• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Catalytic ozonation of thymol in reverse osmosis concentrate with core/shell Fe3O4@SiO2@Yb2O3 catalyst:Parameter optimization and degradation pathway☆

    2017-05-28 10:23:14LiangWangAnqiLiuZhaohuiZhangBinZhaoYingmingXiaYunTan

    Liang Wang ,Anqi Liu ,Zhaohui Zhang ,,*,Bin Zhao ,,Yingming Xia ,Yun Tan

    1 State Key Laboratory of Separation Membranes and Membrane Processes,Tianjin Polytechnic University,Tianjin 300387,China

    2 Department of Environmental Engineering,Tianjin Polytechnic University,Tianjin 300387,China

    1.Introduction

    Concerns about the fresh water are growing due to its limitation on quantity and distribution,especially in arid areas.The reuse of the effluent from the municipal wastewater treatment plants(WWTPs)and chemical pharmaceutical industries has become a hot spot in environmental sciences and technologies[1].Reverse osmosis(RO)has been con firmed to be a highly effective and reliable technology for desalination and advanced wastewater treatment for water reuse.However,the RO concentrates remain an unsolved problem.

    The salinity level of the RO concentrates is high,which markedly inhibits the growth and activity of microorganism.Therefore,the organic matters concentrated in the RO concentrates,including pesticides,pharmaceutical products and other refractory chemicals[2,3],can hardly be removed by biodegradation processes[4–7].Direct discharge of RO concentrates into the aqueous environment without effective treatment could be hazardous to the aquatic ecosystem.Therefore,further treatment of the RO concentrates is necessary and crucial[8,9].

    Thymol is a common phenolic antiseptic.It is widely used in cosmetics,food,and pharmaceuticals[10].Thymol has often been detected in municipal and pharmaceutical wastewater[11].Even though the ratio between the measured environmental concentrations(MEC)and the predicted no effect concentration(PNEC)indicated the urgent risk of thymol to the aquatic organisms was limited,its longterm and chronic adverse effect,such as endocrine disruption,was not negligible[12].Thymol concentrations in the RO concentrates are several-fold higher than those in the original wastewater,and thus the harm will be markedly increased.

    Techniques based on hydroxyl radicals(?OH)are promising for effective degradation of organic contaminants in RO concentrates.Eversloh[13]used electrochemical oxidation with boron-doped diamond electrodes to degrade iopromide in reverse osmosis concentrate.Greenlee[14]used O3/H2O2to decompose the phosphonate antiscalants used for reverse osmosis desalination,and results showed that ozone dosage,accompanying components,pH,and H2O2concentration had great impacts on the degradation kinetics.Justo[15]used UV/H2O2to dispose the RO concentrates and demonstrated that high oxidant dosage was necessary to ensure the complete removal of all the target micro-pollutants from the brines.

    Due to the high oxidative activity,ozonation has been extensively employed as pre-treatment or post-treatment technology for wastewater treatment[16,17].The removal of organic substances by ozonation is mainly through their direct reaction with O3as well as through the oxidation with?OH produced by ozone decomposition in aqueous solution[18–20].The direct reaction with O3is selective to certain organic pollutants in aqueous solution,while?OH is regarded as a nonselective oxidant with much stronger oxidation capacity.?OH can oxidize organic substances rapidly and produce oxygenated products.Furthermore,these products can be ultimately degraded to carbon dioxide or other low molecular organics[21–23].?OH production due to the O3self-decomposition preferentially occurs at alkaline condition.Therefore,solution pH has a great impact on the ozonation efficiency.Catalytic ozonation is another effective method to improve the efficiency of ozonation.Besides homogeneous catalysis,a variety of solids has also exhibited activity for catalytic ozonation,such as main group element oxides(Al2O3)and transition metal oxides(TiO2,Fe2O3,MnO2)[24].Due to the properties of the hybridization of unoccupied 4f levels,rare earth metals expressed an excellent catalytic activity and were widely used as catalysts in the catalytic synthetic industries and catalytic degradation of environmental contaminants[25–27].Some rare earth metals,such as La,Ce,and Gd,have been studied,and it was found that each of them had a positive effect on the improvement of catalytic activity[28–30].As a typical rare earth element,Yb has been used for the improvement of TiO2photocatalytic activity under visible light[31].However,study on the effect of Yb on catalytic ozonation is still limited.

    This study focused on the degradation of thymol in RO concentrates using ozonation with core/shell Fe3O4@SiO2@Yb2O3catalyst.The effects of initial thymol concentration,ozone dosage,initial solution pH,and catalyst dosage were studied.A possible pathway of thymol degradation in this process was proposed based on the intermediates detected.This work can provide basic data and theoretical support to the treatment of pharmaceutical RO concentrates.

    2.Materials and Methods

    2.1.Materials and chemicals

    All the chemicals and solvents used for COD measurement were of analytical grade,and were purchased from Shanghai Chemical Reagent Co.,Ltd.(Shanghai,China).The main characteristics of the simulated RO concentrates are shown in Table 1 based on the reference[13].Thymol purchased from Aladdin Reagent(China)Co.,Ltd.was spiked into the simulated RO concentrates.Deionized water was used throughout this study.

    Table 1Main characteristics of the simulated RO concentrates

    2.2.Preparation and characterization of Fe3O4@SiO2@Yb2O3

    The core/shell nanomagnetic catalyst Fe3O4@SiO2@Yb2O3was prepared according to the chemical precipitation and subsequent calcination process[32,33](Fig.1).Firstly,the Fe3O4magnetic nanoparticles were prepared based on Matijevi?'s method[32].In the procedure,KNO3and KOH were dissolved in water.FeSO4was added at constant temperature and under nitrogen protection.After stirring,black precipitate was generated.It was separated by magnetic force,and washed with absolute ethanol and distilled water for several times.The magnetic nanoparticles were then dried for use.Secondly,Fe3O4@SiO2nanoparticles were prepared[33].Fe3O4nanoparticles were dispersed in ethanol and distilled water for modification.After adding NH3·H2O and TEOS,the slurry was mechanically stirred continuously.The prepared Fe3O4@SiO2nanoparticles were collected and cleaned,and then dried.At last,Fe3O4@SiO2@Yb2O3nanoparticles were preparedviaa chemical precipitation and subsequent calcination process.Fe3O4@SiO2nanoparticles were dispersed in Yb nitrate solution.Then KOH was added in a four-neck flask.After vacuum filtration,the precipitate was washed with ethanol and dried.The dried powder was heated in a tube furnace.After calcination,Fe3O4@SiO2@Yb2O3nanoparticles were obtained.

    The morphologies of the Fe3O4@SiO2@Yb2O3nanoparticles were characterized by transmission electronic microscopy(TEM)(Tecnai G2 F30 S-Twin,Philips-FEI,Netherlands)and scanning electronic microscopy(SEM)(Hitachi-s570,Hitachi,Japan).

    2.3.Experimental procedures

    Experimental setup for thymol removal by ozonation is shown in Fig.2.O3was obtained from a CFY-3 ozone generator which used pure oxygen as the source.All the degradation experiments were carried out at25°C in a 1.5 L cylindrical Pyrex glass reactor which was equipped with a spherical coarse microporous disperser in the centre of the reactor bottom.O3was bubbled into the solution through the disperser and the residual ozone was emitted and absorbed by KI solution.

    Fig.2.Experimental setup for catalytic ozonation.

    Fig.1.Schematic diagram of the Fe3O4@SiO2@Yb2O3 preparation.

    2.4.Analytical methods

    A high performance liquid chromatograph(HPLC,1200 Agilent)was used to determine the concentration of thymol in aqueous solution,which was equipped with a C18 reversed phase column(Eclipse XDB,Agilent Technologies,USA)and a UV detector.The temperature of the HPLC system was kept at 30 °C.The injection volume was 5 μl and the mobile phase was water and acetonitrile(35:65,V/V).The flow rate of the eluent was 0.8 ml·min?1.The absorbance at 280 nm was detected.

    In order to obtain the concentrations of intermediates generated in the thymol ozonation process,experiment was conducted at a high thymol initial concentration(100 mg·L?1).The intermediates were extracted by dichloromethane several times and enriched before analysis.They were identified by gas chromatography–mass spectrometry(GC–MS)(Agilent 7890–5975)which was equipped with a HP-5(30 m × 0.32 mm × 0.25 μm)chromatographic column.The column temperature was kept at 65 °C for 1 min and increased to 190 °C at a rate of 20 °C·min?1,and then increased to 280 °C at a rate of 40 °C and kept at 280 °C for 5 min.The injector temperature was 270 °C and the source temperature was 230°C.The EI impact ionization was 70 eV and the m/z scanning ranges were from 50 to 600.Helium was used as the carrier gas at a flow rate of 1 ml·min?1.

    Acetic acid and maleic acid produced in the catalytic ozonation process were identified by an ion chromatography(IC)(Dionex model ICS2000)which was equipped with a Diones IonPac AS19 analytical column and an electrical conductivity detector.An IonPac AG19 analytical column was used as the guard column.

    The chemicaloxygen demand(COD)was determined with a standard potassium dichromate oxidation method according to the National Standard Method of China(GB11914-89).

    Fig.3.TEM(a)and SEM(b)images of the Fe3O4@SiO2@Yb2O3 catalyst.

    3.Results and Discussion

    3.1.Catalyst analysis

    TEM and SEM were useful analytical techniques for understanding the morphologies and structures of the prepared catalysts.Fig.3(a)shows the TEM image of Fe3O4@SiO2@Yb2O3.The prepared Fe3O4@SiO2@Yb2O3catalyst was nanoparticles with clear core/shell structure.The Fe3O4@SiO2particles were successfully encapsulated into the Yb2O3layer.Fig.3(b)shows the SEM image of Fe3O4@SiO2@Yb2O3.Due to the aggregation of partial Fe3O4@SiO2@Yb2O3nanoparticles,the diameters of the prepared catalyst ranged from 200 to 500 nm.

    3.2.Effect of initial thymol concentration

    Initial concentration of contaminant has a great impact on the contaminant removal as well as COD removal[34].In order to investigate the effect of initial concentration,experiments were conducted at initial pH value of 9 and ozone dosage of 16 mg·min?1with different thymol concentrations(200,100,50,and 20 mg·L?1),respectively.

    Fig.4.Effect of initial thymol concentration on thymol degradation(a)and COD removal(b)(O3 dosage=16 mg·min?1,pH=9).

    Fig.4(a)shows that with the increase in the initial thymol concentration,longer time was required to completely eradicate thymol.When the initial thymol concentration was 20 mg·L?1,it took only 5 min to remove all the thymol.However,when the initial thymol concentration was 200 mg·L?1,it cost 30 min to remove all the thymol.As shown in Fig.4(b),the removal of COD was much slower and less complete than that of the thymol.When the initial thymol concentration was 20 mg·L?1,the COD removal efficiency was 92%after 1 h.When the initial thymol concentration was 200 mg·L?1,the COD removal efficiency was 28%after 1 h.The difference in the removal efficiency between thymol and COD indicated that by-products were formed during the thymol degradation,and the by-products were more resistant to ozonation than the thymol.

    3.3.Effect of ozone dosage

    As shown in Fig.5,under the conditions of initial thymol concentration of 100 mg·L?1and initial pH value of 9,four different O3dosages,namely 8,16,32,and 48 mg·min?1,were employed to investigate the effect of O3dosage on the thymol degradation and COD removal.

    The thymol degradation rate significantly increased with the increase in the O3dosage.92%of thymol was degraded at the O3dosage of 8 mg·min?1after 30 min while thymol was completely disappeared within 10 min at the O3dosage of 48 mg·min?1.At the O3dosage of 8,16,32,and 48 mg·min?1,COD removals after 1 h were 27%,38%,46%,and 46%,respectively.By-products were more resistant to ozonation.The maximum COD removal by ozonation seemed less than 50%all the time when the initial thymol concentration was 100 mg·L?1,and excess O3was helpless with respect to the COD removal.

    Fig.5.Effect of ozone dosage on thymol degradation(a)and COD removal(b)(initial thymol concentration=100 mg·L?1,pH=9).

    3.4.Effect of initial pH value

    O3is a strong oxidant but its oxidation is selective.Direct reaction with O3is not strong enough to oxidize organic matters into CO2and H2O within a reasonable time[35].Alkaline pH is generally superior to acidic pH for O3decomposition in aqueous solution.O3decomposition yielded?OH,which exhibited much stronger oxidative activity than O3[36,37].In order to investigate the effect of initial pH value on the thymol degradation and COD removal,experiments were conducted at the initial thymol concentration of 100 mg·L?1and O3dosage of 16 mg·min?1with different initial solution pH,namely 3,6,9,and 11.

    As shown in Fig.6(a),with the increase in the initial solution pH value,the thymol removal rate increased significantly.This is because in the alkaline solution more?OH were yielded.Similar trend was also found for the COD removal in Fig.6(b).At the initial pH values of 3,6,9,and 11,the COD removals were 34%,36%,38%,and 49%after 1 h.It should be noted that the COD removals markedly increased when the pH increased from 9 to 11.Therefore,it could be concluded that,even though the by-products of the thymol ozonation were resistant to ozonation,they could be further oxidized or even mineralized by?OH generated from the O3decomposition.Increase in the?OH yield during the ozonation process was an effective way to improve the COD removal.

    Fig.6.Effect of initial pH value on thymol degradation(a)and COD removal(b)(O3 dosage=16 mg·min?1,initial thymol concentration=100 mg·L?1).

    3.5.Effect of catalyst dosage

    Due to the resonance structure of O3,one of the oxygen atoms with high electron density shows high basicity resulting in strong affinity to Lewis acid sites on the surface of metal oxides[38].Therefore,the presence of Fe3O4@SiO2@Yb2O3catalyst might accelerate the decomposition of O3into?OH.In order to investigate the effects of the catalyst dosage on the thymol degradation and COD removal,experiments with the Fe3O4@SiO2@Yb2O3catalyst of 0.2,0.5,and 1.0 g as well as without catalyst were carried out at the initial thymol concentration of 100 mg·L?1,O3dosage of 16 mg·min?1,and initial pH value of 11(Fig.7).

    The presence of the Fe3O4@SiO2@Yb2O3catalyst enhanced the process of both thymol degradation and COD removal.However,compared with the thymol degradation,the presence of catalyst and its increase were much more effective for the COD removal.Since the by-products were resistant to the ozonation,the maximum COD removal without catalyst was less than 50%.When the catalyst of 0.2 g was added into the system,the COD removal increased to 51%.Moreover,the COD removal increased with the increase in catalyst dosage,and 57%of COD was removed at the catalyst dosage of 1.0 g.This was because the presence of Fe3O4@SiO2@Yb2O3catalyst accelerated the decomposition of O3into?OH and the increase in the catalyst dosage provided more surface active sites for this conversion.The improvement of COD removal was attributed to the increase in the produced?OH as a result of the catalytic ozonation.

    Fig.7.Effect of catalyst dosage on thymol degradation(a)and COD removal(b)(O3 dosage=16 mg·min?1,initial thymol concentration=100 mg·L?1,pH=11).

    3.6.Mechanism analysis

    Maleic acid,acetic acid,and fumaric acid were identified as the main acidic by-products generated in the thymol degradation by ozonation.Their evolutions are shown in Fig.8.Acetic acid was the major byproduct.Its concentration increased during the first 30 min,but slightly decreased hereafter.The concentration of maleic acid linearly increased with time,and it was much higher than that of fumaric acid.

    Based on the intermediates identified by GC/MS,a degradation pathway of the thymol degradation by ozonation was proposed as shown in Fig.9.The para-position and ortho-position of the hydroxyl on the thymol molecular were vulnerable to the attack of O3and?OH.As a result,thymol transformed top-cymene-2,5-diol andp-cymene-2,3-diol.p-Cymene-2,5-diol andp-cymene-2,3-diol were then oxidized top-cymene-2,5-dione.The benzene ring ofp-cymene-2,5-dione was cracked and produced acidic by-products with lower molecular weight.These acidic by-products were finally mineralized to H2O and CO2.

    4.Conclusions

    A novel catalyst of Fe3O4@SiO2@Yb2O3was prepared and the degradation of thymol in RO concentrates by ozonation was investigated.The results indicated that initial thymol concentration,O3dosage,initial pH value,and catalyst dosage had great impacts on the thymol degradation by ozonation.The increase in the O3dosage,initial pH value,and catalyst dosage would accelerate the thymol degradation and COD removal;however,higher initial thymol concentration required longer time to complete the thymol removal.The optimum initial pH value in terms of the COD removal and thymol degradation was 11.The addition of Fe3O4@SiO2@Yb2O3catalyst could significantly improve the COD removal due to the enhancement in the?OH yield.Maleic acid,acetic acid and fumaric acid were the main acidic by-products of the thymol degradation by ozonation,and the degradation pathway was proposed.

    Fig.8.Time pro files of maleic acid,acetic acid,and fumaric acid concentrations during the thymol degradation by ozonation(O3 dosage=16 mg·min?1,initial thymol concentration=100 mg·L?1,pH=11,Fe3O4@SiO2@Yb2O3 dosage=1.0 g).

    Fig.9.The pathway of thymol degradation by catalytic ozonation(O3 dosage=16 mg·min?1,initial thymol concentration=100 mg·L?1,pH=11,Fe3O4@SiO2@Yb2O3 dosage=1.0 g).

    [1]S.B.Grant,J.D.Saphores,D.L.Feldman,A.J.Hamilton,T.D.Fletcher,P.L.M.Cook,M.Stewardson,B.F.Sanders,L.A.Levin,R.F.Ambrose,A.Deletic,R.Brown,S.C.Jiang,D.Rosso,W.J.Cooper,I.Marusic,Taking the “waste”out of “wastewater”for human water security and ecosystem sustainability,Science337(2012)681–686.

    [2]T.Y.Liu,C.K.Li,B.Pang,B.Van der Bruggen,X.L.Wang,Fabrication of a dual-layer(CA/PVDF)hollow fiber membrane for RO concentrate treatment,Desalination365(2015)57–69.

    [3]S.Pradhan,L.H.Fan,F.A.Roddick,Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2-BAC treatment,Chemosphere136(2015)198–203.

    [4]Y.X.Sun,Y.Gao,H.Y.Hu,F.Tang,Z.Yang,Characterization and biotoxicity assessment of dissolved organic matter in RO concentrate from a municipal wastewater reclamation reverse osmosis system,Chemosphere117(2014)545–551.

    [5]S.Malamis,E.Katsou,K.Takopoulos,P.Demetriou,M.Loizidou,Assessment of metal removal,biomass activity and RO concentrate treatment in an MBR–RO system,J.Hazard.Mater.209(2012)1–8.

    [6]X.H.Lin,S.F.Y.Li,Determination of organic pollutants in municipal reverse osmosis concentrate by electrospray ionization–quadrupole time-of- flight tandem mass spectrometry and photocalaytic degradation methods,Desalination344(2014)206–211.

    [7]A.M.Urtiaga,G.Perez,R.Ibanez,I.Ortiz,Removal of pharmaceuticals from a WWTP secondary effluent by ultra filtration/reverse osmosis followed by electrochemical oxidation of the RO concentrate,Desalination331(2013)26–34.

    [8]S.Ben Abdelmelek,J.Greaves,K.P.Ishida,W.J.Cooper,W.H.Song,Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes,Environ.Sci.Technol.45(2011)3665–3671.

    [9]Y.Zhang,K.Ghyselbrecht,R.Vanherpe,B.Meesschaert,L.Pinoy,B.Van der Bruggen,RO concentrate minimization by electrodialysis:Techno-economic analysis and environmental concerns,J.Environ.Manag.107(2012)28–36.

    [10]V.Hahn,K.Sunwoldt,A.Mikolasch,F.Schauer,Two different primary oxidation mechanisms during biotransformation of thymol by gram-positive bacteria of the genera Nocardia and Mycobacterium,Appl.Microbiol.Biotechnol.97(2013)1289–1297.

    [11]N.Nakada,T.Tanishima,H.Shinohara,K.Kiri,H.Takada,Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment,Water Res.40(2006)3297–3303.

    [12]I.Tamura,K.Kagota,Y.Yasuda,S.Yoneda,J.Morita,N.Nakada,Y.Kameda,K.Kimura,N.Tatarazako,H.Yamamoto,Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents:Triclosan,triclocarban,resorcinol,phenoxyethanol and p-thymol,J.Appl.Toxicol.33(2013)1222–1229.

    [13]C.L.Eversloh,N.Henning,M.Schulz,T.A.Ternes,Electrochemical treatment of iopromide under conditions of reverse osmosis concentrates—Elucidation of the degradation pathway,Water Res.48(2014)237–246.

    [14]L.F.Greenlee,B.D.Freeman,D.F.Lawler,Ozonation of phosphonate antiscalants used for reverse osmosis desalination:Parameter effects on the extent of oxidation,Chem.Eng.J.244(2014)505–513.

    [15]A.Justo,O.Gonzalez,J.Acena,S.Perez,D.Barcelo,C.Sans,S.Esplugas,Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2and ozone,J.Hazard.Mater.263(2013)268–274.

    [16]A.D.Coelho,C.Sans,A.Aguera,M.J.Gomez,S.Esplugas,M.Dezotti,Effects of ozone pre-treatment on diclofenac:Intermediates,biodegradability and toxicity assessment,Sci.Total Environ.407(2009)3572–3578.

    [17]D.B.Mawhinney,B.J.Vanderford,S.A.Snyder,Transformation of 1H-benzotriazole by ozone in aqueous solution,Environ.Sci.Technol.46(2012)7102–7111.

    [18]L.Zhao,J.Ma,Z.Z.Sun,X.D.Zhai,Mechanism of influence of initial pH on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation,Environ.Sci.Technol.42(2008)4002–4007.

    [19]Q.Z.Dai,L.L.Chen,W.Chen,J.M.Chen,Degradation and kinetics of phenoxyacetic acid in aqueous solution by ozonation,Sep.Purif.Technol.142(2015)287–292.

    [20]T.Nothe,H.Fahlenkamp,C.von Sonntag,Ozonation of wastewater:Rate of ozone consumption and hydroxyl radical yield,Environ.Sci.Technol.43(2009)5990–5995.

    [21]R.Rosal,A.Rodriguez,J.A.Perdigon-Melon,A.Petre,E.Garcia-Calvo,M.J.Gomez,A.Aguera,A.R.Fernandez-Alba,Degradation of caffeine and identification of the transformation products generated by ozonation,Chemosphere74(2009)825–831.

    [22]M.J.Quero-Pastor,M.C.Garrido-Perez,A.Acevedo,J.M.Quiroga,Ozonation of ibuprofen:A degradation and toxicity study,Sci.Total Environ.466(2014)957–964.

    [23]Z.Jeirani,A.Sadeghi,J.Soltan,B.Roshani,B.Rindall,Effectiveness of advanced oxidation processes for the removal of manganese and organic compounds in membrane concentrate,Sep.Purif.Technol.149(2015)110–115.

    [24]J.Nawrocki,Catalytic ozonation in water:Controversies and questions.Discussion paper,Appl.Catal.B Environ.142(2013)465–471.

    [25]H.Y.Ma,T.P.Spaniol,J.Okuda,Rare earth metal complexes supported by 1,omegadithiaalkanediyl-bridged,bis(phenolato)ligands:Synthesis,characterization and ring-opening polymerization catalysis of L-lactide,Dalton Trans.(2003)4770–4780.

    [26]Y.J.Feng,Y.H.Cui,B.Logan,Z.Q.Liu,Performance of Gd-doped Ti-based Sb-SnO2anodes for electrochemical destruction of phenol,Chemosphere70(2008)1629–1636.

    [27]S.Bingham,W.A.Daoud,Recent advances in making nano-sized TiO2visible-light active through rare-earth metal doping,J.Mater.Chem.21(2011)2041–2050.

    [28]Q.Y.Wang,G.F.Li,B.Zhao,M.Q.Shen,R.X.Zhou,The effect of La doping on the structure of Ce0.2Zr0.8O2and the catalytic performance of its supported Pd-only three-way catalyst,Appl.Catal.B Environ.101(2010)150–159.

    [29]R.C.Martins,R.M.Quinta-Ferreira,Catalytic ozonation of phenolic acids over a Mn–Ce–O catalyst,Appl.Catal.B Environ.90(2009)268–277.

    [30]M.Farbod,M.Kajbafvala,Effect of nanoparticle surface modification on the adsorption-enhanced photocatalysis of Gd/TiO2nanocomposite,Powder Technol.239(2013)434–440.

    [31]Y.F.Ma,M.Y.Xing,J.L.Zhang,B.Z.Tian,F.Chen,Synthesis of well ordered mesoporous Yb,N co-doped TiO2with superior visible photocatalytic activity,Microporous Mesoporous Mater.156(2012)145–152.

    [32]T.Sugimoto,E.Matijevi?,Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels,J.Colloid Interface Sci.74(1980)227–243.

    [33]Q.Z.Dai,J.Y.Wang,J.Yu,J.Chen,J.M.Chen,Catalytic ozonation for the degradation of acetylsalicylic acid in aqueous solution by magnetic CeO2nanometer catalyst particles,Appl.Catal.B Environ.144(2014)686–693.

    [34]T.Garoma,S.Matsumoto,Ozonation of aqueous solution containing bisphenol A:Effect of operational parameters,J.Hazard.Mater.167(2009)1185–1191.

    [35]H.H.Yan,P.Lu,Z.Q.Pan,X.Wang,Q.Y.Zhang,L.S.Li,Ce/SBA-15 as a heterogeneous ozonation catalyst for efficient mineralization of dimethyl phthalate,J.Mol.Catal.A Chem.377(2013)57–64.

    [36]M.Kuosa,J.Kallas,A.H?kkinen,Ozonation ofp-nitrophenol at different pH values of water and the influence of radicals at acidic conditions,J.Environ.Chem.Eng.3(2015)325–332.

    [37]J.Ma,M.H.Sui,T.Zhang,C.Y.Guan,Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene,Water Res.39(2005)779–786.

    [38]L.Zhao,Z.Z.Sun,J.Ma,H.L.Liu,Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution,Environ.Sci.Technol.43(2009)2047–2053.

    欧美激情在线99| 精品一区二区三区视频在线 | 三级毛片av免费| 国产精品久久视频播放| 母亲3免费完整高清在线观看| 一个人免费在线观看电影 | 婷婷丁香在线五月| 观看免费一级毛片| 最新美女视频免费是黄的| 久久这里只有精品19| 欧美性猛交╳xxx乱大交人| 99久久精品一区二区三区| 国产主播在线观看一区二区| АⅤ资源中文在线天堂| 久久久国产成人免费| 伦理电影免费视频| 日韩精品中文字幕看吧| 亚洲国产精品sss在线观看| 国内揄拍国产精品人妻在线| 亚洲国产看品久久| 美女被艹到高潮喷水动态| 亚洲五月天丁香| 久久久久久久午夜电影| 99国产综合亚洲精品| 1024香蕉在线观看| 香蕉丝袜av| 黄色女人牲交| 婷婷六月久久综合丁香| 美女高潮喷水抽搐中文字幕| 亚洲精品美女久久久久99蜜臀| 97超视频在线观看视频| 19禁男女啪啪无遮挡网站| 日本a在线网址| 国产视频内射| 亚洲中文日韩欧美视频| 精品电影一区二区在线| 日本精品一区二区三区蜜桃| 欧美日韩一级在线毛片| 真人做人爱边吃奶动态| 亚洲精品在线观看二区| 免费看美女性在线毛片视频| 国产v大片淫在线免费观看| 欧美日本视频| 色在线成人网| 日韩av在线大香蕉| 亚洲第一电影网av| 亚洲人成网站在线播放欧美日韩| 亚洲,欧美精品.| 午夜福利在线观看吧| 色综合欧美亚洲国产小说| 禁无遮挡网站| 校园春色视频在线观看| 免费在线观看视频国产中文字幕亚洲| 啦啦啦免费观看视频1| 五月玫瑰六月丁香| 国产精品爽爽va在线观看网站| 97超视频在线观看视频| 后天国语完整版免费观看| 最近最新中文字幕大全免费视频| 两个人视频免费观看高清| 性色avwww在线观看| bbb黄色大片| 国产成人啪精品午夜网站| 99精品在免费线老司机午夜| 大型黄色视频在线免费观看| 久久久精品欧美日韩精品| 亚洲人成电影免费在线| 成人一区二区视频在线观看| 嫩草影视91久久| 亚洲激情在线av| 五月玫瑰六月丁香| 久久这里只有精品中国| 久久人人精品亚洲av| 三级国产精品欧美在线观看 | 香蕉av资源在线| 国产高清有码在线观看视频| 成熟少妇高潮喷水视频| 网址你懂的国产日韩在线| 少妇人妻一区二区三区视频| 国产成人精品无人区| 欧美中文日本在线观看视频| 亚洲欧美日韩东京热| 在线a可以看的网站| 变态另类成人亚洲欧美熟女| 日韩欧美 国产精品| 欧美日本亚洲视频在线播放| 搡老妇女老女人老熟妇| 久久精品国产99精品国产亚洲性色| 亚洲无线观看免费| 国产不卡一卡二| 欧美在线一区亚洲| 国产高清videossex| 在线观看66精品国产| 精品国产三级普通话版| 久久久久久国产a免费观看| 久久香蕉国产精品| 欧美xxxx黑人xx丫x性爽| 精品久久久久久成人av| 精品国产超薄肉色丝袜足j| 美女黄网站色视频| 亚洲国产色片| 午夜激情欧美在线| 九九在线视频观看精品| 香蕉久久夜色| 欧美乱色亚洲激情| 日本免费一区二区三区高清不卡| 2021天堂中文幕一二区在线观| 国产三级在线视频| 露出奶头的视频| 青草久久国产| 国产亚洲欧美98| 亚洲第一欧美日韩一区二区三区| 啦啦啦韩国在线观看视频| 亚洲自偷自拍图片 自拍| 亚洲 欧美 日韩 在线 免费| 精品不卡国产一区二区三区| 99久久99久久久精品蜜桃| 欧美不卡视频在线免费观看| 久久欧美精品欧美久久欧美| 免费av毛片视频| 国产成年人精品一区二区| 国内毛片毛片毛片毛片毛片| 国产一区二区在线av高清观看| 哪里可以看免费的av片| 露出奶头的视频| 最近最新免费中文字幕在线| 成人一区二区视频在线观看| 亚洲国产精品sss在线观看| 久久亚洲真实| 级片在线观看| 91字幕亚洲| 欧美日韩乱码在线| 国产综合懂色| 757午夜福利合集在线观看| 精品久久久久久,| 欧美激情在线99| 亚洲天堂国产精品一区在线| 亚洲真实伦在线观看| av视频在线观看入口| 级片在线观看| 亚洲真实伦在线观看| 亚洲av熟女| 欧美中文综合在线视频| 麻豆成人av在线观看| 亚洲精品色激情综合| bbb黄色大片| 久久精品国产综合久久久| 丁香欧美五月| 美女午夜性视频免费| 国产高清视频在线观看网站| 男女床上黄色一级片免费看| 中文字幕精品亚洲无线码一区| 18禁黄网站禁片午夜丰满| 国产av麻豆久久久久久久| 三级国产精品欧美在线观看 | 舔av片在线| 国产真实乱freesex| 最近最新中文字幕大全电影3| 好看av亚洲va欧美ⅴa在| 午夜视频精品福利| 成年女人永久免费观看视频| 熟女人妻精品中文字幕| 99国产精品99久久久久| av欧美777| 99国产精品一区二区蜜桃av| 欧美一级毛片孕妇| 国产伦人伦偷精品视频| 国产精品一区二区精品视频观看| 国语自产精品视频在线第100页| 国产精品99久久99久久久不卡| 老熟妇仑乱视频hdxx| 亚洲av成人av| 麻豆国产av国片精品| 亚洲欧美日韩高清在线视频| 一区二区三区高清视频在线| 亚洲无线在线观看| 在线免费观看不下载黄p国产 | 亚洲国产日韩欧美精品在线观看 | 欧美日韩综合久久久久久 | 动漫黄色视频在线观看| 国产精品,欧美在线| 俺也久久电影网| 观看免费一级毛片| 久久欧美精品欧美久久欧美| 五月玫瑰六月丁香| 国产激情久久老熟女| 久久国产精品影院| 国产欧美日韩精品亚洲av| 午夜福利视频1000在线观看| 一级毛片精品| 久久久久亚洲av毛片大全| 久久久久久大精品| 中出人妻视频一区二区| 老熟妇乱子伦视频在线观看| 九九热线精品视视频播放| 99久久精品国产亚洲精品| 久久精品亚洲精品国产色婷小说| 国产一区二区在线观看日韩 | 香蕉丝袜av| 性欧美人与动物交配| 久久精品亚洲精品国产色婷小说| 在线永久观看黄色视频| 色视频www国产| 日韩国内少妇激情av| 五月伊人婷婷丁香| 中亚洲国语对白在线视频| svipshipincom国产片| 又紧又爽又黄一区二区| 国产精品九九99| 亚洲男人的天堂狠狠| 网址你懂的国产日韩在线| 午夜免费观看网址| 国产成人影院久久av| 99热这里只有是精品50| 成人特级黄色片久久久久久久| 免费高清视频大片| 一进一出抽搐动态| 国产毛片a区久久久久| 国产免费av片在线观看野外av| 国产黄色小视频在线观看| 成人三级做爰电影| 网址你懂的国产日韩在线| 精品国产美女av久久久久小说| 国产精华一区二区三区| 国产亚洲精品综合一区在线观看| 国产又色又爽无遮挡免费看| 中文字幕精品亚洲无线码一区| 亚洲专区字幕在线| avwww免费| 精品久久久久久久末码| 九色国产91popny在线| 欧美精品啪啪一区二区三区| 午夜免费观看网址| 狂野欧美白嫩少妇大欣赏| 久久久久免费精品人妻一区二区| 国产真人三级小视频在线观看| 色精品久久人妻99蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久,| 啪啪无遮挡十八禁网站| 欧美一级a爱片免费观看看| 日本免费一区二区三区高清不卡| 欧美日韩乱码在线| 99热这里只有是精品50| 中文字幕人成人乱码亚洲影| 亚洲精华国产精华精| 天堂网av新在线| 一进一出抽搐gif免费好疼| 午夜福利免费观看在线| 桃红色精品国产亚洲av| 又黄又粗又硬又大视频| 在线永久观看黄色视频| 很黄的视频免费| 亚洲国产精品合色在线| 国产成年人精品一区二区| 欧美一级毛片孕妇| 午夜福利在线观看免费完整高清在 | 国产黄a三级三级三级人| bbb黄色大片| 超碰成人久久| 国产精品一及| 免费在线观看亚洲国产| 亚洲欧美精品综合一区二区三区| 国产精品av久久久久免费| 午夜福利成人在线免费观看| 老汉色∧v一级毛片| 综合色av麻豆| 亚洲avbb在线观看| 动漫黄色视频在线观看| 欧美激情在线99| 精品国产乱子伦一区二区三区| 国产av在哪里看| 天天躁日日操中文字幕| 亚洲国产日韩欧美精品在线观看 | 亚洲人成网站在线播放欧美日韩| cao死你这个sao货| 成人一区二区视频在线观看| 国产又色又爽无遮挡免费看| 好男人在线观看高清免费视频| 天堂av国产一区二区熟女人妻| 1024香蕉在线观看| 国产麻豆成人av免费视频| 一个人看视频在线观看www免费 | 淫秽高清视频在线观看| 亚洲精品乱码久久久v下载方式 | 国产伦精品一区二区三区视频9 | 国产精品女同一区二区软件 | 欧美日韩黄片免| 久久精品国产亚洲av香蕉五月| 制服丝袜大香蕉在线| 亚洲人成伊人成综合网2020| 网址你懂的国产日韩在线| 一二三四社区在线视频社区8| 国产精品美女特级片免费视频播放器 | 不卡av一区二区三区| 丁香欧美五月| 99riav亚洲国产免费| 精品国产乱子伦一区二区三区| 日韩欧美一区二区三区在线观看| 麻豆国产av国片精品| 夜夜躁狠狠躁天天躁| 九九在线视频观看精品| 亚洲av免费在线观看| 欧美成人性av电影在线观看| 欧美3d第一页| 午夜久久久久精精品| 日韩中文字幕欧美一区二区| 久久天堂一区二区三区四区| 亚洲黑人精品在线| 欧美色欧美亚洲另类二区| 一级毛片女人18水好多| 免费在线观看视频国产中文字幕亚洲| 亚洲专区中文字幕在线| 国产91精品成人一区二区三区| 亚洲精品久久国产高清桃花| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 国产精品美女特级片免费视频播放器 | 亚洲国产精品999在线| 国产高清有码在线观看视频| 日日夜夜操网爽| 美女免费视频网站| 欧美日韩福利视频一区二区| 动漫黄色视频在线观看| 免费搜索国产男女视频| 美女被艹到高潮喷水动态| 天堂动漫精品| 法律面前人人平等表现在哪些方面| 91av网一区二区| 欧美乱妇无乱码| 欧美绝顶高潮抽搐喷水| 一个人免费在线观看的高清视频| 91老司机精品| 男人舔奶头视频| 母亲3免费完整高清在线观看| 99热这里只有精品一区 | 亚洲片人在线观看| 午夜激情福利司机影院| 欧美一区二区精品小视频在线| 欧美zozozo另类| 免费在线观看日本一区| 精品乱码久久久久久99久播| 熟女少妇亚洲综合色aaa.| 亚洲成人精品中文字幕电影| 可以在线观看的亚洲视频| 一个人看视频在线观看www免费 | 免费观看人在逋| 国产精品一区二区免费欧美| 丰满人妻一区二区三区视频av | 1024手机看黄色片| 手机成人av网站| 最近最新中文字幕大全免费视频| 9191精品国产免费久久| www.999成人在线观看| 欧美大码av| 亚洲欧美日韩无卡精品| 99久久综合精品五月天人人| 欧美日本亚洲视频在线播放| 午夜精品久久久久久毛片777| 欧美日韩黄片免| 啪啪无遮挡十八禁网站| 激情在线观看视频在线高清| 91av网站免费观看| 国产熟女xx| 亚洲精品国产精品久久久不卡| 校园春色视频在线观看| 男女下面进入的视频免费午夜| 亚洲欧美激情综合另类| 国内精品美女久久久久久| 午夜精品在线福利| 九九在线视频观看精品| 国产精品精品国产色婷婷| 搡老熟女国产l中国老女人| 男女床上黄色一级片免费看| 亚洲男人的天堂狠狠| 2021天堂中文幕一二区在线观| 国产视频内射| 91字幕亚洲| 热99re8久久精品国产| 全区人妻精品视频| 91久久精品国产一区二区成人 | 国产免费男女视频| 成人特级av手机在线观看| 亚洲欧洲精品一区二区精品久久久| 国产又色又爽无遮挡免费看| 久久精品国产99精品国产亚洲性色| 午夜福利18| 在线观看免费午夜福利视频| 午夜福利在线在线| 在线观看免费午夜福利视频| 国内精品美女久久久久久| 一本久久中文字幕| 国语自产精品视频在线第100页| 最近最新免费中文字幕在线| 亚洲午夜精品一区,二区,三区| cao死你这个sao货| 国产精品乱码一区二三区的特点| 日本a在线网址| 欧美高清成人免费视频www| 午夜福利欧美成人| 成人18禁在线播放| 午夜福利欧美成人| 黄色丝袜av网址大全| 97人妻精品一区二区三区麻豆| 国产亚洲欧美98| 日本免费一区二区三区高清不卡| 亚洲成a人片在线一区二区| 亚洲专区中文字幕在线| 精品欧美国产一区二区三| 999精品在线视频| 这个男人来自地球电影免费观看| 亚洲国产高清在线一区二区三| 日本 欧美在线| 国产精品亚洲一级av第二区| 国产精品 国内视频| 亚洲专区字幕在线| 91久久精品国产一区二区成人 | 少妇的逼水好多| 十八禁网站免费在线| 亚洲在线观看片| 日韩欧美精品v在线| 欧美日韩亚洲国产一区二区在线观看| 97人妻精品一区二区三区麻豆| 中文字幕精品亚洲无线码一区| 99久久久亚洲精品蜜臀av| 18禁裸乳无遮挡免费网站照片| 亚洲国产高清在线一区二区三| 在线观看午夜福利视频| 在线a可以看的网站| 成年人黄色毛片网站| 网址你懂的国产日韩在线| 91av网站免费观看| 久久精品亚洲精品国产色婷小说| 69av精品久久久久久| 国产亚洲精品一区二区www| 亚洲精品粉嫩美女一区| 成人欧美大片| 免费看美女性在线毛片视频| 又黄又粗又硬又大视频| 欧洲精品卡2卡3卡4卡5卡区| 国产成+人综合+亚洲专区| av国产免费在线观看| 桃红色精品国产亚洲av| 国产人伦9x9x在线观看| 日韩免费av在线播放| 国产精品一区二区三区四区久久| 国产麻豆成人av免费视频| 少妇熟女aⅴ在线视频| 男人舔女人下体高潮全视频| 男插女下体视频免费在线播放| 亚洲中文日韩欧美视频| 五月伊人婷婷丁香| 给我免费播放毛片高清在线观看| 亚洲国产欧美网| 在线永久观看黄色视频| 免费在线观看成人毛片| 天天一区二区日本电影三级| 88av欧美| 91麻豆av在线| 身体一侧抽搐| 免费观看人在逋| 欧美最黄视频在线播放免费| 久久精品夜夜夜夜夜久久蜜豆| 99在线视频只有这里精品首页| 成人永久免费在线观看视频| 精品免费久久久久久久清纯| 午夜两性在线视频| 国产亚洲av嫩草精品影院| 久久国产精品影院| 久久亚洲真实| 亚洲中文字幕一区二区三区有码在线看 | 国产91精品成人一区二区三区| 99热这里只有精品一区 | 亚洲aⅴ乱码一区二区在线播放| 亚洲专区字幕在线| 日本a在线网址| 亚洲人成网站在线播放欧美日韩| 免费看十八禁软件| 亚洲人成网站在线播放欧美日韩| 黄片大片在线免费观看| 757午夜福利合集在线观看| 男女之事视频高清在线观看| 香蕉久久夜色| 18禁美女被吸乳视频| 免费av不卡在线播放| 日本 欧美在线| 国产伦一二天堂av在线观看| www.www免费av| 国产精品久久久久久久电影 | 一进一出抽搐动态| 美女午夜性视频免费| 首页视频小说图片口味搜索| 午夜免费成人在线视频| 99re在线观看精品视频| 免费电影在线观看免费观看| 亚洲人与动物交配视频| 三级男女做爰猛烈吃奶摸视频| 九九热线精品视视频播放| 校园春色视频在线观看| 亚洲国产精品sss在线观看| 午夜精品在线福利| 日本熟妇午夜| 男女床上黄色一级片免费看| 国产精品久久电影中文字幕| 伊人久久大香线蕉亚洲五| 亚洲精品中文字幕一二三四区| 脱女人内裤的视频| 久久国产乱子伦精品免费另类| 18禁美女被吸乳视频| 91老司机精品| 黄色女人牲交| 非洲黑人性xxxx精品又粗又长| 国产精品1区2区在线观看.| 久久久精品欧美日韩精品| 狂野欧美激情性xxxx| 村上凉子中文字幕在线| 亚洲成av人片免费观看| 黑人操中国人逼视频| 18禁国产床啪视频网站| 久久精品国产99精品国产亚洲性色| 国产高潮美女av| 母亲3免费完整高清在线观看| 亚洲中文日韩欧美视频| 在线永久观看黄色视频| xxxwww97欧美| 国内精品一区二区在线观看| 美女黄网站色视频| 欧美成人免费av一区二区三区| 1000部很黄的大片| 日本 欧美在线| 在线观看舔阴道视频| 国产午夜精品久久久久久| 精品99又大又爽又粗少妇毛片 | 91av网站免费观看| 日本三级黄在线观看| 身体一侧抽搐| 午夜福利免费观看在线| 精品久久久久久久久久久久久| 欧美av亚洲av综合av国产av| 好男人在线观看高清免费视频| 黄色成人免费大全| 97超视频在线观看视频| 欧美3d第一页| 两个人的视频大全免费| 女警被强在线播放| 身体一侧抽搐| 午夜福利视频1000在线观看| 欧美三级亚洲精品| 老鸭窝网址在线观看| 亚洲成av人片在线播放无| 香蕉av资源在线| 老司机福利观看| 国产精品久久久人人做人人爽| 国产日本99.免费观看| 国产精品99久久99久久久不卡| 久久香蕉国产精品| 丰满人妻熟妇乱又伦精品不卡| 久久久成人免费电影| 老司机午夜福利在线观看视频| 亚洲专区中文字幕在线| 热99re8久久精品国产| 国内精品美女久久久久久| 在线观看午夜福利视频| 亚洲午夜精品一区,二区,三区| 啪啪无遮挡十八禁网站| 亚洲专区字幕在线| 亚洲av电影在线进入| 国产av麻豆久久久久久久| 男女床上黄色一级片免费看| 亚洲第一电影网av| 中文字幕人成人乱码亚洲影| 欧美国产日韩亚洲一区| 国产野战对白在线观看| 国产成人av教育| 男女午夜视频在线观看| 成人性生交大片免费视频hd| 亚洲欧美精品综合一区二区三区| 狠狠狠狠99中文字幕| 国产乱人伦免费视频| 男女之事视频高清在线观看| 免费无遮挡裸体视频| 狠狠狠狠99中文字幕| 久久午夜综合久久蜜桃| 九色成人免费人妻av| 久久久久久久久免费视频了| 国产欧美日韩一区二区三| 亚洲人成网站高清观看| 亚洲美女视频黄频| 真人一进一出gif抽搐免费| 99国产精品99久久久久| 久久国产乱子伦精品免费另类| 久久中文字幕一级| 亚洲欧洲精品一区二区精品久久久| 身体一侧抽搐| 欧美日韩乱码在线| 小蜜桃在线观看免费完整版高清| 亚洲无线在线观看| 欧美中文综合在线视频| 欧美又色又爽又黄视频| 久久久国产成人免费| 国产精品久久久久久久电影 | 国产亚洲精品av在线| 国产成人精品无人区| 亚洲电影在线观看av| 色精品久久人妻99蜜桃| 国产黄片美女视频| 免费人成视频x8x8入口观看| 亚洲电影在线观看av| 两个人视频免费观看高清| 色综合婷婷激情| 国产精品久久久久久人妻精品电影| 国产成+人综合+亚洲专区| 精品免费久久久久久久清纯| 国产午夜福利久久久久久| 后天国语完整版免费观看|