• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Catalytic ozonation of thymol in reverse osmosis concentrate with core/shell Fe3O4@SiO2@Yb2O3 catalyst:Parameter optimization and degradation pathway☆

    2017-05-28 10:23:14LiangWangAnqiLiuZhaohuiZhangBinZhaoYingmingXiaYunTan

    Liang Wang ,Anqi Liu ,Zhaohui Zhang ,,*,Bin Zhao ,,Yingming Xia ,Yun Tan

    1 State Key Laboratory of Separation Membranes and Membrane Processes,Tianjin Polytechnic University,Tianjin 300387,China

    2 Department of Environmental Engineering,Tianjin Polytechnic University,Tianjin 300387,China

    1.Introduction

    Concerns about the fresh water are growing due to its limitation on quantity and distribution,especially in arid areas.The reuse of the effluent from the municipal wastewater treatment plants(WWTPs)and chemical pharmaceutical industries has become a hot spot in environmental sciences and technologies[1].Reverse osmosis(RO)has been con firmed to be a highly effective and reliable technology for desalination and advanced wastewater treatment for water reuse.However,the RO concentrates remain an unsolved problem.

    The salinity level of the RO concentrates is high,which markedly inhibits the growth and activity of microorganism.Therefore,the organic matters concentrated in the RO concentrates,including pesticides,pharmaceutical products and other refractory chemicals[2,3],can hardly be removed by biodegradation processes[4–7].Direct discharge of RO concentrates into the aqueous environment without effective treatment could be hazardous to the aquatic ecosystem.Therefore,further treatment of the RO concentrates is necessary and crucial[8,9].

    Thymol is a common phenolic antiseptic.It is widely used in cosmetics,food,and pharmaceuticals[10].Thymol has often been detected in municipal and pharmaceutical wastewater[11].Even though the ratio between the measured environmental concentrations(MEC)and the predicted no effect concentration(PNEC)indicated the urgent risk of thymol to the aquatic organisms was limited,its longterm and chronic adverse effect,such as endocrine disruption,was not negligible[12].Thymol concentrations in the RO concentrates are several-fold higher than those in the original wastewater,and thus the harm will be markedly increased.

    Techniques based on hydroxyl radicals(?OH)are promising for effective degradation of organic contaminants in RO concentrates.Eversloh[13]used electrochemical oxidation with boron-doped diamond electrodes to degrade iopromide in reverse osmosis concentrate.Greenlee[14]used O3/H2O2to decompose the phosphonate antiscalants used for reverse osmosis desalination,and results showed that ozone dosage,accompanying components,pH,and H2O2concentration had great impacts on the degradation kinetics.Justo[15]used UV/H2O2to dispose the RO concentrates and demonstrated that high oxidant dosage was necessary to ensure the complete removal of all the target micro-pollutants from the brines.

    Due to the high oxidative activity,ozonation has been extensively employed as pre-treatment or post-treatment technology for wastewater treatment[16,17].The removal of organic substances by ozonation is mainly through their direct reaction with O3as well as through the oxidation with?OH produced by ozone decomposition in aqueous solution[18–20].The direct reaction with O3is selective to certain organic pollutants in aqueous solution,while?OH is regarded as a nonselective oxidant with much stronger oxidation capacity.?OH can oxidize organic substances rapidly and produce oxygenated products.Furthermore,these products can be ultimately degraded to carbon dioxide or other low molecular organics[21–23].?OH production due to the O3self-decomposition preferentially occurs at alkaline condition.Therefore,solution pH has a great impact on the ozonation efficiency.Catalytic ozonation is another effective method to improve the efficiency of ozonation.Besides homogeneous catalysis,a variety of solids has also exhibited activity for catalytic ozonation,such as main group element oxides(Al2O3)and transition metal oxides(TiO2,Fe2O3,MnO2)[24].Due to the properties of the hybridization of unoccupied 4f levels,rare earth metals expressed an excellent catalytic activity and were widely used as catalysts in the catalytic synthetic industries and catalytic degradation of environmental contaminants[25–27].Some rare earth metals,such as La,Ce,and Gd,have been studied,and it was found that each of them had a positive effect on the improvement of catalytic activity[28–30].As a typical rare earth element,Yb has been used for the improvement of TiO2photocatalytic activity under visible light[31].However,study on the effect of Yb on catalytic ozonation is still limited.

    This study focused on the degradation of thymol in RO concentrates using ozonation with core/shell Fe3O4@SiO2@Yb2O3catalyst.The effects of initial thymol concentration,ozone dosage,initial solution pH,and catalyst dosage were studied.A possible pathway of thymol degradation in this process was proposed based on the intermediates detected.This work can provide basic data and theoretical support to the treatment of pharmaceutical RO concentrates.

    2.Materials and Methods

    2.1.Materials and chemicals

    All the chemicals and solvents used for COD measurement were of analytical grade,and were purchased from Shanghai Chemical Reagent Co.,Ltd.(Shanghai,China).The main characteristics of the simulated RO concentrates are shown in Table 1 based on the reference[13].Thymol purchased from Aladdin Reagent(China)Co.,Ltd.was spiked into the simulated RO concentrates.Deionized water was used throughout this study.

    Table 1Main characteristics of the simulated RO concentrates

    2.2.Preparation and characterization of Fe3O4@SiO2@Yb2O3

    The core/shell nanomagnetic catalyst Fe3O4@SiO2@Yb2O3was prepared according to the chemical precipitation and subsequent calcination process[32,33](Fig.1).Firstly,the Fe3O4magnetic nanoparticles were prepared based on Matijevi?'s method[32].In the procedure,KNO3and KOH were dissolved in water.FeSO4was added at constant temperature and under nitrogen protection.After stirring,black precipitate was generated.It was separated by magnetic force,and washed with absolute ethanol and distilled water for several times.The magnetic nanoparticles were then dried for use.Secondly,Fe3O4@SiO2nanoparticles were prepared[33].Fe3O4nanoparticles were dispersed in ethanol and distilled water for modification.After adding NH3·H2O and TEOS,the slurry was mechanically stirred continuously.The prepared Fe3O4@SiO2nanoparticles were collected and cleaned,and then dried.At last,Fe3O4@SiO2@Yb2O3nanoparticles were preparedviaa chemical precipitation and subsequent calcination process.Fe3O4@SiO2nanoparticles were dispersed in Yb nitrate solution.Then KOH was added in a four-neck flask.After vacuum filtration,the precipitate was washed with ethanol and dried.The dried powder was heated in a tube furnace.After calcination,Fe3O4@SiO2@Yb2O3nanoparticles were obtained.

    The morphologies of the Fe3O4@SiO2@Yb2O3nanoparticles were characterized by transmission electronic microscopy(TEM)(Tecnai G2 F30 S-Twin,Philips-FEI,Netherlands)and scanning electronic microscopy(SEM)(Hitachi-s570,Hitachi,Japan).

    2.3.Experimental procedures

    Experimental setup for thymol removal by ozonation is shown in Fig.2.O3was obtained from a CFY-3 ozone generator which used pure oxygen as the source.All the degradation experiments were carried out at25°C in a 1.5 L cylindrical Pyrex glass reactor which was equipped with a spherical coarse microporous disperser in the centre of the reactor bottom.O3was bubbled into the solution through the disperser and the residual ozone was emitted and absorbed by KI solution.

    Fig.2.Experimental setup for catalytic ozonation.

    Fig.1.Schematic diagram of the Fe3O4@SiO2@Yb2O3 preparation.

    2.4.Analytical methods

    A high performance liquid chromatograph(HPLC,1200 Agilent)was used to determine the concentration of thymol in aqueous solution,which was equipped with a C18 reversed phase column(Eclipse XDB,Agilent Technologies,USA)and a UV detector.The temperature of the HPLC system was kept at 30 °C.The injection volume was 5 μl and the mobile phase was water and acetonitrile(35:65,V/V).The flow rate of the eluent was 0.8 ml·min?1.The absorbance at 280 nm was detected.

    In order to obtain the concentrations of intermediates generated in the thymol ozonation process,experiment was conducted at a high thymol initial concentration(100 mg·L?1).The intermediates were extracted by dichloromethane several times and enriched before analysis.They were identified by gas chromatography–mass spectrometry(GC–MS)(Agilent 7890–5975)which was equipped with a HP-5(30 m × 0.32 mm × 0.25 μm)chromatographic column.The column temperature was kept at 65 °C for 1 min and increased to 190 °C at a rate of 20 °C·min?1,and then increased to 280 °C at a rate of 40 °C and kept at 280 °C for 5 min.The injector temperature was 270 °C and the source temperature was 230°C.The EI impact ionization was 70 eV and the m/z scanning ranges were from 50 to 600.Helium was used as the carrier gas at a flow rate of 1 ml·min?1.

    Acetic acid and maleic acid produced in the catalytic ozonation process were identified by an ion chromatography(IC)(Dionex model ICS2000)which was equipped with a Diones IonPac AS19 analytical column and an electrical conductivity detector.An IonPac AG19 analytical column was used as the guard column.

    The chemicaloxygen demand(COD)was determined with a standard potassium dichromate oxidation method according to the National Standard Method of China(GB11914-89).

    Fig.3.TEM(a)and SEM(b)images of the Fe3O4@SiO2@Yb2O3 catalyst.

    3.Results and Discussion

    3.1.Catalyst analysis

    TEM and SEM were useful analytical techniques for understanding the morphologies and structures of the prepared catalysts.Fig.3(a)shows the TEM image of Fe3O4@SiO2@Yb2O3.The prepared Fe3O4@SiO2@Yb2O3catalyst was nanoparticles with clear core/shell structure.The Fe3O4@SiO2particles were successfully encapsulated into the Yb2O3layer.Fig.3(b)shows the SEM image of Fe3O4@SiO2@Yb2O3.Due to the aggregation of partial Fe3O4@SiO2@Yb2O3nanoparticles,the diameters of the prepared catalyst ranged from 200 to 500 nm.

    3.2.Effect of initial thymol concentration

    Initial concentration of contaminant has a great impact on the contaminant removal as well as COD removal[34].In order to investigate the effect of initial concentration,experiments were conducted at initial pH value of 9 and ozone dosage of 16 mg·min?1with different thymol concentrations(200,100,50,and 20 mg·L?1),respectively.

    Fig.4.Effect of initial thymol concentration on thymol degradation(a)and COD removal(b)(O3 dosage=16 mg·min?1,pH=9).

    Fig.4(a)shows that with the increase in the initial thymol concentration,longer time was required to completely eradicate thymol.When the initial thymol concentration was 20 mg·L?1,it took only 5 min to remove all the thymol.However,when the initial thymol concentration was 200 mg·L?1,it cost 30 min to remove all the thymol.As shown in Fig.4(b),the removal of COD was much slower and less complete than that of the thymol.When the initial thymol concentration was 20 mg·L?1,the COD removal efficiency was 92%after 1 h.When the initial thymol concentration was 200 mg·L?1,the COD removal efficiency was 28%after 1 h.The difference in the removal efficiency between thymol and COD indicated that by-products were formed during the thymol degradation,and the by-products were more resistant to ozonation than the thymol.

    3.3.Effect of ozone dosage

    As shown in Fig.5,under the conditions of initial thymol concentration of 100 mg·L?1and initial pH value of 9,four different O3dosages,namely 8,16,32,and 48 mg·min?1,were employed to investigate the effect of O3dosage on the thymol degradation and COD removal.

    The thymol degradation rate significantly increased with the increase in the O3dosage.92%of thymol was degraded at the O3dosage of 8 mg·min?1after 30 min while thymol was completely disappeared within 10 min at the O3dosage of 48 mg·min?1.At the O3dosage of 8,16,32,and 48 mg·min?1,COD removals after 1 h were 27%,38%,46%,and 46%,respectively.By-products were more resistant to ozonation.The maximum COD removal by ozonation seemed less than 50%all the time when the initial thymol concentration was 100 mg·L?1,and excess O3was helpless with respect to the COD removal.

    Fig.5.Effect of ozone dosage on thymol degradation(a)and COD removal(b)(initial thymol concentration=100 mg·L?1,pH=9).

    3.4.Effect of initial pH value

    O3is a strong oxidant but its oxidation is selective.Direct reaction with O3is not strong enough to oxidize organic matters into CO2and H2O within a reasonable time[35].Alkaline pH is generally superior to acidic pH for O3decomposition in aqueous solution.O3decomposition yielded?OH,which exhibited much stronger oxidative activity than O3[36,37].In order to investigate the effect of initial pH value on the thymol degradation and COD removal,experiments were conducted at the initial thymol concentration of 100 mg·L?1and O3dosage of 16 mg·min?1with different initial solution pH,namely 3,6,9,and 11.

    As shown in Fig.6(a),with the increase in the initial solution pH value,the thymol removal rate increased significantly.This is because in the alkaline solution more?OH were yielded.Similar trend was also found for the COD removal in Fig.6(b).At the initial pH values of 3,6,9,and 11,the COD removals were 34%,36%,38%,and 49%after 1 h.It should be noted that the COD removals markedly increased when the pH increased from 9 to 11.Therefore,it could be concluded that,even though the by-products of the thymol ozonation were resistant to ozonation,they could be further oxidized or even mineralized by?OH generated from the O3decomposition.Increase in the?OH yield during the ozonation process was an effective way to improve the COD removal.

    Fig.6.Effect of initial pH value on thymol degradation(a)and COD removal(b)(O3 dosage=16 mg·min?1,initial thymol concentration=100 mg·L?1).

    3.5.Effect of catalyst dosage

    Due to the resonance structure of O3,one of the oxygen atoms with high electron density shows high basicity resulting in strong affinity to Lewis acid sites on the surface of metal oxides[38].Therefore,the presence of Fe3O4@SiO2@Yb2O3catalyst might accelerate the decomposition of O3into?OH.In order to investigate the effects of the catalyst dosage on the thymol degradation and COD removal,experiments with the Fe3O4@SiO2@Yb2O3catalyst of 0.2,0.5,and 1.0 g as well as without catalyst were carried out at the initial thymol concentration of 100 mg·L?1,O3dosage of 16 mg·min?1,and initial pH value of 11(Fig.7).

    The presence of the Fe3O4@SiO2@Yb2O3catalyst enhanced the process of both thymol degradation and COD removal.However,compared with the thymol degradation,the presence of catalyst and its increase were much more effective for the COD removal.Since the by-products were resistant to the ozonation,the maximum COD removal without catalyst was less than 50%.When the catalyst of 0.2 g was added into the system,the COD removal increased to 51%.Moreover,the COD removal increased with the increase in catalyst dosage,and 57%of COD was removed at the catalyst dosage of 1.0 g.This was because the presence of Fe3O4@SiO2@Yb2O3catalyst accelerated the decomposition of O3into?OH and the increase in the catalyst dosage provided more surface active sites for this conversion.The improvement of COD removal was attributed to the increase in the produced?OH as a result of the catalytic ozonation.

    Fig.7.Effect of catalyst dosage on thymol degradation(a)and COD removal(b)(O3 dosage=16 mg·min?1,initial thymol concentration=100 mg·L?1,pH=11).

    3.6.Mechanism analysis

    Maleic acid,acetic acid,and fumaric acid were identified as the main acidic by-products generated in the thymol degradation by ozonation.Their evolutions are shown in Fig.8.Acetic acid was the major byproduct.Its concentration increased during the first 30 min,but slightly decreased hereafter.The concentration of maleic acid linearly increased with time,and it was much higher than that of fumaric acid.

    Based on the intermediates identified by GC/MS,a degradation pathway of the thymol degradation by ozonation was proposed as shown in Fig.9.The para-position and ortho-position of the hydroxyl on the thymol molecular were vulnerable to the attack of O3and?OH.As a result,thymol transformed top-cymene-2,5-diol andp-cymene-2,3-diol.p-Cymene-2,5-diol andp-cymene-2,3-diol were then oxidized top-cymene-2,5-dione.The benzene ring ofp-cymene-2,5-dione was cracked and produced acidic by-products with lower molecular weight.These acidic by-products were finally mineralized to H2O and CO2.

    4.Conclusions

    A novel catalyst of Fe3O4@SiO2@Yb2O3was prepared and the degradation of thymol in RO concentrates by ozonation was investigated.The results indicated that initial thymol concentration,O3dosage,initial pH value,and catalyst dosage had great impacts on the thymol degradation by ozonation.The increase in the O3dosage,initial pH value,and catalyst dosage would accelerate the thymol degradation and COD removal;however,higher initial thymol concentration required longer time to complete the thymol removal.The optimum initial pH value in terms of the COD removal and thymol degradation was 11.The addition of Fe3O4@SiO2@Yb2O3catalyst could significantly improve the COD removal due to the enhancement in the?OH yield.Maleic acid,acetic acid and fumaric acid were the main acidic by-products of the thymol degradation by ozonation,and the degradation pathway was proposed.

    Fig.8.Time pro files of maleic acid,acetic acid,and fumaric acid concentrations during the thymol degradation by ozonation(O3 dosage=16 mg·min?1,initial thymol concentration=100 mg·L?1,pH=11,Fe3O4@SiO2@Yb2O3 dosage=1.0 g).

    Fig.9.The pathway of thymol degradation by catalytic ozonation(O3 dosage=16 mg·min?1,initial thymol concentration=100 mg·L?1,pH=11,Fe3O4@SiO2@Yb2O3 dosage=1.0 g).

    [1]S.B.Grant,J.D.Saphores,D.L.Feldman,A.J.Hamilton,T.D.Fletcher,P.L.M.Cook,M.Stewardson,B.F.Sanders,L.A.Levin,R.F.Ambrose,A.Deletic,R.Brown,S.C.Jiang,D.Rosso,W.J.Cooper,I.Marusic,Taking the “waste”out of “wastewater”for human water security and ecosystem sustainability,Science337(2012)681–686.

    [2]T.Y.Liu,C.K.Li,B.Pang,B.Van der Bruggen,X.L.Wang,Fabrication of a dual-layer(CA/PVDF)hollow fiber membrane for RO concentrate treatment,Desalination365(2015)57–69.

    [3]S.Pradhan,L.H.Fan,F.A.Roddick,Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2-BAC treatment,Chemosphere136(2015)198–203.

    [4]Y.X.Sun,Y.Gao,H.Y.Hu,F.Tang,Z.Yang,Characterization and biotoxicity assessment of dissolved organic matter in RO concentrate from a municipal wastewater reclamation reverse osmosis system,Chemosphere117(2014)545–551.

    [5]S.Malamis,E.Katsou,K.Takopoulos,P.Demetriou,M.Loizidou,Assessment of metal removal,biomass activity and RO concentrate treatment in an MBR–RO system,J.Hazard.Mater.209(2012)1–8.

    [6]X.H.Lin,S.F.Y.Li,Determination of organic pollutants in municipal reverse osmosis concentrate by electrospray ionization–quadrupole time-of- flight tandem mass spectrometry and photocalaytic degradation methods,Desalination344(2014)206–211.

    [7]A.M.Urtiaga,G.Perez,R.Ibanez,I.Ortiz,Removal of pharmaceuticals from a WWTP secondary effluent by ultra filtration/reverse osmosis followed by electrochemical oxidation of the RO concentrate,Desalination331(2013)26–34.

    [8]S.Ben Abdelmelek,J.Greaves,K.P.Ishida,W.J.Cooper,W.H.Song,Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes,Environ.Sci.Technol.45(2011)3665–3671.

    [9]Y.Zhang,K.Ghyselbrecht,R.Vanherpe,B.Meesschaert,L.Pinoy,B.Van der Bruggen,RO concentrate minimization by electrodialysis:Techno-economic analysis and environmental concerns,J.Environ.Manag.107(2012)28–36.

    [10]V.Hahn,K.Sunwoldt,A.Mikolasch,F.Schauer,Two different primary oxidation mechanisms during biotransformation of thymol by gram-positive bacteria of the genera Nocardia and Mycobacterium,Appl.Microbiol.Biotechnol.97(2013)1289–1297.

    [11]N.Nakada,T.Tanishima,H.Shinohara,K.Kiri,H.Takada,Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment,Water Res.40(2006)3297–3303.

    [12]I.Tamura,K.Kagota,Y.Yasuda,S.Yoneda,J.Morita,N.Nakada,Y.Kameda,K.Kimura,N.Tatarazako,H.Yamamoto,Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents:Triclosan,triclocarban,resorcinol,phenoxyethanol and p-thymol,J.Appl.Toxicol.33(2013)1222–1229.

    [13]C.L.Eversloh,N.Henning,M.Schulz,T.A.Ternes,Electrochemical treatment of iopromide under conditions of reverse osmosis concentrates—Elucidation of the degradation pathway,Water Res.48(2014)237–246.

    [14]L.F.Greenlee,B.D.Freeman,D.F.Lawler,Ozonation of phosphonate antiscalants used for reverse osmosis desalination:Parameter effects on the extent of oxidation,Chem.Eng.J.244(2014)505–513.

    [15]A.Justo,O.Gonzalez,J.Acena,S.Perez,D.Barcelo,C.Sans,S.Esplugas,Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2and ozone,J.Hazard.Mater.263(2013)268–274.

    [16]A.D.Coelho,C.Sans,A.Aguera,M.J.Gomez,S.Esplugas,M.Dezotti,Effects of ozone pre-treatment on diclofenac:Intermediates,biodegradability and toxicity assessment,Sci.Total Environ.407(2009)3572–3578.

    [17]D.B.Mawhinney,B.J.Vanderford,S.A.Snyder,Transformation of 1H-benzotriazole by ozone in aqueous solution,Environ.Sci.Technol.46(2012)7102–7111.

    [18]L.Zhao,J.Ma,Z.Z.Sun,X.D.Zhai,Mechanism of influence of initial pH on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation,Environ.Sci.Technol.42(2008)4002–4007.

    [19]Q.Z.Dai,L.L.Chen,W.Chen,J.M.Chen,Degradation and kinetics of phenoxyacetic acid in aqueous solution by ozonation,Sep.Purif.Technol.142(2015)287–292.

    [20]T.Nothe,H.Fahlenkamp,C.von Sonntag,Ozonation of wastewater:Rate of ozone consumption and hydroxyl radical yield,Environ.Sci.Technol.43(2009)5990–5995.

    [21]R.Rosal,A.Rodriguez,J.A.Perdigon-Melon,A.Petre,E.Garcia-Calvo,M.J.Gomez,A.Aguera,A.R.Fernandez-Alba,Degradation of caffeine and identification of the transformation products generated by ozonation,Chemosphere74(2009)825–831.

    [22]M.J.Quero-Pastor,M.C.Garrido-Perez,A.Acevedo,J.M.Quiroga,Ozonation of ibuprofen:A degradation and toxicity study,Sci.Total Environ.466(2014)957–964.

    [23]Z.Jeirani,A.Sadeghi,J.Soltan,B.Roshani,B.Rindall,Effectiveness of advanced oxidation processes for the removal of manganese and organic compounds in membrane concentrate,Sep.Purif.Technol.149(2015)110–115.

    [24]J.Nawrocki,Catalytic ozonation in water:Controversies and questions.Discussion paper,Appl.Catal.B Environ.142(2013)465–471.

    [25]H.Y.Ma,T.P.Spaniol,J.Okuda,Rare earth metal complexes supported by 1,omegadithiaalkanediyl-bridged,bis(phenolato)ligands:Synthesis,characterization and ring-opening polymerization catalysis of L-lactide,Dalton Trans.(2003)4770–4780.

    [26]Y.J.Feng,Y.H.Cui,B.Logan,Z.Q.Liu,Performance of Gd-doped Ti-based Sb-SnO2anodes for electrochemical destruction of phenol,Chemosphere70(2008)1629–1636.

    [27]S.Bingham,W.A.Daoud,Recent advances in making nano-sized TiO2visible-light active through rare-earth metal doping,J.Mater.Chem.21(2011)2041–2050.

    [28]Q.Y.Wang,G.F.Li,B.Zhao,M.Q.Shen,R.X.Zhou,The effect of La doping on the structure of Ce0.2Zr0.8O2and the catalytic performance of its supported Pd-only three-way catalyst,Appl.Catal.B Environ.101(2010)150–159.

    [29]R.C.Martins,R.M.Quinta-Ferreira,Catalytic ozonation of phenolic acids over a Mn–Ce–O catalyst,Appl.Catal.B Environ.90(2009)268–277.

    [30]M.Farbod,M.Kajbafvala,Effect of nanoparticle surface modification on the adsorption-enhanced photocatalysis of Gd/TiO2nanocomposite,Powder Technol.239(2013)434–440.

    [31]Y.F.Ma,M.Y.Xing,J.L.Zhang,B.Z.Tian,F.Chen,Synthesis of well ordered mesoporous Yb,N co-doped TiO2with superior visible photocatalytic activity,Microporous Mesoporous Mater.156(2012)145–152.

    [32]T.Sugimoto,E.Matijevi?,Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels,J.Colloid Interface Sci.74(1980)227–243.

    [33]Q.Z.Dai,J.Y.Wang,J.Yu,J.Chen,J.M.Chen,Catalytic ozonation for the degradation of acetylsalicylic acid in aqueous solution by magnetic CeO2nanometer catalyst particles,Appl.Catal.B Environ.144(2014)686–693.

    [34]T.Garoma,S.Matsumoto,Ozonation of aqueous solution containing bisphenol A:Effect of operational parameters,J.Hazard.Mater.167(2009)1185–1191.

    [35]H.H.Yan,P.Lu,Z.Q.Pan,X.Wang,Q.Y.Zhang,L.S.Li,Ce/SBA-15 as a heterogeneous ozonation catalyst for efficient mineralization of dimethyl phthalate,J.Mol.Catal.A Chem.377(2013)57–64.

    [36]M.Kuosa,J.Kallas,A.H?kkinen,Ozonation ofp-nitrophenol at different pH values of water and the influence of radicals at acidic conditions,J.Environ.Chem.Eng.3(2015)325–332.

    [37]J.Ma,M.H.Sui,T.Zhang,C.Y.Guan,Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene,Water Res.39(2005)779–786.

    [38]L.Zhao,Z.Z.Sun,J.Ma,H.L.Liu,Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution,Environ.Sci.Technol.43(2009)2047–2053.

    18禁国产床啪视频网站| 在线视频色国产色| 欧美av亚洲av综合av国产av| 成年女人永久免费观看视频| 麻豆国产av国片精品| 成人亚洲精品av一区二区| 可以在线观看毛片的网站| 成人国产综合亚洲| 在线视频色国产色| 狠狠狠狠99中文字幕| 别揉我奶头~嗯~啊~动态视频| 丰满人妻熟妇乱又伦精品不卡| 国产伦一二天堂av在线观看| 亚洲成人中文字幕在线播放| 成人午夜高清在线视频| 欧美中文综合在线视频| 国产精品亚洲一级av第二区| 欧美bdsm另类| 丝袜美腿在线中文| 国产97色在线日韩免费| 国产午夜精品论理片| 亚洲专区中文字幕在线| 九色成人免费人妻av| www.www免费av| 亚洲男人的天堂狠狠| 91九色精品人成在线观看| 亚洲中文字幕日韩| 久久久成人免费电影| 一个人免费在线观看电影| 一级作爱视频免费观看| 国产综合懂色| 国产精品乱码一区二三区的特点| 国产野战对白在线观看| 性色av乱码一区二区三区2| 国产美女午夜福利| 成人一区二区视频在线观看| 国产高清视频在线播放一区| 久久久久久大精品| 又爽又黄无遮挡网站| 韩国av一区二区三区四区| 久久精品人妻少妇| 极品教师在线免费播放| av片东京热男人的天堂| www日本在线高清视频| 亚洲成人精品中文字幕电影| 丝袜美腿在线中文| 中文在线观看免费www的网站| av福利片在线观看| 国产高清视频在线观看网站| 亚洲成av人片免费观看| 亚洲av中文字字幕乱码综合| 亚洲 欧美 日韩 在线 免费| 国产精品一区二区三区四区久久| 亚洲人与动物交配视频| 国产免费男女视频| 黄色女人牲交| 久9热在线精品视频| 国内精品久久久久精免费| 亚洲国产高清在线一区二区三| 久久精品国产清高在天天线| av女优亚洲男人天堂| 人妻丰满熟妇av一区二区三区| 国产一区二区三区视频了| 男女床上黄色一级片免费看| 亚洲av免费高清在线观看| 久久久久久久亚洲中文字幕 | 国产乱人视频| 香蕉丝袜av| 欧美中文日本在线观看视频| 国内精品一区二区在线观看| 91麻豆精品激情在线观看国产| 国产成人影院久久av| 国产综合懂色| 国产三级中文精品| av在线天堂中文字幕| 最新在线观看一区二区三区| 网址你懂的国产日韩在线| 草草在线视频免费看| 亚洲五月天丁香| 高清在线国产一区| 日韩中文字幕欧美一区二区| www.999成人在线观看| 成年人黄色毛片网站| 人妻丰满熟妇av一区二区三区| 日韩免费av在线播放| 亚洲精品国产精品久久久不卡| 51国产日韩欧美| 91在线观看av| 18禁黄网站禁片免费观看直播| 久久6这里有精品| 蜜桃久久精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 丰满的人妻完整版| 久久久色成人| 国产免费男女视频| 在线免费观看的www视频| 给我免费播放毛片高清在线观看| 9191精品国产免费久久| 国产成人系列免费观看| 欧美乱妇无乱码| 国产伦精品一区二区三区四那| 日韩欧美国产一区二区入口| 午夜亚洲福利在线播放| 国产av一区在线观看免费| 亚洲中文字幕日韩| 极品教师在线免费播放| 99久久成人亚洲精品观看| 中文亚洲av片在线观看爽| 国产91精品成人一区二区三区| 黄片大片在线免费观看| 91在线观看av| 国产精品一及| 女警被强在线播放| 日韩国内少妇激情av| 男人舔女人下体高潮全视频| 1024手机看黄色片| 国产探花极品一区二区| 亚洲美女视频黄频| 黄片大片在线免费观看| 国产亚洲精品一区二区www| 搡老岳熟女国产| 中亚洲国语对白在线视频| 真实男女啪啪啪动态图| 国产三级在线视频| 久久精品国产亚洲av涩爱 | 最近最新中文字幕大全免费视频| 中文字幕人妻熟人妻熟丝袜美 | 成年免费大片在线观看| 久久香蕉精品热| www.999成人在线观看| 无人区码免费观看不卡| 免费无遮挡裸体视频| 丰满人妻一区二区三区视频av | 国产精品久久久久久久电影 | www日本在线高清视频| 一进一出好大好爽视频| 午夜激情福利司机影院| 欧美乱码精品一区二区三区| 国产私拍福利视频在线观看| 精品无人区乱码1区二区| 免费看光身美女| 欧美午夜高清在线| 亚洲成人久久爱视频| 99国产精品一区二区三区| 国产伦精品一区二区三区视频9 | 成人特级黄色片久久久久久久| 哪里可以看免费的av片| 欧美一级毛片孕妇| 免费在线观看影片大全网站| 精品免费久久久久久久清纯| 国产探花在线观看一区二区| eeuss影院久久| 高清毛片免费观看视频网站| netflix在线观看网站| 搡老岳熟女国产| a在线观看视频网站| 成人欧美大片| 美女免费视频网站| 欧美乱妇无乱码| 久久久久免费精品人妻一区二区| 久久久成人免费电影| 成人性生交大片免费视频hd| 国产精品乱码一区二三区的特点| 亚洲熟妇熟女久久| 成年女人毛片免费观看观看9| 三级男女做爰猛烈吃奶摸视频| 国产av不卡久久| 国产精品亚洲av一区麻豆| 亚洲专区国产一区二区| 听说在线观看完整版免费高清| 午夜福利成人在线免费观看| 精品人妻偷拍中文字幕| 中国美女看黄片| 真人做人爱边吃奶动态| 国产主播在线观看一区二区| 欧美色欧美亚洲另类二区| 亚洲av五月六月丁香网| 午夜福利免费观看在线| 欧美大码av| 欧美又色又爽又黄视频| 男插女下体视频免费在线播放| 成人精品一区二区免费| 国产爱豆传媒在线观看| 国语自产精品视频在线第100页| 99热精品在线国产| 国产精品一区二区三区四区免费观看 | 最近最新免费中文字幕在线| 亚洲欧美精品综合久久99| 成人永久免费在线观看视频| 精品人妻1区二区| 欧美激情在线99| 亚洲欧美日韩高清在线视频| 国产真人三级小视频在线观看| 午夜福利视频1000在线观看| 国产精品国产高清国产av| 欧美黑人欧美精品刺激| 亚洲国产中文字幕在线视频| 日韩人妻高清精品专区| 欧美成人a在线观看| 99久久精品一区二区三区| av国产免费在线观看| 真人一进一出gif抽搐免费| 无限看片的www在线观看| 丰满人妻一区二区三区视频av | 日韩欧美 国产精品| 一个人免费在线观看电影| 亚洲av成人精品一区久久| 国产野战对白在线观看| 给我免费播放毛片高清在线观看| 色老头精品视频在线观看| 少妇的逼好多水| 精品午夜福利视频在线观看一区| 好男人电影高清在线观看| 免费人成视频x8x8入口观看| 国产激情欧美一区二区| 久久久成人免费电影| 久久久久性生活片| 国产高潮美女av| 亚洲黑人精品在线| 亚洲成av人片在线播放无| 国产精品一及| 蜜桃久久精品国产亚洲av| 好男人电影高清在线观看| 亚洲精品影视一区二区三区av| 亚洲av中文字字幕乱码综合| 久久久成人免费电影| aaaaa片日本免费| 99视频精品全部免费 在线| 听说在线观看完整版免费高清| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美bdsm另类| 国产成人av教育| 麻豆成人av在线观看| 久久久精品欧美日韩精品| 制服人妻中文乱码| 色噜噜av男人的天堂激情| 亚洲成人久久爱视频| 亚洲专区国产一区二区| 久久6这里有精品| 一级毛片高清免费大全| 99久久精品热视频| 欧美成人免费av一区二区三区| av在线蜜桃| 男女视频在线观看网站免费| 国产成+人综合+亚洲专区| www.999成人在线观看| 色av中文字幕| 久久国产乱子伦精品免费另类| tocl精华| 国产精品亚洲一级av第二区| 天美传媒精品一区二区| 亚洲中文日韩欧美视频| 波多野结衣高清作品| 欧美极品一区二区三区四区| 欧美日本亚洲视频在线播放| 国产麻豆成人av免费视频| 欧美区成人在线视频| 日韩欧美免费精品| 99久久99久久久精品蜜桃| 深夜精品福利| 欧美大码av| 精华霜和精华液先用哪个| 亚洲人与动物交配视频| 一进一出抽搐gif免费好疼| 一个人观看的视频www高清免费观看| 午夜免费男女啪啪视频观看 | 韩国av一区二区三区四区| 精品午夜福利视频在线观看一区| 99久久久亚洲精品蜜臀av| 久久天躁狠狠躁夜夜2o2o| 欧美乱色亚洲激情| 国产成人福利小说| 怎么达到女性高潮| 亚洲av免费在线观看| 午夜福利成人在线免费观看| 一级a爱片免费观看的视频| 女警被强在线播放| 国产高清视频在线播放一区| 好男人在线观看高清免费视频| 婷婷精品国产亚洲av| 日韩欧美免费精品| 亚洲一区二区三区不卡视频| 亚洲性夜色夜夜综合| 免费在线观看日本一区| 国产成年人精品一区二区| 日本在线视频免费播放| 欧美bdsm另类| 成熟少妇高潮喷水视频| 成人三级黄色视频| 女人被狂操c到高潮| 日本免费一区二区三区高清不卡| tocl精华| 精品一区二区三区人妻视频| 久久性视频一级片| 亚洲中文字幕日韩| 黄片大片在线免费观看| 在线天堂最新版资源| 99久久无色码亚洲精品果冻| 激情在线观看视频在线高清| 国内毛片毛片毛片毛片毛片| 国产亚洲精品综合一区在线观看| 久久香蕉国产精品| 免费人成在线观看视频色| 91麻豆精品激情在线观看国产| 人妻久久中文字幕网| 女人高潮潮喷娇喘18禁视频| 日本撒尿小便嘘嘘汇集6| 国产精品综合久久久久久久免费| 国产欧美日韩一区二区精品| 国内精品美女久久久久久| 中国美女看黄片| 欧美激情久久久久久爽电影| av视频在线观看入口| 国产午夜精品论理片| 色综合站精品国产| 看黄色毛片网站| 国产黄a三级三级三级人| 两个人看的免费小视频| 黄片小视频在线播放| 国产精品 欧美亚洲| 97人妻精品一区二区三区麻豆| 国内精品久久久久久久电影| 午夜福利在线在线| 国产视频内射| 亚洲成人精品中文字幕电影| 免费看日本二区| av中文乱码字幕在线| 国产美女午夜福利| 国产精品久久久久久亚洲av鲁大| 很黄的视频免费| 在线观看av片永久免费下载| 成人av在线播放网站| 国产极品精品免费视频能看的| 18禁裸乳无遮挡免费网站照片| 成年版毛片免费区| 国产精品久久视频播放| 99视频精品全部免费 在线| 亚洲精品影视一区二区三区av| 国产精品一区二区三区四区免费观看 | 精品一区二区三区av网在线观看| 欧美黑人欧美精品刺激| 怎么达到女性高潮| www.999成人在线观看| 日本黄色片子视频| 亚洲成人中文字幕在线播放| 亚洲avbb在线观看| 99久久精品热视频| 国产又黄又爽又无遮挡在线| 亚洲,欧美精品.| 国产综合懂色| 波多野结衣高清作品| 国产高清三级在线| 男女床上黄色一级片免费看| 99热精品在线国产| 欧美日韩中文字幕国产精品一区二区三区| 看黄色毛片网站| 九九热线精品视视频播放| 一级毛片高清免费大全| 黄色视频,在线免费观看| 中文字幕高清在线视频| 久久久精品欧美日韩精品| 99久久99久久久精品蜜桃| 亚洲av电影在线进入| 中文字幕av在线有码专区| 国产国拍精品亚洲av在线观看 | 亚洲成人中文字幕在线播放| 精品久久久久久成人av| 国产蜜桃级精品一区二区三区| 国内久久婷婷六月综合欲色啪| 亚洲美女视频黄频| 最新美女视频免费是黄的| 丰满人妻一区二区三区视频av | 男女做爰动态图高潮gif福利片| 欧美日韩亚洲国产一区二区在线观看| 久久婷婷人人爽人人干人人爱| 成人18禁在线播放| 亚洲av美国av| 啦啦啦韩国在线观看视频| 九色成人免费人妻av| 丁香六月欧美| 18禁在线播放成人免费| 欧美日韩瑟瑟在线播放| 亚洲精品影视一区二区三区av| 黄色成人免费大全| 国产亚洲av嫩草精品影院| 一区二区三区激情视频| 别揉我奶头~嗯~啊~动态视频| 1000部很黄的大片| 美女 人体艺术 gogo| 又粗又爽又猛毛片免费看| 非洲黑人性xxxx精品又粗又长| 精品人妻1区二区| 日本黄色片子视频| 少妇丰满av| 日本三级黄在线观看| 九九久久精品国产亚洲av麻豆| www.熟女人妻精品国产| 欧美黑人欧美精品刺激| 一区二区三区国产精品乱码| 18禁在线播放成人免费| 激情在线观看视频在线高清| 99riav亚洲国产免费| 欧美三级亚洲精品| 亚洲人与动物交配视频| 亚洲欧美日韩无卡精品| 精品久久久久久成人av| 亚洲av免费在线观看| 中文字幕久久专区| 国产精品自产拍在线观看55亚洲| 熟妇人妻久久中文字幕3abv| 久久亚洲真实| 999久久久精品免费观看国产| 真人一进一出gif抽搐免费| 在线观看av片永久免费下载| 欧美3d第一页| 久久婷婷人人爽人人干人人爱| 国产aⅴ精品一区二区三区波| 亚洲,欧美精品.| 欧美最黄视频在线播放免费| 听说在线观看完整版免费高清| 搞女人的毛片| 色精品久久人妻99蜜桃| av在线蜜桃| 少妇人妻精品综合一区二区 | 国产91精品成人一区二区三区| 淫妇啪啪啪对白视频| 国产一区二区激情短视频| 小蜜桃在线观看免费完整版高清| 一夜夜www| 网址你懂的国产日韩在线| 18禁裸乳无遮挡免费网站照片| 免费av不卡在线播放| 国产精品久久视频播放| 悠悠久久av| 老司机午夜十八禁免费视频| 亚洲精品一区av在线观看| 蜜桃亚洲精品一区二区三区| 久久久成人免费电影| 天堂网av新在线| 淫秽高清视频在线观看| 成人高潮视频无遮挡免费网站| 男女午夜视频在线观看| 午夜福利成人在线免费观看| 欧美黄色片欧美黄色片| 小蜜桃在线观看免费完整版高清| 欧美日韩乱码在线| av福利片在线观看| 精品熟女少妇八av免费久了| 色在线成人网| 日本在线视频免费播放| 变态另类丝袜制服| 老司机深夜福利视频在线观看| 日韩av在线大香蕉| 亚洲国产高清在线一区二区三| 日韩有码中文字幕| 搡老岳熟女国产| 国产在视频线在精品| 亚洲av成人av| 久久精品亚洲精品国产色婷小说| 18美女黄网站色大片免费观看| 亚洲中文字幕日韩| 精品无人区乱码1区二区| av国产免费在线观看| 一本精品99久久精品77| 亚洲无线在线观看| 色老头精品视频在线观看| 黄片大片在线免费观看| 神马国产精品三级电影在线观看| 99热这里只有精品一区| 亚洲精品美女久久久久99蜜臀| 中文字幕高清在线视频| 免费搜索国产男女视频| 两个人的视频大全免费| 久久久国产成人精品二区| 99久久精品热视频| 天堂av国产一区二区熟女人妻| 免费看美女性在线毛片视频| 一级黄色大片毛片| 国产成人av教育| 日韩 欧美 亚洲 中文字幕| 九色国产91popny在线| a级毛片a级免费在线| 国内精品一区二区在线观看| 亚洲av免费高清在线观看| 国产av在哪里看| 亚洲国产中文字幕在线视频| 九色成人免费人妻av| 特级一级黄色大片| 国产亚洲av嫩草精品影院| 亚洲精品在线观看二区| 国产久久久一区二区三区| 天堂动漫精品| 特级一级黄色大片| 免费观看的影片在线观看| 国产av在哪里看| 成人18禁在线播放| 亚洲无线在线观看| 黄色日韩在线| 午夜激情欧美在线| 男女做爰动态图高潮gif福利片| 99精品在免费线老司机午夜| 日日干狠狠操夜夜爽| 动漫黄色视频在线观看| 国产精品亚洲av一区麻豆| 国产精品一及| 亚洲无线观看免费| 日韩高清综合在线| 国产男靠女视频免费网站| 亚洲不卡免费看| 亚洲精品国产精品久久久不卡| 亚洲最大成人中文| 久9热在线精品视频| 少妇人妻一区二区三区视频| 精品久久久久久久久久久久久| 欧美性猛交黑人性爽| 成年版毛片免费区| bbb黄色大片| 国产精品香港三级国产av潘金莲| 国产色婷婷99| 国产伦人伦偷精品视频| 999久久久精品免费观看国产| 成人鲁丝片一二三区免费| 在线免费观看的www视频| 搡老熟女国产l中国老女人| 日韩高清综合在线| 亚洲美女黄片视频| 国产成人a区在线观看| 欧美日韩乱码在线| 精品一区二区三区人妻视频| 色综合欧美亚洲国产小说| 老汉色av国产亚洲站长工具| 757午夜福利合集在线观看| 国产欧美日韩一区二区精品| 欧美在线黄色| 美女被艹到高潮喷水动态| 91久久精品国产一区二区成人 | 日本一二三区视频观看| 亚洲乱码一区二区免费版| 真实男女啪啪啪动态图| 国产伦人伦偷精品视频| 麻豆久久精品国产亚洲av| 成人鲁丝片一二三区免费| 国产成年人精品一区二区| 久久精品国产亚洲av涩爱 | 日韩精品中文字幕看吧| 欧美日韩乱码在线| h日本视频在线播放| 禁无遮挡网站| 不卡一级毛片| 99精品久久久久人妻精品| 中文字幕av成人在线电影| 免费在线观看亚洲国产| 少妇人妻一区二区三区视频| 亚洲第一电影网av| 欧美黄色片欧美黄色片| 精品一区二区三区av网在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲av成人精品一区久久| 日韩欧美三级三区| 亚洲人成网站高清观看| 亚洲内射少妇av| 午夜日韩欧美国产| 国产精品精品国产色婷婷| 天天一区二区日本电影三级| 亚洲成人精品中文字幕电影| 国产黄色小视频在线观看| 熟妇人妻久久中文字幕3abv| 日韩欧美免费精品| 搞女人的毛片| 男女之事视频高清在线观看| 免费看光身美女| 欧美成人一区二区免费高清观看| 国产极品精品免费视频能看的| 国产精品美女特级片免费视频播放器| 人人妻,人人澡人人爽秒播| 亚洲第一欧美日韩一区二区三区| 国产精品av视频在线免费观看| 国产在线精品亚洲第一网站| www.999成人在线观看| 一区二区三区国产精品乱码| 在线观看美女被高潮喷水网站 | 99久久综合精品五月天人人| 久久久成人免费电影| 欧美一级a爱片免费观看看| 久久久久久久午夜电影| 国产免费男女视频| 一区二区三区免费毛片| 我的老师免费观看完整版| 一级黄片播放器| 日韩成人在线观看一区二区三区| 久久久精品大字幕| 男女视频在线观看网站免费| 国产三级在线视频| 亚洲av成人精品一区久久| 69av精品久久久久久| 婷婷精品国产亚洲av在线| 久久久久久久亚洲中文字幕 | 国产精品永久免费网站| 欧美一区二区亚洲| 亚洲一区二区三区色噜噜| 亚洲人成网站在线播| 听说在线观看完整版免费高清| 三级国产精品欧美在线观看| 欧美国产日韩亚洲一区| 制服丝袜大香蕉在线| 欧美一区二区精品小视频在线| 日韩欧美国产在线观看| 亚洲欧美一区二区三区黑人| 欧美+亚洲+日韩+国产| 国产高清三级在线| 啪啪无遮挡十八禁网站| 亚洲精品一区av在线观看| 脱女人内裤的视频| 免费看十八禁软件| 精品久久久久久,|