• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of transition metal ions(M2+=Mn2+,Ni2+,Co2+,Cu2+)on the chemical synthesis polyaniline as counter electrodes in dye-sensitized solar cells☆

    2017-05-28 10:23:15KezhongWuLeiChenWeizhenCuiBeiRuanMingxingWu

    Kezhong Wu*,Lei Chen,Weizhen Cui,Bei Ruan,Mingxing Wu

    Key Laboratory of Inorganic Nano-materials of Hebei Province,Department of Chemistry and Material Science,Hebei Normal University,Shijiazhuang 050024,China

    1.Introduction

    DSSCs have been attracted a lot of attention lately,due to their low manufacturing cost,high energy conversion efficiency,simplicity and environmentally benign preparation procedures[1,2].However,DSSCs still have serious issues that need to be resolved,such as high cost of Pt usually used in the counter electrodes(CEs),fast decay in the photo-to-electron conversion efficiency,susceptible to corrosion by the redox species,and frangibility to heat treatment[3,4].Among those challenges,many research groups have put focus on improving and extending platinum-free CEs of solar cells in different aspects.CEs not only serve to reduce triiodides to iodide species,which completes the cycle of electron transfer,but also have to enhance the efficiency of DSSCs while maintaining their stability.It is,therefore,crucial to develop alternative,scalable,structurally controllable,corrosion resistant and inexpensive CE materials with high electrocatalytic activity[5,6].Up to date,inorganic compounds[7,8],carbon[9],hybrid materials[10,11],and conductive polymers[12–14]etc.have been tested as counter electrode materials for DSSCs.

    The feasibility of using flexible,electrochemically active,conductive polymers with high surface area to replace Pt CEs in DSSCs has been extensively studied in the recent years.Conductive polymers are promising candidates for catalytic materials used as CEs because of their low cost,remarkable conductivity,and obviously high electrocatalytic activity,not to mention the fact that conductive polymers synthesized by direct oxidative polymerization/electrochemical procedures have received much attention due to their potential for utilization in sensors,supercapacitors,and DSSCs[15,16].PANI occupies a significant position among the organic conductive polymers.Its unique properties,such as ease of preparation in aqueous medium,wide raw material sources,good chemical stability,remarkable dope ability,improved electrocatalytic activity,obvious electrochromic effects,and moderately high efficiency in the doped form have made this polymer a strong candidate with great technological promise for the modification of electrodes[17–19].Its electrical properties can be readily tuned by controlling its doping level.In the present work,the performance of platinum-free,PANI composite counter electrodes modified by transition metal ions(Ni2+,Mn2+,Co2+and Cu2+)in DSSCs was investigated.

    2.Experimental

    2.1.Materials

    Aniline(Beijing Chemical Reagent Company,purity 99.5%),and hydrochloric acid solution(purity 98.0%),nickel(II)chloride hexahydrate(purity 98.0%),cobalt(II)chloride hexahydrate(purity 99.0%),manganese(II)chloride tetrahydrate(purity 99.0%),copper chloride dihydrate(AR)were purchased from Tianjin Damao Chemical Reagent Factory.Bichrome(purity 99.0%)was purchased from Beijing chemical factory.

    2.2.Characterization

    The surface morphology of PANI and PANI-transition metal ion doped composites was studied by scanning electron microscope(SEM)(S-4800 FEI,Hitachi).IR spectra were obtained by using a Fourier infrared spectroscope(FTIR-8900 SHIMADZU,Japan).The photocurrent–voltage was determined under simulated AM 1.5 illumination(I=100 mW·cm?2,PEC-L15,Peccell,Yokohama,Japan)with a digital source meter(Keithley 2601,Cleveland,OH)in nitrogen atmosphere.Electrochemical performance was evaluated by cyclic voltammetry measurements at a scan rate of 20 mV·s?1using electrochemical workstation(CHI660e,Chenhua,Shanghai).Electrochemical impedance spectra(EIS)and Tafel polarization curve of the DSSCs were measured in acetonitrile solution containing 0.1 mol·L?1of lithium iodide,0.6 mol·L?11-propyl-3-methylimidazolium iodide,0.07 mol· L?1iodine,0.5 mol·L?14-tert-butylpyridine,and 0.1 mol·L?1guanidinium thiocyanate in 3-methoxypropionitrile(MPN)with the CHI660e electrochemical workstation.The scan rate was 10 mV·s?1.

    2.3.Synthesis of PANI

    1 molaniline and 0.01 moltransition metalions(M2+=Co2+,Ni2+,Mn2+,Cu2+)were first dissolved in 20 ml of 2 mol·L?1HCl solution,and then another 30 ml of 2 mol·L?1HCl containing 0.6 mol potassium dichromate was added slowly.The mixture was stirred for 5 h.To remove the excess potassium dichromate,transition metal ions and byproducts,the as-prepared PANI nano fibers was washed with 2 mol·L?1HCl solution 3 times and collected by centrifugation.

    2.4.Preparation of counter electrode

    The electrode was prepared by following a series of procedures:the FTO glass was cleaned by washing with detergent,deionized water,and ethanol;0.1250 g electrode material was dispersed in 6 ml isopropyl alcohol;the solution was ball-milled for 50 min to achieve the spray paste.The last procedure was spraying the sample on the FTO glass with a spray gun;and finally the PANI-transition metal ion CEs dried under vacuum.

    2.5.Cell fabrication

    The DSSC had three parts:a TiO2photoanode with active area of 0.16 cm2,the transition metal ion doped PANI as CE,and an electrolyte solution containing the iodide/triiodide redox couple.Two identical pieces of the electrodes with the same area clipped with the electrolyte formed a symmetrical cell,which was sealed with a hot-melt surlyn film.The photoanode of 8 um thick TiO2film soaked in the N719 dye for 18 h.The electrolyte solution was composed of 0.1 mol·L?1of lithium iodide,0.6 mol·L?11-propyl-3-methylimidazolium iodide,0.07 mol·L?1iodine,0.5 mol·L?14-tert-butyl pyridine,and 0.1 mol·L?1guanidiniumthiocyanate in 3-methoxypropionitrile(MPN)[20].

    3.Results and Discussion

    The chemical structure of the PANI and PANI-transition metal ion doped composites were characterized by FTIR spectroscopy.Fig.1 shows the FTIR spectra,which are in good agreement with previously reported results.In terms of PANI,the peaks at 1564 cm?1and 1489 cm?1are attributed to C=C stretching vibrations of the quinoid and benzenoid rings,respectively[21].The C–N stretching of the benzenoid unit and C–N stretching of the quinoid unit are located at 1295 cm?1and 1238 cm?1.The contribution from C–H bending of the quinoid ring appears at 1127 cm?1.The spectrum of PANI-transition metal ion hybrid exhibits the same vibrational bands as pure PANI,suggesting that PANI-transition metal ion hybrid have characteristic absorption peaks of PANI,but in the presence of transition metal ions the peaks are slightly shifted.

    Fig.2 shows the SEM picture of the surface of the CE with PANI and PANI-M2+(M2+=Co2+,Ni2+,Mn2+,Cu2+).Fig.2(b),(c),(d)show that the PANI-M2+(M2+=Co2+,Ni2+,Mn2+)forms uniform and regular nanorods with size of around 50 nm.It can be seen that the size of PANI-Ni2+nanorods is slightly larger than that of PANI-Mn2+.Fig.2(a),(e)show neither nanorods nor nanopaticles,and a certain degree of cross linking can be seen,which is unfavorable for the catalytic reduction of I3?with the PANI,PANI-Cu2+CE material.

    Fig.3 demonstrates the photocurrent–voltage(J–V)curves based on PANI,PANI-Mn2+,PANI-Ni2+,PANICo2+and PANI-Cu2+as counter electrode in DSSCsforthe I?/I3?redox couple.The corresponding detailed photovoltaic electrochemical parameters from theJ-Vcurves are summarized in Table 1.The fill factor(FF)and power conversion efficiency(η)of the DSSCs can be obtained from the Eqs.(1)and(2),respectively[22].

    Fig.1.FTIR spectra of the PANI,PANI-Ni2+,PANI-Co2+,PANI-Mn2+and PANI-Cu2+.

    whereJmax(mA·cm?2)is the current density andVmax(V)is the voltage at the point of maximum power output in theJ-Vcurves,Jscis the shortcircuit current density(mA·cm?2),Vocis the open-circuit voltage(V);Pinis the incident light power(mW·cm?2).Photovoltaic parameters of DSSCs using PANI,PANI-Mn2+,PANI-Ni2+,PANI-Co2+,PANI-Cu2+as CE are listed in Table 1.Power conversion efficiency(η)of DSSCs fabricated by using PANI-Mn2+,PANI-Ni2+and PANI-Co2+CEs were higher than the ones with undoped PANI CE,while the η of DSSCs containing PANICu2+CE was lower.

    The electrocatalytic activity of PANI-Mn2+,PANI-Ni2+,PANI-Co2+,PANI,PANI-Cu2+CEs for the reduction of I?/I3?redox couple in the DSSCs was determined by using cyclic voltammetry(CV)as shown in Fig.4.In the case of chemically synthesized PANI CEs modified by transition metal ions of Ni2+,Mn2+,Co2+and Cu2+two typical redox peaks were clearly observed.The negative peak is associated with the reduction process of I3?+2e?→ 3I?,whereas the positive peak is attributed to the oxidation process of 3I?→ I3?+2e?[23].As it can be seen on Fig.4 the current density of the reduction peak at low potential for the PANI-Mn2+,PANI-Ni2+and PANI-Co2+electrode was?3.266 mA·cm?2,?2.574 mA·cm?2and?2.512 mA·cm?2.These absolute values were slightly higher than the value measured for the pure PANI electrode(?2.427 mA·cm?2),however,the current density of the reduction peak for the PANI-Cu2+(?2.067 mA·cm?2)was lower.The peak-to-peak separation(ΔEp)followed an order of PANIMn2+(0.297 V)<PANI-Ni2+(0.319 V)<PANI-Co2+(0.387 V)<PANI(0.429 V)<PANI-Cu2+(0.471 V).The increase in the current density of the reduction peak and decrease of ΔEpvalue indicates a charge transfer process and the electrocatalytic activity toward I3?/I?redox reaction increases in the following order:PANI-Mn2+>PANI-Ni2+>PANI-Co2+>PANI>PANI-Cu2+.This result is consistentwith the calculated power conversion efficiency(η)of DSSCs.

    Fig.2.SEM images of the synthesized(a)PANI,(b)PANI-Co2+,(c)PANI-Ni2+,(d)PANI-Mn2+,(e)PANI-Cu2+.

    Fig.3.J-V curves of PANI-Mn2+,PANI-Ni2+,PANI-Co2+,PANI,PANI-Cu2+.

    Table 1Photovoltaic parameters of DSSC using the chemical synthesis for PANI,PANI-Mn2+,PANI-Ni2+,PANI-Co2+,PANI-Cu2+as CEs

    Fig.5 presents the Nyquist plots of the symmetrical PANI,PANIMn2+,PANI-Ni2+,PANI-Co2+and PANI-Cu2+CEs in the redox electrolyte.A Nyquist plot consists of two parts:a semicircle at high frequency region and a linear at low frequency range.The right of the semicircle at high frequency region is ascribed to the charge transfer resistance(Rct)atthe CE/electrolyte interface,while the intercept of the real axis for the semicircle athigh frequency represents the series resistance(Rs),which includes the resistance of the electrolyte and the electrode,and the contact resistance[24].There were no significant differences found for theRsvalues of the five CEs,it was about 45 Ω.TheRctvalues of the PANI-Mn2+,PANI-Ni2+,and PANI-Co2+were 77.5 Ω,128.9 Ω and 159.5 Ω,much lower than theRct165.2 Ω of PANI,resulting to higher catalytic activity of the electrodes in the redox process.TheRctvalues of the PANI-Cu2+was 325.5 Ω higher thanRctof PANI which explains its lower electrochemical catalytic activity for the redox reaction of the iodide/triiodide couple.The results show that doping of PANI with transition metal ions changes theRctof the material.(See Fig.5.)

    Fig.4.CV curves of PANI-Mn2+,PANI-Ni2+,PANI-Co2+,PANI,PANI-Cu2+.

    Fig.5.EIS curves of PANI-Mn2+,PANI-Ni2+,PANI-Co2+,PANI,PANI-Cu2+.

    Fig.6.Tafel curves of PANI-Mn2+,PANI-Ni2+,PANI-Co2+,PANI,PANI-Cu2+.

    The electrocatalytic performance of the PANI-Mn2+,PANI-Ni2+,PANI-Co2+,PANI,PANI-Cu2+CEs was further investigated by Tafel polarization using a symmetrical dummy cell(see fig.6).The Tafel curve consists of three parts:the limiting diffusion region,the Tafel region,and the polarization region[25].The sharper slope for an anode or the cathode branch means a higher exchange current density(J0)on the electrode and better electrocatalytic activity toward I3?reduction[26].The calculatedJ0followed the order of PANI-Mn2+(0.239/mA·cm?2)-PANI-Ni2+(0.037/mA·cm?2)> PANI-Co2+(?0.058/mA·cm?2)-PANI(?0.139/mA·cm?2)> PANI-Cu2+(?0.335/mA·cm?2).These exchange current density(J0)values were used to calculate the electrocatalytic activity of the electrodes.This result is consistent with the PCE(η)and the charge transfer resistance(Rct)of the different DSSCs.

    4.Conclusions

    A non-Pt material,more precisely a transition metal ion(M2+=Mn2+,Ni2+,Co2+,Cu2+)doped PANI prepared by chemical synthesis was used as CEs in DSSCs.An active PANI-M2+CE could be formed and the appropriate composition of PANI-M2+CE had a huge impact on the reduction of electrolyte leading to the increase of the overall efficiency.The PCE(η)on PANI-M(M=Mn2+,Ni2+,Co2+)CEs were 4.41%,2.36%,2.10%,respectively.These values were much higher than 1.94%,the value measured on the PANI electrode,while the PCE of PANI-Cu2+(η=1.41%)was lower.The outstanding electronic features of PANI-M2+CEs can elevate the comprehensive performance of DSSCs to the next level.

    Nomenclature

    FF the fill factor

    Jmaxthe current density,mA·cm?2

    Jscthe short-circuit current density,mA·cm?2

    Pincthe incident light power,mW·cm?2

    Rctthe charge transfer resistance Ω

    Rsthe series resistance,Ω

    Vmaxthe voltage at the point of maximum power output in theJ-Vcurves,V

    Vocthe open-circuit voltage,V

    η the power conversion efficiency

    [1]H.H.Niu,S.X.Qin,X.L.Mao,S.W.Zhang,R.B.Wang,L.Wan,J.Z.Xu,S.D.Miao,Axlesleeve structured MWCNTs/polyaniline composite film as cost-effective counterelectrodes for high efficient dye-sensitized solar cells,Electrochim.Acta121(2014)285–293.

    [2]M.X.Wu,Y.N.Lin,H.Y.Guo,K.Z.Wu,X.Lin,Highly efficient Mo2C nanotubes as a counter electrode catalyst for organic redox shuttles in dye-sensitized solar cells,Chem.Commun.50(2014)7625–7627.

    [3]R.Chauhan,M.Shinde,A.Kumar,S.Gosavi,D.P.Amalnerkar,Microporous and mesoporous materials,Microporous Mesoporous Mater.226(2016)201–208.

    [4]Y.M.Xiao,J.Y.Lin,W.Y.Wang,S.Y.Tai,G.T.Yue,J.H.Wu,Enhanced performance of low-cost dye-sensitized solar cells with pulse-electropolymerized polyaniline counter electrodes,Electrochim.Acta90(2013)468–474.

    [5]M.Wang,Q.W.Tang,P.P.Xu,B.L.He,L.Lin,H.Y.Chen,Counter electrodes from polyaniline–graphene complex/graphene oxide multilayers for dye-sensitized solar cells,Electrochim.Acta137(2014)175–182.

    [6]Y.M.Xiao,J.Y.Lin,J.H.Wu,S.Y.Tai,G.T.Yue,T.W.Lin,Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique,J.Power Sources233(2013)320–325.

    [7]Z.W.Shi,K.M.Deng,L.Li,Pt-free and efficient counter electrode with nanostructured CoNi2S4for dye-sensitized solar cells,Sci.Rep.5(2015)9317–9322.

    [8]M.S.H.Choudhury,N.Kishi,T.Soga,Compression of ZnO nanoparticle films at elevated temperature for flexible dye-sensitized solar cells,J.Alloys Compd.656(2016)476–480.

    [9]J.Z.Chen,C.Wang,C.C.Hsu,I.C.Cheng,Carbon,ultrafast synthesis of carbonnanotube counter electrodes for dye-sensitized solar cells using an atmosphericpressure plasma jet,Carbon98(2016)34–40.

    [10]E.Bi,H.Chen,X.D.Yang,F.Ye,M.S.Yin,L.Y.Han,Fullerene-structured MoSe2hollow spheres anchored on highly nitrogen-doped graphene as a conductive catalyst for photovoltaic applications,Sci.Rep.5(2015)13214–13223.

    [11]S.H.Hsu,C.T.Li,H.T.Chien,R.R.Salunkhe,N.Suzuki,Y.Yamauchi,K.C.Ho,K.C.W.Wu,Platinum-free counter electrode comprised of metal–organic-framework(MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells(DSSCs),Sci.Rep.4(2014)6983–6988.

    [12]J.H.Wu,Y.Li,Q.W.Tang,G.T.Yue,J.M.Lin,M.L.Huang,L.J.Meng,Bifacial dyesensitized solar cells:A strategy to enhance overall efficiency based on transparent polyaniline electrode,Sci.Rep.4(2014)4028–4034.

    [13]Y.Qiu,S.Lu,S.S.Wang,X.H.Zhang,S.T.He,High-performance polyaniline counter electrode electropolymerized in presence of sodium dodecyl sulfate for dyesensitized solar cells,J.Power Sources253(2014)300–304.

    [14]S.H.Park,K.H.Shin,J.Y.Kim,S.J.Yoo,K.J.Lee,J.J.Shin,J.W.Choi,J.Jang,Y.E.Sung,The application of camphorsulfonic acid doped polyaniline films prepared on TCO-free glass for counter electrode of bifacial dye-sensitized solar cells,Photochem.Photobiol.A Chem.245(2012)1–8.

    [15]R.S.Chen,F.Formenti,H.McPeak,A.N.Obeid,C.Hahn,A.Farmery,Experimental investigation of the effect of polymer matrices on polymer fibre optic oxygen sensors and their time response characteristics using a vacuum testing chamber and a liquid flow apparatus,Sensors Actuators B Chem.222(2016)531–535.

    [16]I.Fratoddi,A.Bearzotti,I.Venditti,C.Cametti,M.V.Russo,Role of nanostructured polymers on the improvement of electrical response-based relative humidity sensors,Sensors Actuators B Chem.225(2016)96–108.

    [17]F.M.Wisser,J.Grothe,S.Kaskel,Nanoporous polymers as highly sensitive functional material in chemiresistive gas sensors,Sensors Actuators B Chem.223(2016)166–171.

    [18]R.R.Salunkhe,M.B.Zakaria,Y.Kamachi,S.M.Alshehri,T.Ahamad,N.L.Torad,S.X.Dou,J.H.Kim,Y.Yamauchi,Fabrication of asymmetric supercapacitors based on coordination polymer derived nanoporous materials,Electrochim.Acta183(2015)94–99.

    [19]W.A.Christinelli,R.Gon?alves,E.C.Pereira,A new generation of electrochemical supercapacitors based on layer-by-layer polymer films,J.Power Sources303(2016)73–80.

    [20]M.X.Wu,Y.N.Lin,H.Y.Guo,T.L.Ma,A.Hagfeldt,Highly effective Pt/MoSi2composite counter electrode catalyst for dye-sensitized solar cell,J.Power Sources263(2014)154–157.

    [21]G.Q.Wang,W.Xing,S.P.Zhou,The production of polyaniline/graphene hybrids for use as a counter electrode in dye-sensitized solar cells,Electrochim.Acta66(2012)151–157.

    [22]S.P.Lim,A.Pandikumar,Y.S.Lim,N.M.Huang,H.N.Lim,In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells,Sci.Rep.4(2014)5305–5311.

    [23]G.T.Yue,F.R.Tan,F.M.Li,C.Chen,W.F.Zhang,J.H.Wu,Enhanced performance of flexible dye-sensitized solar cell based on nickel sulfide/polyaniline/titanium counter electrode,Electrochim.Acta149(2014)117–125.

    [24]K.H.S.Lessa,Y.Zhang,G.A.Zhang,F.Xiao,S.Wang,Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor,J.Power Sources302(2016)92–97.

    [25]Y.D.Wang,C.Y.Zhao,M.X.Wu,W.Liu,T.L.Ma,Highly efficient and low cost Pt-based binary and ternary composite catalysts as counter electrode for dye-sensitized solar cells,Electrochim.Acta105(2013)671–676.

    [26]B.L.He,X.Meng,Q.W.Tang,P.J.Li,S.S.Yuan,P.Z.Yang,Low-cost CoPt alloy counter electrodes forefficientdye-sensitized solarcells,J.PowerSources260(2014)180–185.

    免费黄网站久久成人精品| 视频区图区小说| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费不卡的大黄色大毛片视频在线观看| 精品人妻熟女毛片av久久网站| 中文字幕免费在线视频6| 婷婷色综合www| 欧美少妇被猛烈插入视频| 免费人妻精品一区二区三区视频| 久久久久久久久久人人人人人人| 一级爰片在线观看| 老司机亚洲免费影院| xxxhd国产人妻xxx| 爱豆传媒免费全集在线观看| 免费观看a级毛片全部| 免费观看av网站的网址| 成年av动漫网址| 在线 av 中文字幕| 免费观看性生交大片5| 日本猛色少妇xxxxx猛交久久| av福利片在线| 午夜日本视频在线| 亚洲成色77777| 国产精品国产av在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲精品456在线播放app| 国产片特级美女逼逼视频| 黄色怎么调成土黄色| 亚洲欧洲日产国产| 精品熟女少妇av免费看| 欧美老熟妇乱子伦牲交| 国产色爽女视频免费观看| 精品一区二区三区视频在线| 91精品伊人久久大香线蕉| 各种免费的搞黄视频| 五月伊人婷婷丁香| 纵有疾风起免费观看全集完整版| 亚洲欧美色中文字幕在线| 热re99久久国产66热| 精品一区二区免费观看| 成人毛片a级毛片在线播放| kizo精华| 中文字幕制服av| 99久久精品国产国产毛片| 人人澡人人妻人| 国产一区亚洲一区在线观看| 最新中文字幕久久久久| 欧美日韩在线观看h| 在线看a的网站| 最近中文字幕2019免费版| 欧美激情 高清一区二区三区| 一级爰片在线观看| 成年av动漫网址| 丝袜脚勾引网站| 国产免费视频播放在线视频| 日韩av免费高清视频| 黄片无遮挡物在线观看| .国产精品久久| 国产不卡av网站在线观看| 老女人水多毛片| 内地一区二区视频在线| 国产视频内射| 下体分泌物呈黄色| av国产久精品久网站免费入址| 国产综合精华液| 国产视频首页在线观看| 97超视频在线观看视频| 国产国语露脸激情在线看| 亚洲精品日韩av片在线观看| 国产精品偷伦视频观看了| 伊人亚洲综合成人网| 国产熟女欧美一区二区| 久久精品人人爽人人爽视色| av专区在线播放| 特大巨黑吊av在线直播| 国产视频内射| 中文乱码字字幕精品一区二区三区| av不卡在线播放| av在线app专区| 亚洲精品久久午夜乱码| 久久久久久久久大av| 国产精品成人在线| 亚洲激情五月婷婷啪啪| 男女免费视频国产| 久久久国产精品麻豆| 国产不卡av网站在线观看| 80岁老熟妇乱子伦牲交| 精品99又大又爽又粗少妇毛片| 女性被躁到高潮视频| 国产片内射在线| 国产男女内射视频| 99热网站在线观看| 又大又黄又爽视频免费| 婷婷色综合大香蕉| 亚洲色图 男人天堂 中文字幕 | 久久国产精品男人的天堂亚洲 | 如何舔出高潮| 久久99热6这里只有精品| 日韩 亚洲 欧美在线| 美女福利国产在线| av在线播放精品| 精品久久久久久久久av| 亚洲内射少妇av| 精品久久蜜臀av无| 高清av免费在线| 成人影院久久| 美女主播在线视频| 肉色欧美久久久久久久蜜桃| 国产精品不卡视频一区二区| 国产日韩欧美在线精品| 一级爰片在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美激情 高清一区二区三区| 80岁老熟妇乱子伦牲交| 老女人水多毛片| 久久久久久人妻| 黄色一级大片看看| 男女啪啪激烈高潮av片| 成人手机av| 久久久久久久久大av| 精品国产一区二区三区久久久樱花| 老女人水多毛片| 丰满饥渴人妻一区二区三| 午夜福利视频精品| 99re6热这里在线精品视频| 亚洲图色成人| 卡戴珊不雅视频在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品视频女| 国产又色又爽无遮挡免| 美女视频免费永久观看网站| 啦啦啦视频在线资源免费观看| 亚洲av成人精品一二三区| 久久99一区二区三区| 免费看光身美女| 亚洲欧美色中文字幕在线| 日韩熟女老妇一区二区性免费视频| 麻豆精品久久久久久蜜桃| 日日爽夜夜爽网站| 亚洲综合色网址| 亚洲欧美成人综合另类久久久| 亚洲精品aⅴ在线观看| 欧美97在线视频| 婷婷色av中文字幕| av电影中文网址| 成人漫画全彩无遮挡| 十分钟在线观看高清视频www| 91aial.com中文字幕在线观看| 伊人亚洲综合成人网| 午夜福利在线观看免费完整高清在| 伦理电影大哥的女人| 精品人妻在线不人妻| 亚洲精品国产av蜜桃| 久久久久精品性色| 人妻少妇偷人精品九色| 国产成人免费无遮挡视频| 国产综合精华液| 国产亚洲欧美精品永久| 欧美日韩成人在线一区二区| 久久av网站| 欧美3d第一页| 免费观看无遮挡的男女| 亚洲av福利一区| 七月丁香在线播放| 亚洲精品久久久久久婷婷小说| 久久久久久久久久久久大奶| 人妻夜夜爽99麻豆av| 两个人的视频大全免费| 国产女主播在线喷水免费视频网站| 欧美xxⅹ黑人| 国产成人精品久久久久久| 亚洲欧美一区二区三区黑人 | 久久久久久久久大av| 亚洲精品色激情综合| 国产国拍精品亚洲av在线观看| 国产精品三级大全| 黑人欧美特级aaaaaa片| 成人18禁高潮啪啪吃奶动态图 | 国语对白做爰xxxⅹ性视频网站| 中文乱码字字幕精品一区二区三区| 美女国产高潮福利片在线看| 建设人人有责人人尽责人人享有的| 99热这里只有是精品在线观看| 另类精品久久| 欧美成人精品欧美一级黄| 在线亚洲精品国产二区图片欧美 | 婷婷色麻豆天堂久久| 国产午夜精品久久久久久一区二区三区| 五月伊人婷婷丁香| 亚洲综合色惰| 欧美国产精品一级二级三级| 精品久久久精品久久久| 99久久综合免费| 好男人视频免费观看在线| 一本久久精品| 2021少妇久久久久久久久久久| 一级毛片我不卡| 我要看黄色一级片免费的| 2021少妇久久久久久久久久久| a级毛片黄视频| 亚洲国产精品成人久久小说| 国产老妇伦熟女老妇高清| 国产片特级美女逼逼视频| 亚洲欧美日韩另类电影网站| 另类精品久久| 亚洲精品一区蜜桃| av在线老鸭窝| 亚洲丝袜综合中文字幕| 亚洲欧美成人精品一区二区| 尾随美女入室| 精品人妻熟女毛片av久久网站| 少妇高潮的动态图| 天天操日日干夜夜撸| 成人手机av| 精品国产乱码久久久久久小说| 亚洲美女视频黄频| 亚洲精品色激情综合| 久久午夜综合久久蜜桃| 午夜福利视频精品| av不卡在线播放| 麻豆乱淫一区二区| 中文字幕制服av| videos熟女内射| 中文字幕久久专区| 99久久精品一区二区三区| 精品人妻熟女毛片av久久网站| 男女啪啪激烈高潮av片| 在线天堂最新版资源| 男人操女人黄网站| 国产精品国产三级国产av玫瑰| 亚洲av福利一区| 亚洲国产精品一区三区| 精品卡一卡二卡四卡免费| a级毛片黄视频| 免费看av在线观看网站| 丝瓜视频免费看黄片| 日韩视频在线欧美| 热99久久久久精品小说推荐| 国产白丝娇喘喷水9色精品| 国产免费一级a男人的天堂| 最新的欧美精品一区二区| 成人国产麻豆网| 亚洲av福利一区| 久久 成人 亚洲| 精品一区二区三区视频在线| 亚洲成人一二三区av| 天天影视国产精品| 国产成人一区二区在线| 欧美激情极品国产一区二区三区 | 精品人妻在线不人妻| 少妇高潮的动态图| 亚洲一区二区三区欧美精品| 色婷婷av一区二区三区视频| 激情五月婷婷亚洲| 王馨瑶露胸无遮挡在线观看| 老司机影院成人| 99久久综合免费| 国产在视频线精品| a级毛色黄片| 丁香六月天网| 亚洲av不卡在线观看| 涩涩av久久男人的天堂| 亚洲精品国产av蜜桃| 中文字幕免费在线视频6| 日本欧美视频一区| 大香蕉久久网| 永久免费av网站大全| 久久久亚洲精品成人影院| 亚洲欧洲国产日韩| 制服人妻中文乱码| 久久久久网色| 中文字幕亚洲精品专区| 欧美+日韩+精品| 纵有疾风起免费观看全集完整版| 精品国产乱码久久久久久小说| 国产精品三级大全| 国精品久久久久久国模美| 狂野欧美激情性bbbbbb| 国产在线一区二区三区精| 日韩,欧美,国产一区二区三区| 国产精品偷伦视频观看了| 免费久久久久久久精品成人欧美视频 | 毛片一级片免费看久久久久| 国产亚洲一区二区精品| 大又大粗又爽又黄少妇毛片口| 国产av码专区亚洲av| 一本—道久久a久久精品蜜桃钙片| 国产精品女同一区二区软件| 黄色视频在线播放观看不卡| 黄色欧美视频在线观看| 一级毛片黄色毛片免费观看视频| 久久精品国产自在天天线| 国产黄片视频在线免费观看| 久热久热在线精品观看| 91精品一卡2卡3卡4卡| 22中文网久久字幕| 大片电影免费在线观看免费| 18禁在线无遮挡免费观看视频| 狠狠精品人妻久久久久久综合| 伊人久久精品亚洲午夜| 国产精品一国产av| 久久综合国产亚洲精品| 亚洲四区av| 亚洲少妇的诱惑av| 国产精品一区二区三区四区免费观看| 亚洲天堂av无毛| 一区二区三区四区激情视频| 久久久久久久国产电影| 人人妻人人爽人人添夜夜欢视频| 69精品国产乱码久久久| 日本av手机在线免费观看| 丰满饥渴人妻一区二区三| a级片在线免费高清观看视频| 人成视频在线观看免费观看| 日韩三级伦理在线观看| 中文字幕精品免费在线观看视频 | 亚洲欧美日韩另类电影网站| 久热这里只有精品99| 国产成人精品无人区| 国产国拍精品亚洲av在线观看| 色婷婷久久久亚洲欧美| 欧美97在线视频| 边亲边吃奶的免费视频| xxx大片免费视频| 亚洲欧美清纯卡通| 亚洲国产精品国产精品| 五月开心婷婷网| 一区在线观看完整版| 9色porny在线观看| 欧美成人精品欧美一级黄| 国产欧美亚洲国产| 亚洲欧美成人综合另类久久久| 午夜老司机福利剧场| 老女人水多毛片| 欧美xxⅹ黑人| 精品久久久久久久久av| 水蜜桃什么品种好| h视频一区二区三区| 天天躁夜夜躁狠狠久久av| 97在线视频观看| 建设人人有责人人尽责人人享有的| 一个人看视频在线观看www免费| av免费观看日本| 在线观看人妻少妇| 国产免费现黄频在线看| 一级毛片 在线播放| 免费观看的影片在线观看| 久久久久久久久久久丰满| 久久久国产精品麻豆| 一本色道久久久久久精品综合| 国产精品一区www在线观看| 久久毛片免费看一区二区三区| 亚洲精品自拍成人| 久久影院123| 欧美成人精品欧美一级黄| 老司机影院毛片| 午夜久久久在线观看| 丝袜脚勾引网站| 国产成人一区二区在线| 欧美亚洲 丝袜 人妻 在线| 国产av国产精品国产| 久久久久久久久久久丰满| 亚洲欧美精品自产自拍| 又粗又硬又长又爽又黄的视频| 国产精品国产三级国产专区5o| 十八禁网站网址无遮挡| 亚洲伊人久久精品综合| 久久久久网色| 91精品一卡2卡3卡4卡| 国产一区二区在线观看日韩| 好男人视频免费观看在线| 天天影视国产精品| 久久免费观看电影| 九色成人免费人妻av| 国产无遮挡羞羞视频在线观看| 欧美最新免费一区二区三区| 一级片'在线观看视频| 亚洲欧美日韩另类电影网站| 不卡视频在线观看欧美| 97超视频在线观看视频| 水蜜桃什么品种好| 麻豆成人av视频| 九九久久精品国产亚洲av麻豆| 亚洲综合精品二区| 国产av一区二区精品久久| 只有这里有精品99| 午夜福利视频精品| 国产免费又黄又爽又色| 精品人妻偷拍中文字幕| 久久综合国产亚洲精品| 乱人伦中国视频| 肉色欧美久久久久久久蜜桃| 亚洲av福利一区| 亚洲精品成人av观看孕妇| 亚洲,欧美,日韩| 亚洲欧洲国产日韩| 简卡轻食公司| 亚洲精品美女久久av网站| 精品久久蜜臀av无| 婷婷色av中文字幕| 欧美最新免费一区二区三区| 有码 亚洲区| 晚上一个人看的免费电影| 国产熟女欧美一区二区| 日韩强制内射视频| 内地一区二区视频在线| 91久久精品电影网| 9色porny在线观看| 高清在线视频一区二区三区| 永久免费av网站大全| av在线播放精品| 乱码一卡2卡4卡精品| 这个男人来自地球电影免费观看 | 国精品久久久久久国模美| 国产免费又黄又爽又色| 制服诱惑二区| 婷婷色综合www| 亚洲,欧美,日韩| 久久久久视频综合| 三级国产精品片| 色网站视频免费| a级毛片免费高清观看在线播放| 久久久精品区二区三区| 大陆偷拍与自拍| 国产视频首页在线观看| 国产爽快片一区二区三区| 国产免费一级a男人的天堂| 99九九线精品视频在线观看视频| 久久精品国产鲁丝片午夜精品| 亚洲av中文av极速乱| 精品少妇内射三级| 在线播放无遮挡| 一区二区av电影网| 亚洲精品成人av观看孕妇| 亚洲人成77777在线视频| 日韩av免费高清视频| 午夜精品国产一区二区电影| 交换朋友夫妻互换小说| av卡一久久| 午夜福利,免费看| 菩萨蛮人人尽说江南好唐韦庄| a 毛片基地| 国产成人精品福利久久| 免费久久久久久久精品成人欧美视频 | 成人亚洲精品一区在线观看| 成人国产av品久久久| 国产女主播在线喷水免费视频网站| 久久久国产一区二区| 久久久精品区二区三区| 最近中文字幕2019免费版| av一本久久久久| 新久久久久国产一级毛片| 91aial.com中文字幕在线观看| 99久国产av精品国产电影| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线观看国产h片| 又黄又爽又刺激的免费视频.| 丰满乱子伦码专区| 久久鲁丝午夜福利片| 九九久久精品国产亚洲av麻豆| 一级黄片播放器| 高清午夜精品一区二区三区| 校园人妻丝袜中文字幕| 久久狼人影院| 精品国产乱码久久久久久小说| 黄色视频在线播放观看不卡| 欧美最新免费一区二区三区| 男女国产视频网站| 老女人水多毛片| 欧美人与性动交α欧美精品济南到 | 日韩亚洲欧美综合| 欧美日本中文国产一区发布| 黑人猛操日本美女一级片| 高清在线视频一区二区三区| 男人操女人黄网站| 久久人人爽人人片av| 免费观看av网站的网址| 亚洲精品av麻豆狂野| 蜜桃在线观看..| 一边亲一边摸免费视频| 亚洲图色成人| 日本色播在线视频| 秋霞在线观看毛片| 寂寞人妻少妇视频99o| 一区二区三区四区激情视频| 欧美老熟妇乱子伦牲交| 国产欧美另类精品又又久久亚洲欧美| 精品99又大又爽又粗少妇毛片| 久久久午夜欧美精品| 中文乱码字字幕精品一区二区三区| 亚洲成人av在线免费| 一区二区三区四区激情视频| 国产又色又爽无遮挡免| 国产一区亚洲一区在线观看| 成年av动漫网址| 日本与韩国留学比较| a级毛片黄视频| 夜夜看夜夜爽夜夜摸| 亚洲婷婷狠狠爱综合网| 免费看光身美女| 黄片播放在线免费| 亚洲第一av免费看| 亚洲av成人精品一二三区| 婷婷色av中文字幕| 一级,二级,三级黄色视频| 日本欧美国产在线视频| 国产精品.久久久| xxxhd国产人妻xxx| 久久久久久久久久成人| 久久久精品94久久精品| 男女无遮挡免费网站观看| 亚洲美女视频黄频| 特大巨黑吊av在线直播| 黄片无遮挡物在线观看| 欧美xxxx性猛交bbbb| 满18在线观看网站| videossex国产| 久久鲁丝午夜福利片| 国产精品一区二区在线不卡| 一级毛片aaaaaa免费看小| 色婷婷av一区二区三区视频| 亚洲精品国产av蜜桃| 亚洲天堂av无毛| 国产精品国产三级国产专区5o| 亚洲精品日韩在线中文字幕| a 毛片基地| 交换朋友夫妻互换小说| 2021少妇久久久久久久久久久| 人人妻人人澡人人爽人人夜夜| 日本av手机在线免费观看| 在线精品无人区一区二区三| 黑人猛操日本美女一级片| 中文字幕亚洲精品专区| 男女免费视频国产| videossex国产| 80岁老熟妇乱子伦牲交| 婷婷色综合大香蕉| 国产精品蜜桃在线观看| 只有这里有精品99| 久久精品国产亚洲网站| 亚洲精品自拍成人| 久久久久精品性色| 久久久久久久久久人人人人人人| 久久97久久精品| 欧美+日韩+精品| 久久久久久久精品精品| 亚洲在久久综合| 久久精品久久精品一区二区三区| 久久精品国产亚洲av涩爱| 青青草视频在线视频观看| 99久久精品一区二区三区| 亚洲欧洲日产国产| 精品一区二区三卡| 国产成人精品婷婷| 中文字幕久久专区| 2018国产大陆天天弄谢| 午夜免费观看性视频| 日本猛色少妇xxxxx猛交久久| 成人综合一区亚洲| 在线观看三级黄色| 免费少妇av软件| 2018国产大陆天天弄谢| 男人添女人高潮全过程视频| 亚洲综合色网址| 80岁老熟妇乱子伦牲交| 丰满乱子伦码专区| 日韩在线高清观看一区二区三区| 有码 亚洲区| 少妇被粗大的猛进出69影院 | 欧美精品人与动牲交sv欧美| 午夜激情av网站| 日韩一本色道免费dvd| 最近的中文字幕免费完整| 久久久午夜欧美精品| a级毛色黄片| 最新的欧美精品一区二区| 狂野欧美白嫩少妇大欣赏| 亚洲精品日韩在线中文字幕| 国产视频内射| 亚洲天堂av无毛| 久久久久久人妻| 亚洲怡红院男人天堂| 18禁观看日本| 精品午夜福利在线看| 亚洲第一av免费看| 国产亚洲午夜精品一区二区久久| 两个人免费观看高清视频| 国产视频首页在线观看| 久久av网站| av国产精品久久久久影院| 国产成人freesex在线| 久久人人爽av亚洲精品天堂| 亚洲,欧美,日韩| 久久 成人 亚洲| 99国产综合亚洲精品| 亚洲精品自拍成人| 大片免费播放器 马上看| 人体艺术视频欧美日本| 一区二区三区乱码不卡18| 我的老师免费观看完整版| 亚洲国产精品成人久久小说| 一级,二级,三级黄色视频| 人妻系列 视频| 亚洲精品日韩在线中文字幕| 人妻系列 视频| 欧美bdsm另类| 久久久久久久久久久丰满| 爱豆传媒免费全集在线观看| 亚洲丝袜综合中文字幕| 制服人妻中文乱码| 国产一区二区三区综合在线观看 | 亚洲欧洲精品一区二区精品久久久 | 在线观看美女被高潮喷水网站| 国产成人精品福利久久| 亚洲国产最新在线播放|