二区| 午夜av观看不卡| 国产成人免费无遮挡视频| av不卡在线播放| 涩涩av久久男人的天堂| 大陆偷拍与自拍| 国产一区二区在线观看av| 亚洲,一卡二卡三卡| 免费看av在线观看网站| 国产av一区二区精品久久| 永久免费av网站大全| 大码成人一级视频| 国产精品熟女久久久久浪| 午夜福利视频在线观看免费| 插逼视频在线观看| 日韩制服骚丝袜av| 99九九在线精品视频| 免费黄网站久久成人精品| 岛国毛片在线播放| 久久精品久久久久久噜噜老黄| 久久影院123| 人妻人人澡人人爽人人| 9191精品国产免费久久| 一二三四中文在线观看免费高清| 午夜老司机福利剧场| 亚洲婷婷狠狠爱综合网| 在线观看免费高清a一片| 在线看a的网站| 天天躁夜夜躁狠狠久久av| 制服诱惑二区| 亚洲一级一片aⅴ在线观看| 人人澡人人妻人| 高清不卡的av网站| 亚洲精品国产av成人精品| 欧美3d第一页| 国产xxxxx性猛交| 欧美+日韩+精品| 欧美日本中文国产一区发布| 亚洲国产精品一区二区三区在线| 亚洲熟女精品中文字幕| 少妇的丰满在线观看| 日本爱情动作片www.在线观看| 在线 av 中文字幕| 日韩制服丝袜自拍偷拍| 欧美老熟妇乱子伦牲交| 精品国产露脸久久av麻豆| 如日韩欧美国产精品一区二区三区| 日日撸夜夜添| 久久影院123| 我要看黄色一级片免费的| 久久99热6这里只有精品| av线在线观看网站| kizo精华| 老司机影院毛片| 只有这里有精品99| 中国三级夫妇交换| 国产精品久久久久久av不卡| 免费人妻精品一区二区三区视频| 国产 一区精品| av免费在线看不卡| www.熟女人妻精品国产 | 蜜桃国产av成人99| 男女无遮挡免费网站观看| av有码第一页| 成人黄色视频免费在线看| 一级毛片电影观看| 在线观看免费高清a一片| 久久99热6这里只有精品| 天天影视国产精品| 伦精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 波野结衣二区三区在线| 亚洲五月色婷婷综合| 韩国av在线不卡| 伊人久久国产一区二区| 久久久欧美国产精品| 国产成人精品福利久久| 插逼视频在线观看| 中文欧美无线码| 女人精品久久久久毛片| 久久热在线av| 老司机影院成人| 秋霞伦理黄片| 免费人妻精品一区二区三区视频| 日日爽夜夜爽网站| av在线app专区| 久久99一区二区三区| √禁漫天堂资源中文www| 免费黄色在线免费观看| 色5月婷婷丁香| 99香蕉大伊视频| 热re99久久国产66热| 黑人巨大精品欧美一区二区蜜桃 | 天堂8中文在线网| 婷婷色综合www| 亚洲第一av免费看| 看免费成人av毛片| 国产 一区精品| 99久久综合免费| 免费少妇av软件| 91午夜精品亚洲一区二区三区| 欧美性感艳星| 成年av动漫网址| 香蕉丝袜av| 午夜久久久在线观看| 最近的中文字幕免费完整| 欧美人与善性xxx| 又大又黄又爽视频免费| 夜夜骑夜夜射夜夜干| 日韩一区二区视频免费看| 亚洲精品,欧美精品| 日日爽夜夜爽网站| 国产精品麻豆人妻色哟哟久久| 永久免费av网站大全| 中国国产av一级| 欧美成人精品欧美一级黄| 国产成人精品福利久久| 欧美日韩视频精品一区| 国产激情久久老熟女| 免费大片18禁| 亚洲av欧美aⅴ国产| 午夜免费男女啪啪视频观看| 婷婷成人精品国产| 老女人水多毛片| 国产成人一区二区在线| 精品国产一区二区三区久久久樱花| 亚洲国产精品一区二区三区在线| 国产日韩一区二区三区精品不卡| 免费黄网站久久成人精品| 精品熟女少妇av免费看| 国产精品三级大全| 中文字幕制服av| 免费观看av网站的网址| 中文字幕最新亚洲高清| 丝瓜视频免费看黄片| 午夜免费男女啪啪视频观看| 一区二区三区精品91| 91精品伊人久久大香线蕉| 国产成人精品一,二区| 日产精品乱码卡一卡2卡三| 久久国产亚洲av麻豆专区| 亚洲第一av免费看| 两性夫妻黄色片 | 香蕉精品网在线| 999精品在线视频| 99九九在线精品视频| 国产成人aa在线观看| 高清在线视频一区二区三区| 狂野欧美激情性xxxx在线观看| av卡一久久| 女人被躁到高潮嗷嗷叫费观| 国产毛片在线视频| 久久99精品国语久久久| 久久久久人妻精品一区果冻| 9热在线视频观看99| 亚洲丝袜综合中文字幕| 午夜福利网站1000一区二区三区| 亚洲av福利一区| 国产精品熟女久久久久浪| 久久久久久久亚洲中文字幕| 一级毛片黄色毛片免费观看视频| 日本vs欧美在线观看视频| 热re99久久国产66热| 黑人巨大精品欧美一区二区蜜桃 | 久久久精品94久久精品| 亚洲四区av| 在线观看人妻少妇| 99视频精品全部免费 在线| 亚洲国产av新网站| 欧美日韩国产mv在线观看视频| 亚洲伊人色综图| 精品久久久精品久久久| 97人妻天天添夜夜摸| 日韩电影二区| 美女大奶头黄色视频| 国国产精品蜜臀av免费| 下体分泌物呈黄色| 午夜视频国产福利| 日韩人妻精品一区2区三区| 一级片'在线观看视频| 久久久久网色| 精品视频人人做人人爽| 精品福利永久在线观看| 免费久久久久久久精品成人欧美视频 | 国产亚洲午夜精品一区二区久久| 国产成人aa在线观看| 国产精品国产av在线观看| 这个男人来自地球电影免费观看 | 久久久亚洲精品成人影院| 久久久精品94久久精品| 久久精品夜色国产| 日韩在线高清观看一区二区三区| 又黄又爽又刺激的免费视频.| 久久久久精品人妻al黑| 国产精品一国产av| 在线观看美女被高潮喷水网站| 免费看av在线观看网站| 在线精品无人区一区二区三| 中文欧美无线码| 激情五月婷婷亚洲| 欧美成人午夜精品| 亚洲国产精品999| 日本色播在线视频| 久久人妻熟女aⅴ| 久久久久久人妻| 亚洲,欧美精品.| av播播在线观看一区| 国产综合精华液| 国产精品久久久久久久久免| 欧美激情国产日韩精品一区| 国产精品国产三级专区第一集| 国产成人精品婷婷| 最近最新中文字幕大全免费视频 | 成人国产av品久久久| 在线免费观看不下载黄p国产| 日本av手机在线免费观看| 久久97久久精品| 在线观看www视频免费| 欧美人与善性xxx| 免费观看a级毛片全部| 视频中文字幕在线观看| 亚洲成人一二三区av| 熟女av电影| 日产精品乱码卡一卡2卡三| 国产片内射在线| 午夜91福利影院| 观看av在线不卡| 久久久久精品久久久久真实原创| 日本av手机在线免费观看| 18禁观看日本| 中文字幕另类日韩欧美亚洲嫩草| 十分钟在线观看高清视频www| 久久精品久久精品一区二区三区| 国产亚洲一区二区精品| 亚洲人成网站在线观看播放| 日韩av不卡免费在线播放| 777米奇影视久久| 亚洲综合精品二区| 18禁观看日本| 久久午夜福利片| 一本—道久久a久久精品蜜桃钙片| 黄色毛片三级朝国网站| 熟妇人妻不卡中文字幕| 色网站视频免费| 亚洲综合色网址| 麻豆乱淫一区二区| 黄色一级大片看看| 我的女老师完整版在线观看| 女性被躁到高潮视频| 18禁国产床啪视频网站| 欧美人与善性xxx| 亚洲精品一二三| 22中文网久久字幕| 成人18禁高潮啪啪吃奶动态图| 香蕉精品网在线| 国产av码专区亚洲av| 久久人人爽人人爽人人片va| 久久久久精品性色| 尾随美女入室| 国产极品粉嫩免费观看在线| 美国免费a级毛片| 一级爰片在线观看| 中文字幕人妻丝袜制服| 国产国拍精品亚洲av在线观看| 亚洲一区二区三区欧美精品| 成人漫画全彩无遮挡| 99热这里只有是精品在线观看| 欧美激情 高清一区二区三区| 男人操女人黄网站| 一级毛片我不卡| 男女无遮挡免费网站观看| 汤姆久久久久久久影院中文字幕| 黑人猛操日本美女一级片| 51国产日韩欧美| 成年女人在线观看亚洲视频| 国产精品一国产av| 一本久久精品| 久久这里有精品视频免费| 亚洲熟女精品中文字幕| 午夜福利影视在线免费观看| 国产午夜精品一二区理论片| 欧美精品国产亚洲| 亚洲精品视频女| 97在线视频观看| 少妇人妻久久综合中文| 热re99久久国产66热| 十八禁高潮呻吟视频| 天堂中文最新版在线下载| 777米奇影视久久| 美女国产高潮福利片在线看| 亚洲久久久国产精品| 97超碰精品成人国产| 免费观看av网站的网址| 天美传媒精品一区二区| 97在线人人人人妻| 国产黄色免费在线视频| 看免费av毛片| 成年女人在线观看亚洲视频| 99热国产这里只有精品6| 精品一区二区三区视频在线| 精品少妇黑人巨大在线播放| av免费在线看不卡| 亚洲av国产av综合av卡| 在线观看免费高清a一片| 80岁老熟妇乱子伦牲交| 亚洲一级一片aⅴ在线观看| 久久99热6这里只有精品| 精品酒店卫生间| 国产精品人妻久久久影院| 97人妻天天添夜夜摸| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本欧美视频一区| 亚洲av欧美aⅴ国产| 久久久久久久精品精品| 少妇的逼水好多| 久久人人爽人人爽人人片va| 精品国产一区二区三区四区第35| 中国三级夫妇交换| tube8黄色片| 最近最新中文字幕免费大全7| 伊人久久国产一区二区| 99热网站在线观看| 丝瓜视频免费看黄片| 美女主播在线视频| 成人二区视频| 男人操女人黄网站| 女人被躁到高潮嗷嗷叫费观| 免费观看a级毛片全部| 婷婷成人精品国产| 69精品国产乱码久久久| 超碰97精品在线观看| 亚洲精品久久久久久婷婷小说| 精品一区二区三区视频在线| 成人毛片60女人毛片免费| 欧美人与性动交α欧美软件 | 欧美xxxx性猛交bbbb| 精品熟女少妇av免费看| 最近手机中文字幕大全| 制服丝袜香蕉在线| 在线 av 中文字幕| 国产精品 国内视频| 亚洲欧美一区二区三区国产| 2022亚洲国产成人精品| 建设人人有责人人尽责人人享有的| 久久免费观看电影| 麻豆乱淫一区二区| 国产精品无大码| 亚洲成人一二三区av| 欧美精品一区二区免费开放| 欧美日韩亚洲高清精品| 久久精品久久久久久噜噜老黄| 中文字幕免费在线视频6| 看非洲黑人一级黄片| 久久久久久久大尺度免费视频| 日本色播在线视频| 成年av动漫网址| 久久这里只有精品19| 国产乱人偷精品视频| 久久久久久伊人网av| 乱人伦中国视频| www.色视频.com| 在线观看人妻少妇| 高清av免费在线| 久热这里只有精品99| √禁漫天堂资源中文www| 少妇被粗大的猛进出69影院 | 成人综合一区亚洲| 免费av中文字幕在线| 国产精品人妻久久久久久| 两个人看的免费小视频| 九草在线视频观看| 亚洲国产最新在线播放| 亚洲第一区二区三区不卡| 99久国产av精品国产电影| 最近最新中文字幕大全免费视频 | 99香蕉大伊视频| 天天躁夜夜躁狠狠躁躁| 亚洲av中文av极速乱| 少妇熟女欧美另类| 欧美日韩视频精品一区| 丝瓜视频免费看黄片| 女人精品久久久久毛片| 久久狼人影院| 欧美另类一区| 99re6热这里在线精品视频| 久久人人爽人人片av| 天天躁夜夜躁狠狠久久av| 一边摸一边做爽爽视频免费| 69精品国产乱码久久久| 伊人久久国产一区二区| 国产成人精品婷婷| 宅男免费午夜| 啦啦啦视频在线资源免费观看| 大香蕉久久网| 亚洲精品国产av成人精品| 久久99一区二区三区| 最近的中文字幕免费完整| 国产精品成人在线| 亚洲精品国产av蜜桃| 亚洲综合色惰| 精品一品国产午夜福利视频| 久久人人爽av亚洲精品天堂| 成人免费观看视频高清| 一级毛片我不卡| 最近最新中文字幕大全免费视频 | 人人妻人人澡人人看| 精品亚洲乱码少妇综合久久| 欧美精品国产亚洲| 免费看不卡的av| 观看美女的网站| 色94色欧美一区二区| 日韩免费高清中文字幕av| 国产免费一级a男人的天堂| 国产黄色视频一区二区在线观看| 香蕉国产在线看| 成年av动漫网址| 亚洲一级一片aⅴ在线观看| 亚洲丝袜综合中文字幕| 色视频在线一区二区三区| 国产免费现黄频在线看| 老司机亚洲免费影院| 精品人妻偷拍中文字幕| 国产亚洲一区二区精品| 国产一区二区在线观看av| av在线老鸭窝| 中文字幕最新亚洲高清| 国产精品.久久久| 亚洲欧美清纯卡通| 亚洲av国产av综合av卡| 国产爽快片一区二区三区| 国产精品国产三级国产av玫瑰| 精品一区二区三卡| 亚洲情色 制服丝袜| 欧美激情极品国产一区二区三区 | 午夜日本视频在线| 亚洲国产成人一精品久久久| 亚洲精品色激情综合| 国产精品国产av在线观看| 啦啦啦中文免费视频观看日本| 精品国产一区二区三区久久久樱花| 久久久久网色| 国产黄频视频在线观看| 久久久久久人妻| 18禁裸乳无遮挡动漫免费视频| 国产av一区二区精品久久| 亚洲人与动物交配视频| 亚洲婷婷狠狠爱综合网| 最近最新中文字幕大全免费视频 | 亚洲国产精品专区欧美| 男女无遮挡免费网站观看| 久久综合国产亚洲精品| av免费观看日本| 黄色一级大片看看| 国产一级毛片在线| 久久免费观看电影| 在现免费观看毛片| 国产精品久久久久久久电影| 久久青草综合色| 久久精品国产亚洲av涩爱| 91久久精品国产一区二区三区| 欧美亚洲日本最大视频资源| 18在线观看网站| 成年av动漫网址| 日韩三级伦理在线观看| 久久av网站| 精品国产国语对白av| 欧美精品人与动牲交sv欧美| 久热久热在线精品观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲人成网站在线观看播放| 毛片一级片免费看久久久久| 伊人亚洲综合成人网| 如何舔出高潮| xxx大片免费视频| 午夜福利,免费看| 9191精品国产免费久久| 1024视频免费在线观看| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲av片在线观看秒播厂| 亚洲欧洲日产国产| 女人久久www免费人成看片| 国产亚洲精品久久久com| 这个男人来自地球电影免费观看 | 丰满饥渴人妻一区二区三| 国产麻豆69| 成年动漫av网址| av天堂久久9| 免费av不卡在线播放| 熟女人妻精品中文字幕| 国产一区二区在线观看日韩| 男女无遮挡免费网站观看| 丰满迷人的少妇在线观看| www.av在线官网国产| 2021少妇久久久久久久久久久| 国产精品国产三级专区第一集| 乱人伦中国视频| 久久久精品94久久精品| 性高湖久久久久久久久免费观看| 精品一区二区三区视频在线| 波多野结衣一区麻豆| 久久久a久久爽久久v久久| 少妇的逼好多水| 国产在线免费精品| 国产 精品1| 26uuu在线亚洲综合色| 国产又爽黄色视频| 亚洲色图综合在线观看| 永久免费av网站大全| 中文字幕亚洲精品专区| 亚洲内射少妇av| 大香蕉久久网| 狂野欧美激情性bbbbbb| www.色视频.com| 国产午夜精品一二区理论片| 99九九在线精品视频| 国产精品国产三级专区第一集| av在线app专区| 久久热在线av| 午夜福利在线观看免费完整高清在| 亚洲成人一二三区av| 日韩三级伦理在线观看| 国产一区二区三区综合在线观看 | av播播在线观看一区| 少妇精品久久久久久久| 日本爱情动作片www.在线观看| 国产成人精品无人区| 三上悠亚av全集在线观看| 多毛熟女@视频| 女性生殖器流出的白浆| 亚洲精品第二区| 我的女老师完整版在线观看| 久久久久久久久久成人| 免费日韩欧美在线观看| 日韩伦理黄色片| 久久久精品免费免费高清| 精品卡一卡二卡四卡免费| 视频在线观看一区二区三区| 91成人精品电影| 人人妻人人添人人爽欧美一区卜| 高清黄色对白视频在线免费看| 女的被弄到高潮叫床怎么办| 免费av中文字幕在线| 免费高清在线观看日韩| 韩国高清视频一区二区三区| 亚洲国产欧美在线一区| 五月开心婷婷网| 日韩 亚洲 欧美在线| av片东京热男人的天堂| 欧美人与善性xxx| 国产片特级美女逼逼视频| 日韩不卡一区二区三区视频在线| kizo精华| 99久久精品国产国产毛片| 最黄视频免费看| av视频免费观看在线观看| 一级毛片我不卡| av免费观看日本| 久久久精品免费免费高清| 精品国产国语对白av| 午夜福利网站1000一区二区三区| 欧美成人午夜免费资源| 丰满乱子伦码专区| 你懂的网址亚洲精品在线观看| 如何舔出高潮| 男女国产视频网站| 久久人妻熟女aⅴ| 中文字幕免费在线视频6| 欧美精品av麻豆av| 亚洲欧美精品自产自拍| 狠狠精品人妻久久久久久综合| 欧美少妇被猛烈插入视频| 美女脱内裤让男人舔精品视频| 国产69精品久久久久777片| 久久人人爽人人爽人人片va| 亚洲av电影在线进入| 亚洲av综合色区一区| 夫妻午夜视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩亚洲高清精品| 成人影院久久| 永久网站在线| 久久精品国产亚洲av天美| 在线观看美女被高潮喷水网站| 美女大奶头黄色视频| 老女人水多毛片| 啦啦啦视频在线资源免费观看| 国产极品天堂在线| 日韩视频在线欧美| 丝袜美足系列| 91aial.com中文字幕在线观看| 午夜免费观看性视频| 午夜福利影视在线免费观看|