• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,gas adsorption and reliable pore size estimation of zeolitic imidazolate framework-7 using CO2 and water adsorption

    2017-05-28 10:23:00MahdiNiknamShahrakMortezaNiknamShahrakAkbarShahsavandNasserKhazeniXiaofeiWuShuguangDeng

    Mahdi Niknam Shahrak *,Morteza Niknam Shahrak ,Akbar Shahsavand ,Nasser Khazeni,Xiaofei Wu ,Shuguang Deng *

    1 Chemical Engineering Department,Faculty of Engineering,Quchan University of Advanced Technology,Quchan,P.O.Box 84686-94717,Iran

    2 Chemical Engineering Department,Faculty of Engineering,Ferdowsi University of Mashhad,Mashhad,P.O.Box 91775-1111,Iran

    3 Chemical Engineering Department,New Mexico State University,Las Cruces,New Mexico 88003,USA

    4 Chemical Engineering Department,Arizona State University,USA

    1.Introduction

    Extensive applications of various adsorption processes in numerous chemical engineering industries require much more efficient novel adsorbents.In 1965 Tomic[1]initially introduced the coordination polymers or supra-molecular structure and in 1999 Yaghiet al.fabricated the first MOF material known as MOF-5 in a laboratory scale batch[2].

    Afterward,metal–organic frameworks(MOFs)have captured significant attention due to their outstanding properties,such as extremely large surface areas[3],high thermal and mechanical stabilities[4],low bulk densities[5],large micropore volumes and very high porosities[6].These materials have been used for numerous practical applications such as gas storage(e.g.methane,carbon dioxide and hydrogen),gas separation(e.g.nitrogen recovery from air),catalysis,drug delivery,membranes,luminescent and sensors fabrication[2,6,7–17].

    Regarding the variety of the metals and ligands,over 38,000 MOF structures are listed up to now in the Cambridge Structure Database(CSD).Several reviews have also addressed this fast growing area,for example,over 2460 articles were recorded in MOF related subjects up to 2008[6,18].The most comprehensive ones are given by Kitagawa and Rowsell and Kuppleraet al.[6,19,20].More recently,in March 2015,a review article has explained fundamentals and wide array of potential applications of metal–organic frameworks[21].

    In general,pore size distribution(PSD)is probably the most significant adsorbent specification that directly affects many other adsorption properties,such as surface area,bulk density and especially adsorption capacity[22–25].Bastos-Netoet al.related various textural properties(such as:PSD,micropore volume and solid surface area)to methane adsorption capacities for a number of activated carbon samples produced from different raw materials[22].They reported that“the textural parametersper sedo not unequivocally determine natural gas storage capacities.Surface chemistry and methane adsorption equilibria must be taken into account in the decision-making process of choosing an adsorbent for gas storage”.They also concluded that“for carbons produced from the same source,those which have higher surface area,higher micro-pore volume and narrower PSD within the range of 0.8–1.5 nm,show better methane adsorption properties”.Finally,they concluded that“although textural parameters provide an easy and useful tool for initial screening of activated carbons for natural gas storage,they do not allow ranking of these samples accurately”.

    In 2007,Sahaet al.synthesized three different MOF-5s by dispersion in dimethylformamide(DMF),to investigate the effects of various synthesis operating conditions on their crystal structure,pore textural properties and the corresponding hydrogen adsorption performances[25].They also proposed a relationship between the PSDs of various porous MOF-5 materials and their hydrogen adsorption capacities.Finally they concluded that higher order of crystallinity in the MOF-5 materials leads to better adsorbent with larger crystal sizes,higher specific surface areas,more uniform PSDs,higher hydrogen adsorption capacities and faster hydrogen diffusions.

    PSD estimation methods are usually classified into two main groups of independent and dependent methods.The former ones are more accurate but usually very cost demanding and are often used for comparison or validation purposes[26].Mercury porosimetry,X-ray diffraction(XRD),small angle X-ray scattering(SAXS),small angle neutron scattering(SANS)and nuclear magnetic response(NMR)are a few samples of such independent methods[27–33].Mercury porosimetry is more common for PSD determination of conventional adsorbents,such as active carbon and control-pore glasses(CPG)[27],while other methods are usually more adequate for extremely well structured materials such as MOFs and MCM-41(Mobil Composition of Matter No.41(mesoporous molecular sieves))[28,29,32,34].

    The latter dependent group for PSD estimation is often less expensive and can be applied to almost all adsorbents.Almost most of these techniques[e.g.BJH(Barret,Joyner and Halenda),HK(Horvath–Kawzoe),KJS(Kruk–Jaroniec–Sayari),ND(Nguyen and Do(Do and co-workers)),DFT(Nonlocal density functional theory)and DBdB(Derjaguin–Broekhoff-de Boer)]require experimental adsorption(or condensation)isotherms coupled with some theoretical or analytical background[35–46].Most of these techniques suffer from some shortcomings and sometimes unrealistic assumptions some of which are discussed in more details elsewhere[47,48].Amongst the above methods,SAXS and HK procedures have received more attention for PSD estimation of MOF materialsviaindependent and dependent methods,respectively.

    In 2007,Tsaoetal.employed SAXS method to determine various real structural details of MOF-5,including pore surface characteristics,pore shape,PSD,specific surface area,and pore-network structure[34].They con firmed that SAXS method provides adequate textural properties such as pore surface,pore shape,PSD and pore volume,while,BJH and HK methods may fail for some adsorbents.The HK method(presented in 1983),has been widely applied for several PSD estimations of various MOF materials[17,25,41,45,49].This method uses average potential function inside the slit-shape pores by employing the Kelvin equation[50]at the scale of molecule dimensions.Similar to other conventional PSD estimation techniques,HK method also requires a variety of detailed informations(such as diameter,polarizability and susceptibility of both adsorbent and adsorbate molecules and liquid density of adsorbate).Some of these data may not be readily available for many adsorption systems.Other conventional techniques(such as BJH)have also been extensively used to recover the PSD of various MOF materials[42,43].

    In contrast to traditional dependent PSD recovery techniques,two recently proposed in-house methods[SHN1(Stands for Shahsavand–Niknam first method)and SHN2(Stands for Shahsavand–Niknam second method)]require only adsorbate surface tension and its liquid molar volume which are readily available for almost all adsorbates[51].It should be emphasized that in contrast to many conventional techniques,both SHN1 and SHN2 methods do not require any information about the form of local adsorption isotherm or kernel.A detailed comparison of various PSD estimation techniques can be found in our previous articles[47,48].

    In the current article,a fast microwave technique is described for synthesis of a zeolitic imidazolate frameworks,ZIF-7.Afterwards,the collected CO2experimental isotherms data along with four other data sets of water adsorption borrowed from literature[52],over four different MOF materials(HKUST-1,ZIF-8,MIL-101 and MIL-100(Fe))are used to extract the corresponding PSDsviavarious in-house and conventional methods.The PSD prediction results are then validated by other independent techniques.It is worthwhile to mention that the most important reason for selection of ZIF-7 nano-porous material is related to its gate opening characteristic.The ZIF-7 sample can be opened or closed while it is faced with some gases such as CO2in different pressure ranges.So,because of this capability we selected this structure to investigate its PSD determinationviatheoretical methods.

    2.Experimental

    Synthesis of metal–organic frameworks can be carried out using several different methods such as solvothermal,microwave,sonochemical,electrochemical and mechanochemical[18,53,54].The microwave method has been employed in this work to produce ZIF-7 adsorbent as fast as possible.

    2.1.Synthesis of ZIF-7

    The ZIF-7 was synthesized by a microwave-assisted procedure,following the procedures given elsewhere[55,56].In this method,benzimidazole(C7H6N2,98%,from Aldrich)was used as linker,while,zinc nitrate(Zn(NO3)2·6H2O,from Fluka)was employed as metal source andN,N-dimethylformamide(DMF)(99%,Aldrich)is recruited as dispersant in a solvothermal reaction.

    In a typical experiment,0.2347 g(2 mmol)benzimidazole and 0.8025 g(2.7 mmol)Zn(NO3)2·6H2O were dissolved in 75 ml DMF under sonication for 10 min.The homogeneous solution was then evenly transferred to two 80-ml reaction vessels,with about 37.5 ml each.The reaction vessels are capped tightly and kept in the microwave reaction system(Multiwave 3000/synthos 3000,Anton Paar).Synthesis was carried out at130°C with a heating rate of5°C·min?1.The reaction was performed under autogenous pressure for 200 min and,then,the product was removed from the reaction vessels and allowed to cool at room temperature.The mother liquor was carefully decanted from the product and replaced with methanol.Fresh methanol was used to exchange the DMF for 48 h at room temperature.After decanting the extra methanol and drying in air for 24 h,white crystals were obtained.The guest molecules in the crystals were removed under a dynamic vacuum at 150°C for 12 h.

    2.2.Characterization of ZIF-7

    The pore textural properties including the specific Langmuir area,Brunauer–Emmet–Teller(BET)surface area and pore volume were performed by analyzing adsorption and desorption N2isotherms at 77 K with Micromeritics_ASAP 2020 built-in software.Also Micromeritics_ASAP 2020 built-in software coupled with HK method was employed to calculate pore size of ZIF-7.

    2.3.Adsorption of carbon dioxide on ZIF-7 at low pressures

    Carbon dioxide adsorption equilibrium on ZIF-7 sample was measured in the Micromeritics_ASAP 2020 adsorption apparatus at different temperatures and CO2pressure up to 800 mm Hg(0.107 MPa).Ultrahigh purity carbon dioxide(99.999%)was utilized for the adsorption measurements.About 0.1 g of adsorbent was used for the gas adsorption studies.The initial degassing process was carried out at 150°C for 12 h under a 0.0001 mmHg(0.013 Pa)vacuum pressure.

    3.Results and Discussion

    The above experimental techniques and corresponding apparatuses were used to collect the following measurements of Physical properties of ZIF-7.

    Scanning electron microscopy(SEM)images of the ZIF-7 crystals prepared in this work are shown in Fig.1.As it can be observed,the crystals are in flower shape.

    Fig.1.SEM image of the synthesized ZIF-7.

    Furthermore,the powder X-ray diffraction(XRD)patterns of the ZIF-7 sample are shown in Fig.2.The main peaks are identified by comparing the observed pattern with calculated pattern from the established crystal structure data.It can be seen from Fig.2 that the experimentally observed pattern agrees well with the simulated pattern,indicating that the bulk sample is the same as the single crystal.

    Fig.2.The observed and simulated XRD patterns of ZIF-7.

    Carbon dioxide adsorption was employed for the sample pore textural properties.The adsorption isotherms of carbon dioxide at three temperatures(273,298,and 323 K)and gas pressure up to 800 mmHg(1 mmHg=133.322 Pa)are demonstrated in Fig.3.

    Fig.3.Carbon dioxide adsorption on ZIF-7 at 273,298 and 323 K(Filled mark:adsorption,open mark:desorption).

    All temperatures are achieved by using a Dewar with a circulating jacket connected to a thermostatic bath with a precision of±0.01 °C.As it has been shown,CO2isotherm shapes at 273 and 298 K are like type IV BDDT(Brunauer,Deming,Denting,Teller)[50]or IUPAC[39]classification of adsorption isotherms.By using the adsorption isotherm of N2at77 K,the textural properties were calculated as it is demonstrated in Table 1.The Langmuir and BET specific surface area,maximum pore volume and HK-median pore size were calculated by the ASAP 2020 analyzer's built-in software.

    Table 1Pore textural properties of ZIF-7

    Evidently,the value of pore size of ZIF-7,shown in Table 1,suggests that the synthesized sample lies in micro-porous material category.The mean diameter of 0.4310 nm reported by Yaghiet al.[55]for ZIF-7 is in good agreement with our measurements presented in Table 1.These obtained and reported values using HK method and Yaghiet al.[55]article will be compared with the PSD estimationviaSHN methods in next sessions.

    4.PSD Determination

    As mentioned earlier,pore size distribution of adsorbents is one of the most significant textural properties that directly affects on the other adsorbent specifications.Various methods could be applied for PSD calculation however choosing the most convenient procedure is vital to achieve reliable size of pores.In this section at the first,SHN2 method would be utilized to extract the mean size of pores of the produced ZIF-7.Then,the obtained results will be compared with available performances of the HK method(presented in Table 1)and reported one by Yaghiet al.Subsequently,both SHN1 and SHN2 methods are applied for PSD determination of four different MOFs borrowed from literatureviaapplying water adsorption isotherm data[52].

    4.1.Theoretical estimation of optimal PSD

    Detailed descriptions of SHN1 and SHN2 are presented in our previous articles[47,48].A brief overview will be presented here to familiarize the reader with the essence of the proposed methods.

    The following integrals are usually used to find the PSD of a heterogeneous solid adsorbent(f(r))from a set of noisy measured isothermal data available for the amount of adsorbed material at a given set of pressures(Pi;i=1,…,n):

    After construction of matrix R and using proper order of regularization technique(with appropriate form of matrix B),the optimal level of regularization parameter(λ*)should be selected to establish the best stabilization of the solution vector f(r).Our other recently published article reviews various stabilization criteria(e.g.LOOCV(Leave One Out Cross Validation),LC(L-Curve method),MLC(Modified L-Curve method),UC(U-Curve method)and MUC(Modified U-Curve method))for automatic selection of optimum regularization parameter(λ*)[57].

    Various real case studies will be employed to investigate the capability of SHN1 and SHN2 methods for determination of correct pore size distributions for various MOF materials.These methods are more suitable for types IV and II(SHN2)or V and III(SHN1)isotherms of BDDT or IUPAC classification.Various measured PSD's of ZIF-7 at different temperatures(as presented in Fig.3)and borrowed experimental PSD's[52]of HKUST-1,ZIF-8,MIL-101,MIL-100(Fe)will be used to validate the successful performances of SHN1 and SHN2 methods on capturing the true PSD from real adsorption isotherms.It is worthwhile to mention that the predicted PSD's reported by Yaghiet al.for ZIF-7[55],are computedviaindependent method of topology study.Finally,two isotherms of carbon dioxide adsorption over ZIF-7(Fig.3)at two different temperatures and four water adsorption isotherms on different MOF materials(Fig.4)are used to calculate the corresponding PSD's of five MOFs by resorting to SHN1 and/or SHN2 methods.

    4.2.Optimal calculation of PSD

    As SHN1 and SHN2 methods are based on regularization technique the order of regularization and also the value of regularization parameter(level)have crucial effect on the overall performances.Fig.5a and b illustrate the efficient effect of the order and level of regularization on PSD calculation of one of the studied samples(e.g.ZIF-8)respectively(The effect of these two parameters for other MOFs is depicted in Supplementary material).

    As it has been shown in this figure,three orders of regularization,namely first,second and third show the same behavior.It proves that these methods can be readily used at various orders of regularization;however,the cost of time will increase with increasing the order of regularization.Furthermore,almost always the zero order of regularization technique provides relatively non-smooth solutions,while other regularization orders lead to very similar PSDs.It has to be noted,regularization orders more than three can be easily developed and successfully used for PSD recovery[57].

    Fig.4.Water adsorption isotherms for different MOF materials at 298 K(ZIF-8 right axis,others left axis).All data are borrowed from literature[52].

    On the other hand,regularization level is more important parameter that could adversely affect the produced results,if they are selected improperly.The effect of this factor on the PSD performanceviaSHN methods(Fig.5b),was reproduced in four levels(λ).Based on final conclusion of regularization order(last paragraph)and also to minimize the number of figures without missing any vital information,the effect of regularization level was investigated for the first order of regularization.

    As it can be seen,the too small values of λ could not predict the accurate values of PSD and result in highly oscillatory solutions.On the other hand,extremely large values of regularization parameter ignore the information embedded in the coefficient matrix[47,48]used in SHN methods and pushes the final solution,f(r)towardaprioriinformation sought for the specific order of regularization(a constant for first order regularization).Therefore, finding the optimal regularization parameters(λ*)has important rule in accurate PSD recovery.Since the value of regularization level can vary in the entire domain of positive real numbers there should exist an optimal value of regularization parameter for each isotherm which provides the optimal PSD recovery performance.Evidently,the optimal value of λ*tends to zero for wellbehaved RTR(coefficient)matrices.On the contrary,the value of λ*will increase to infinity when the corresponding matrix RTR becomes severely ill-conditioned,i.e.singular[47,48].

    Furthermore,the optimal regularization level can be selected by visual method when the actual PSD is known.Otherwise,more advanced techniques like leave one out cross validation(LOOCV),L-curve,U-curve and Modified U-curve are required for automatic selection of the optimal regularization level.This point has been received more attention in the literature by Shahsavand and Niknam[57].Finally some important notes are remembered as follows.(a)Shown results in Fig.5a,were depicted at the optimal regularization values(λ*)that are stated in parenthesis.(b)SHN1 was used for PSD determination in ZIF-8 sample.(c)Because of uniformity of pore sizes in MOF materials,the median point of calculated pore size distribution should be considered as a dominant size of pores.

    Consequently,the first order of regularization and LOOCV criterion was employed for PSD estimation of all MOF samples using adsorption isotherms(Figs.3 and 4).Fig.6 shows the PSD of ZIF-7 extracted from SHN2 method.As expected,the obtained results from CO2isotherms at 273 and 298 K don't show significant difference.As a result,any adsorbate at any arbitrary temperature which exhibits isotherm shapes like type IV and II or V and III can be used for PSD recoveryviaSHN methods.Moreover,the obtained results from SHN2 and HK methods have been demonstrated and compared together in Fig.6.As mentioned in Introduction,the HKmethod isone ofthe most-applied procedures to calculate PSDofMOFs in which usually N2adsorption isotherm at77 Kis used[34].

    Dashed line in Fig.6 illustrates the actual(real)pore diameter of ZIF-7,obtainedviastructure study[52].As it can be seen,recovered PSDviaSHN2 method is in good agreement with real diameter and estimated pore diameters using HK method.

    Fig.5.Effect of order(a)and level(b)of regularization on PSD calculation calculating SHN methods.

    Fig.6.The comparison of SHN2 and HK procedures with the actual measured pore size distributions for ZIF-7(Circle and rectangular:SHN2 method using CO2 isotherm at 273 K and 298 K respectively,dash dot:average pore size obtained using HK method,dashed line:actual PSD obtained via topology study[55]).

    The calculated PSDs for other samples by using SHN methods are depicted in Fig.7.Water adsorption isotherms at 298 K(Fig.4)were used for their PSD recovery.

    Evidently,Fig.7 con firms the remarkable performance of SHN methods to predict the actual pore sizes.It is important to know that the SHN1 method was employed for ZIF-8(because its water isotherm exhibits type V BDDT classification)and SHN2 was utilized for HKUST-1,MIL-101,MIL-100(Fe)(because their water isotherms show type IV BDDT classification).

    As before,in this figure,dashed lines reflect the real(actual)PSDs extracted from literature(viatopology or morphology studies)[52].Obviously,all predicted PSDs by using SHN methods reveal the highest agreement with actual data.

    As it was concluded,the first order of regularization was used for all PSD calculations.The optimum values of regularization levels for each adsorbent calculatedviaLOOCV criterion are presented in Table 2.If other regularization orders are employed,the optimum values change as shown in Table S.1 in Supporting information.

    Table 3 also includes all required information necessary in PSD recoveryviaSHN methods.It should be pointed out that successful application of SHN methods for adsorbents like AC,CMC and CPG has already been proved[47,48].

    5.Conclusions

    A typical Zeolitic Imidazolate Frameworks,known as ZIF-7,was successfully synthesized using fast microwave fabrication technique.The collected ZIF-7 is then characterized using various experimental facilities such as SEM and CO2adsorption apparatus.Carbon dioxide isotherms at three different temperatures were used coupled with two in-house(SHN)methods to extract the unique PSD of ZIF-7.Furthermore,four other experimental isotherms for adsorption of water vapor at 298 K on various MOF materials were borrowed from literature and the corresponding PSDs were successfully predictedviasame SHN procedures.Both of these in-house methods do not require any restrictive pre-assumptions and only need minimum information to predict PSD for any shape of pores with any range of pore size.

    Since both SHN1 and SHN2 techniques have deep roots in advanced mathematical topics such as inverse theory and linear regularization method,therefore,the effect of regularization order and the corresponding optimal regularization level were discussed in sufficient details.The computation results clearly indicated that the order of regularization has minor effect on the overall performance of the SHN methods.On the other hand,the optimal value of the regularization parameter has crucial effect on the final extracted PSD.The leave One Out Cross Validation(LOOCV)technique was successfully used for efficient calculation of the optimal regularization level for any given order of regularization.

    Fig.7.Optimal PSD recovery for various MOFs calculated by SHN techniques(dashed line:actual PSD obtained via topology study[52]).

    Table 2The optimum levels of regularization(λ*)for all adsorbents at first order of regularization

    Table 3The only required physical properties for PSD recovery via SHN methods[51]

    Supplementary Material

    Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cjche.2016.10.012.

    [1]E.A.Tomic,Thermal stability of coordination polymers,J.Appl.Polym.Sci.9(1965)3745–3752.

    [2]H.Li,M.Eddaoudi,M.O'Keeffe,O.M.Yaghi,Design and synthesis of an exceptionally stable and highly porous metal–organic framework,Nature402(1999)276–279.

    [3]H.Furukawa,O.M.Yaghi,Storage of hydrogen,methane,and carbon dioxide in highly porous covalent organic frameworks for clean energy applications,J.Am.Chem.Soc.131(25)(2009)8875–8883.

    [4]D.Britt,D.Tranchemontagne,O.M.Yaghi,Metal–organic frameworks with high capacity and selectivity for harmful gases,PNAS105(2008)11623–11627.

    [5]H.Wu,W.Zhou,T.Yildirim,High-capacity methane storage in metal–organic frameworks M2(dhtp):The important role of open metal sites,J.Am.Chem.Soc.131(13)(2009)4995–5000.

    [6]R.J.Kuppler,D.J.Timmons,Q.R.Fang,J.R.Li,T.A.Makal,M.D.Young,D.Yuan,D.Zhao,W.Zhuang,H.C.Zhou,Potential applications of metal–organic frameworks,Coord.Chem.Rev.253(2009)3042–3066.

    [7]J.R.Long,O.M.Yaghi,The pervasive chemistry of metal–organic frameworks,Chem.Soc.Rev.38(2009)1213–1214.

    [8]P.Chowdhury,C.Bikkina,S.Gumma,Gas adsorption properties of the chromiumbased metal organic framework MIL-101,J.Phys.Chem.C113(2009)6616–6621.

    [9]U.Mueller,M.Schubert,F.Teich,H.Puetter,K.Schierle-Arndt,J.Pastre,Metal–organic frameworks—Prospective industrial applications,J.Mater.Chem.16(2006)626–636.

    [10]R.Sabouni,H.Kazemian,S.Rohani,A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and microwave energies,Chem.Eng.J.165(2010)966–973.

    [11]C.M.Lu,J.Liu,K.Xiao,A.T.Harris,Microwave enhanced synthesis of MOF-5 and its CO2capture ability at moderate temperatures across multiple capture and release cycles,Chem.Eng.J.156(2010)465–470.

    [12]A.F.P.Ferreira,J.Santos,M.G.Plaza,N.Lamia,J.M.Loureiro,A.E.Rodrigues,Suitability of Cu-BTC extrudates for propane–propylene separation by adsorption processes,Chem.Eng.J.167(2011)1–12.

    [13]A.R.Millward,O.M.Yaghi,Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature,J.Am.Chem.Soc.127(2005)17998–17999.

    [14]R.E.Morris,P.S.Wheatley,Gas storage in nanoporous materials,Angew.Chem.Int.Ed.47(2008)4966–4981.

    [15]L.G.Qiu,L.N.Gu,G.Hu,L.Zhang,Synthesis,structural characterization and selectively catalytic properties of metal–organic frameworks with nano-sized channels:A modular design strategy,J.Solid State Chem.182(2009)502–508.

    [16]S.Wang,Q.Yang,C.Zhong,Adsorption and separation of binary mixtures in a metal–organic framework Cu-BTC:A computational study,Sep.Purif.Technol.60(2008)30–35.

    [17]Y.Li,R.T.Yang,Gas adsorption and storage in metal–organic framework MOF-177,Langmuir23(2007)12937–12944.

    [18]D.Tranchemontagne,J.R.Hunt,O.M.Yaghi,Room temperature synthesis of metal–organic frameworks:MOF-5,MOF-74,MOF-177,MOF-199,and IRMOF-0,Tetrahedron64(2008)8553–8557.

    [19]S.Kitagawa,R.Kitaura,S.Noro,Functional porous coordination polymers,Angew.Chem.Int.Ed.43(2004)2334–2375.

    [20]J.L.C.Rowsell,O.M.Yaghi,Metal–organic frameworks:A new class of porous materials,Microporous Mesoporous Mater.73(2004)3–14.

    [21]S.Li,F.Huo,Metal–organic framework composites:From fundamentals to applications,Nanoscale7(2015)7482–7501.

    [22]M.Bastos-Neto,D.V.Canabrava,A.E.B.Torres,E.Rodriguez-Castellon,A.Jimenez-Lopez,D.C.S.Azevedo,C.L.CavalcanteJr,Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures,Appl.Surf.Sci.253(2007)5721–5725.

    [23]D.Lozano-Castello,D.Cazorla-Amoros,A.Linares-Solano,D.F.Quinn,Influence of pore size distribution on methane storage at relatively low pressure:Preparation of activated carbon with optimum pore size,Carbon40(2002)989–1002.

    [24]D.Lozano-Castello,J.Alcaniz-Monge,M.A.de la Casa-Lillo,D.Cazorla-Amoros,A.Linares-Solano,Advances in the study of methane storage in porous carbonaceous materials,Fuel81(2002)1777–1803.

    [25]D.Saha,S.Deng,Z.Yang,Hydrogen adsorption on metal–organic framework(MOF-5)synthesized by DMF approach,J.Porous.Mater.16(2)(2009)141–149.

    [26]P.Kowalczyk,M.Jaroniec,A.P.Terzyk,K.Kaneko,D.D.Do,Improvement of the Derjaguin–Broekhoff-de Boer theory for capillary condensation/evaporation of nitrogen in mesoporous systems and its implications for pore size analysis of MCM-41 silicas and related materials,Langmuir21(2005)1827–1833.

    [27]O.Solcova,L.Matêjová,P.Schneider,Pore-size distributions from nitrogen adsorption revisited:Models comparison with controlled-pore glasses,Appl.Catal.A Gen.313(2006)167–176.

    [28]M.Kruk,M.Jaroniec,A.Sayari,Relations between pore structure parameters and their implications for characterization of MCM-41 using gas adsorption and X-ray diffraction,Chem.Mater.11(1999)492–500.

    [29]M.Kruk,M.Jaroniec,Y.Sakamoto,O.Terasaki,R.Ryoo,C.H.Ko,Determination of pore size and pore wall structure of MCM-41 by using nitrogen adsorption,transmission electron microscopy,and X-ray diffraction,J.Phys.Chem.B104(2000)292–301.

    [30]A.P.Radlinski,M.Mastalerz,A.L.Hinde,M.Hainbuchner,H.Rauch,M.Baron,J.S.Lin,L.Fan,P.Thiyagarajan,Application of SAXS and SANS in evaluation of porosity,pore size distribution and surface area of coal,Int.J.Coal Geol.59(2004)245–271.

    [31]E.Huang,M.F.Toney,W.Volksen,D.Mecerreyes,P.Brock,H.-C.Kim,C.J.Hawker,J.L.Hedrick,V.Y.Lee,T.Magbitang,R.D.Miller,Pore size distributions in nanoporous methyl silsesquioxane films as determined by small angle x-ray scattering,Appl.Phys.Lett.81(2002)2232–2234.

    [32]R.Schmidt,E.W.Hansen,M.StiScker,D.Akporiaye,O.H.Ellestad,Pore size determination of MCM-41 mesoporous materials by means of1H NMR spectroscopy,N2adsorption,and HREM.A preliminary study,J.Am.Chem.Soc.117(1995)4049–4056.

    [33]K.Kaneko,Determination of pore size and pore size distribution 1.Adsorbents and catalysts,J.Membr.Sci.96(1994)59–89.

    [34]C.Tsao,M.Yu,T.Chung,H.Wu,C.Wang,K.Chang,H.Chen,Characterization of pore structure in metal–organic framework by small-angle X-ray scattering,J.Am.Chem.Soc.129(2007)15997–16004.

    [35]E.P.Barrett,L.G.Joyner,P.P.Halenda,The determination of pore volume and area distributions in porous substances.I.Computation from nitrogen isotherms,J.Am.Chem.Soc.73(1951)373–380.

    [36]G.Horvath,K.Kawazoe,Method for the calculation of effective pore size distribution in molecular sieve carbon,J.Chem.Eng.Jpn16(1983)470–475.

    [37]M.Kruk,M.Jaroniec,A.Sayari,Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements,Langmuir13(1997)6267–6273.

    [38]C.Nguyen,D.D.Do,A new method for the characterization of porous materials,Langmuir15(1999)3608–3615.

    [39]Z.Ryu,J.Zheng,M.Wang,B.Zhang,Characterization of pore size distributions on carbonaceous adsorbents by DFT,Carbon37(1999)1257–1264.

    [40]J.C.P.Broekhoff,J.H.de Boer,Studies on pore systems in catalysts:IX.Calculation of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores A.Fundamental equations,J.Catal.9(1967)8–14.

    [41]Z.Bao,L.Yu,Q.Ren,X.Lu,S.Deng,Adsorption of CO2and CH4on a magnesiumbased metal organic framework,J.Colloid Interface Sci.353(2011)549–556.

    [42]D.Xuan-Dong,H.Vinh-Thang,S.Kaliaguine,MIL-53(Al)mesostructured metal–organic frameworks,Microporous Mesoporous Mater.141(2011)135–139.

    [43]B.Liu,H.Shioyama,H.Jiang,X.Zhang,Q.Xu,Metal–organic framework(MOF)as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor,Carbon48(2010)456–463.

    [44]F.Shi,M.Hammoud,L.T.Thompson,Selective adsorption of dibenzothiophene by functionalized metal organic framework sorbents,Appl.Catal.B Environ.103(2011)261–265.

    [45]D.Saha,Z.Wei,S.Deng,Equilibrium,kinetics and enthalpy of hydrogen adsorption in MOF-177,Int.J.Hydrog.Energy33(2008)7479–7488.

    [46]B.Mu,P.M.Schoenecker,K.S.Walton,Gas adsorption study on mesoporous metal–organic framework UMCM-1,J.Phys.Chem.C114(2010)6464–6471.

    [47]A.Shahsavand,M.Niknam Shahrak,Direct pore size distribution estimation of heterogeneous nano-structured solid adsorbents from condensation data:Condensation with no prior adsorption,Colloids Surf.A Physicochem.Eng.Asp.378(2011)1–13.

    [48]A.Shahsavand,M.Niknam Shahrak,Reliable prediction of pore size distribution for nano-sized adsorbents with minimum information requirements,Chem.Eng.J.171(2011)69–80.

    [49]D.Saha,S.Deng,Synthesis,characterization and hydrogen adsorption in mixed crystals of MOF-5 and MOF-177,Int.J.Hydrog.Energy34(2009)2670–2678.

    [50]D.D.Do,Adsorption Analysis:Equilibria Kinetics,Imperial College Press,London,1999.

    [51]C.L.Yaws,Chemical Properties Handbook,Mc-Graw-Hill,NY,1999.

    [52]P.Küsgens,M.Rose,I.Senkovska,H.Frde,A.Henschel,S.Siegle,S.Kaskel,Characterization of metal–organic frameworks by water adsorption,Microporous Mesoporous Mater.120(2009)325–330.

    [53]Z.Lin,D.S.Wragg,R.E.Morris,Microwave-assisted synthesis of anionic metal–organic frameworks under ionothermal conditions,Chem.Commun.19(2006)2021–2023.

    [54]Y.R.Lee,J.Kim,W.S.Ahn,Synthesis of metal–organic framework:A mini review,Korean J.Chem.Eng.30(2013)1667–1680.

    [55]K.S.Park,Z.Ni,A.P.C?té,J.Y.Choi,R.Huang,F.J.Uribe Romo,H.K.Chae,M.O'Keeffe,O.M.Yaghi,Exceptional chemical and thermal stability of zeolitic imidazolate frameworks,Proc.Natl.Acad.Sci.103(2006)10186–10191.

    [56]X.Wu,M.Niknam Shahrak,B.Yuan,S.Deng,Synthesis and characterization of zeolitic imidazolate framework ZIF-7 for CO2and CH4separation,Microporous Mesoporous Mater.190(2014)189–196.

    [57]M.NiknamShahrak,A.Shahsavand,A.Okhovat,Robust PSD determination of micro and meso-pore adsorbents via novel modified U curve method,Chem.Eng.Res.Des.91(2013)51–62.

    亚洲av免费高清在线观看| 老司机影院毛片| 国产亚洲5aaaaa淫片| 爱豆传媒免费全集在线观看| 亚洲四区av| av在线app专区| 欧美+日韩+精品| 91午夜精品亚洲一区二区三区| 一级毛片 在线播放| 黄色毛片三级朝国网站 | 国产极品粉嫩免费观看在线 | 欧美日韩国产mv在线观看视频| 国产精品久久久久久精品古装| 18+在线观看网站| 免费观看av网站的网址| 日韩三级伦理在线观看| 在线 av 中文字幕| 在线观看人妻少妇| 久久久国产精品麻豆| 伊人亚洲综合成人网| 久久久久精品久久久久真实原创| 免费久久久久久久精品成人欧美视频 | 欧美精品亚洲一区二区| 亚洲三级黄色毛片| 精品国产一区二区三区久久久樱花| 男女啪啪激烈高潮av片| 国产伦精品一区二区三区视频9| 99热网站在线观看| 一区二区三区四区激情视频| 国产精品久久久久久精品古装| 少妇精品久久久久久久| 黄色配什么色好看| av在线观看视频网站免费| 一本—道久久a久久精品蜜桃钙片| 噜噜噜噜噜久久久久久91| 性色avwww在线观看| 在线免费观看不下载黄p国产| 99久久人妻综合| a级片在线免费高清观看视频| 精品国产露脸久久av麻豆| 中文欧美无线码| 黑人高潮一二区| 日本爱情动作片www.在线观看| 国产精品99久久99久久久不卡 | 高清不卡的av网站| 热99国产精品久久久久久7| 亚洲,欧美,日韩| 午夜福利在线观看免费完整高清在| 如日韩欧美国产精品一区二区三区 | 精品人妻熟女av久视频| 国产片特级美女逼逼视频| 亚洲av电影在线观看一区二区三区| 中文资源天堂在线| 欧美高清成人免费视频www| 国产欧美日韩精品一区二区| 狠狠精品人妻久久久久久综合| 久久久久人妻精品一区果冻| 一本色道久久久久久精品综合| 日韩欧美 国产精品| 一个人看视频在线观看www免费| 日韩 亚洲 欧美在线| 一级二级三级毛片免费看| 99视频精品全部免费 在线| 高清午夜精品一区二区三区| 99视频精品全部免费 在线| 亚洲av日韩在线播放| 亚洲美女视频黄频| 久久6这里有精品| 亚洲欧美日韩另类电影网站| 一个人免费看片子| 国产白丝娇喘喷水9色精品| 汤姆久久久久久久影院中文字幕| 大片电影免费在线观看免费| 国产精品嫩草影院av在线观看| 熟妇人妻不卡中文字幕| 亚洲中文av在线| 亚洲精品,欧美精品| 大片电影免费在线观看免费| 午夜老司机福利剧场| 欧美成人精品欧美一级黄| a级一级毛片免费在线观看| 色网站视频免费| 免费观看a级毛片全部| 免费av中文字幕在线| 午夜福利影视在线免费观看| 狠狠精品人妻久久久久久综合| 伊人久久精品亚洲午夜| 五月伊人婷婷丁香| 91在线精品国自产拍蜜月| 少妇人妻精品综合一区二区| 两个人免费观看高清视频 | 日韩精品有码人妻一区| 亚洲av.av天堂| 亚洲,一卡二卡三卡| 麻豆乱淫一区二区| 午夜免费观看性视频| 亚洲电影在线观看av| 欧美bdsm另类| 美女内射精品一级片tv| 亚洲精品乱码久久久v下载方式| 高清视频免费观看一区二区| 91aial.com中文字幕在线观看| 91久久精品国产一区二区三区| 女性被躁到高潮视频| 新久久久久国产一级毛片| 国产黄片美女视频| 国内揄拍国产精品人妻在线| 大片免费播放器 马上看| 自线自在国产av| 欧美激情国产日韩精品一区| 成人黄色视频免费在线看| 欧美少妇被猛烈插入视频| 大香蕉97超碰在线| 在线观看一区二区三区激情| 人妻夜夜爽99麻豆av| 亚洲怡红院男人天堂| 亚洲色图综合在线观看| 亚洲美女搞黄在线观看| h日本视频在线播放| 精华霜和精华液先用哪个| 我要看日韩黄色一级片| 热re99久久精品国产66热6| 欧美变态另类bdsm刘玥| 亚洲激情五月婷婷啪啪| 免费av中文字幕在线| 下体分泌物呈黄色| 国产色爽女视频免费观看| 久久久久久久久久人人人人人人| 搡女人真爽免费视频火全软件| 午夜免费鲁丝| 欧美丝袜亚洲另类| 中国美白少妇内射xxxbb| 中文资源天堂在线| 熟女电影av网| 国产国拍精品亚洲av在线观看| 日韩亚洲欧美综合| 免费人成在线观看视频色| 国产成人精品久久久久久| 日韩大片免费观看网站| 我要看黄色一级片免费的| 乱人伦中国视频| 黄色配什么色好看| 女人精品久久久久毛片| 老司机影院成人| 乱码一卡2卡4卡精品| 性高湖久久久久久久久免费观看| 又大又黄又爽视频免费| 午夜91福利影院| 亚洲不卡免费看| 少妇高潮的动态图| 日本vs欧美在线观看视频 | 成人免费观看视频高清| 久久免费观看电影| 视频区图区小说| 综合色丁香网| 欧美 日韩 精品 国产| 国产伦理片在线播放av一区| 自拍偷自拍亚洲精品老妇| 亚洲精品国产成人久久av| av女优亚洲男人天堂| av在线老鸭窝| 成人毛片60女人毛片免费| 在线观看三级黄色| 国产中年淑女户外野战色| 日韩精品免费视频一区二区三区 | 日本av手机在线免费观看| a级毛色黄片| 国产在线视频一区二区| 亚洲伊人久久精品综合| 视频中文字幕在线观看| 麻豆精品久久久久久蜜桃| 人人妻人人爽人人添夜夜欢视频 | 中文字幕精品免费在线观看视频 | 欧美日韩av久久| 美女中出高潮动态图| 国产精品国产三级专区第一集| 丰满乱子伦码专区| 色视频www国产| 国产在线视频一区二区| 亚洲伊人久久精品综合| 黄色视频在线播放观看不卡| 欧美日韩综合久久久久久| 精品国产一区二区久久| 国产精品一区www在线观看| 日韩在线高清观看一区二区三区| 免费观看a级毛片全部| 免费观看的影片在线观看| tube8黄色片| 天天操日日干夜夜撸| 欧美少妇被猛烈插入视频| 51国产日韩欧美| 国产午夜精品一二区理论片| 亚洲精品,欧美精品| 最近中文字幕高清免费大全6| 国产一级毛片在线| 国产在线免费精品| 亚洲精品乱久久久久久| 久久人人爽人人片av| 蜜桃在线观看..| 久久国产乱子免费精品| 能在线免费看毛片的网站| 一本大道久久a久久精品| 欧美少妇被猛烈插入视频| 一级黄片播放器| 午夜视频国产福利| 欧美日韩视频精品一区| 一区二区三区四区激情视频| 一级av片app| 十八禁网站网址无遮挡 | 男人爽女人下面视频在线观看| 青春草视频在线免费观看| 午夜日本视频在线| 我要看日韩黄色一级片| 一级av片app| 少妇高潮的动态图| 日本vs欧美在线观看视频 | 亚洲精华国产精华液的使用体验| 如日韩欧美国产精品一区二区三区 | 男女啪啪激烈高潮av片| av卡一久久| 精品一区二区三卡| 日韩av不卡免费在线播放| 成人漫画全彩无遮挡| 国产亚洲一区二区精品| 精品酒店卫生间| 色吧在线观看| 最近2019中文字幕mv第一页| 免费大片黄手机在线观看| 亚洲国产av新网站| 我要看黄色一级片免费的| 一级毛片aaaaaa免费看小| 亚洲一区二区三区欧美精品| 国产综合精华液| 欧美日韩亚洲高清精品| 欧美三级亚洲精品| 欧美少妇被猛烈插入视频| 建设人人有责人人尽责人人享有的| 久久精品国产亚洲av涩爱| 日韩不卡一区二区三区视频在线| 亚洲四区av| 日韩在线高清观看一区二区三区| 我的女老师完整版在线观看| 久久精品夜色国产| 日韩熟女老妇一区二区性免费视频| 91久久精品国产一区二区三区| 妹子高潮喷水视频| 伊人久久精品亚洲午夜| 精品一区二区免费观看| 熟女人妻精品中文字幕| 亚洲电影在线观看av| av一本久久久久| 一级av片app| 99精国产麻豆久久婷婷| 日韩强制内射视频| 老熟女久久久| 亚洲一区二区三区欧美精品| 国产精品久久久久久精品电影小说| 国产成人午夜福利电影在线观看| 草草在线视频免费看| 国产淫片久久久久久久久| 欧美老熟妇乱子伦牲交| 免费av中文字幕在线| 如何舔出高潮| 肉色欧美久久久久久久蜜桃| 一级毛片电影观看| 特大巨黑吊av在线直播| freevideosex欧美| 美女cb高潮喷水在线观看| 国产淫语在线视频| 美女国产视频在线观看| 啦啦啦啦在线视频资源| 五月开心婷婷网| 久久午夜综合久久蜜桃| 国产91av在线免费观看| freevideosex欧美| 久久人人爽av亚洲精品天堂| 成人综合一区亚洲| 日韩伦理黄色片| 一区二区三区免费毛片| 人妻制服诱惑在线中文字幕| 精品午夜福利在线看| 一级黄片播放器| 黄色配什么色好看| 国产黄片视频在线免费观看| 亚洲国产毛片av蜜桃av| 久久久久久伊人网av| 国产美女午夜福利| 九草在线视频观看| 搡女人真爽免费视频火全软件| 最近中文字幕高清免费大全6| 精品亚洲成a人片在线观看| 寂寞人妻少妇视频99o| 亚洲婷婷狠狠爱综合网| 亚洲精品一二三| 亚州av有码| 免费看日本二区| 亚洲欧美一区二区三区黑人 | 午夜免费观看性视频| 一级毛片 在线播放| 青春草国产在线视频| 国产成人精品福利久久| 免费观看无遮挡的男女| 一级毛片aaaaaa免费看小| 久久99蜜桃精品久久| av女优亚洲男人天堂| 日韩,欧美,国产一区二区三区| 免费久久久久久久精品成人欧美视频 | 国产av码专区亚洲av| 一本色道久久久久久精品综合| 欧美xxxx性猛交bbbb| 国产av精品麻豆| a级毛片免费高清观看在线播放| 中文字幕制服av| 国产精品福利在线免费观看| av女优亚洲男人天堂| 国产精品国产av在线观看| 久久精品久久久久久噜噜老黄| 91精品国产国语对白视频| 免费少妇av软件| 日日撸夜夜添| 午夜精品国产一区二区电影| 边亲边吃奶的免费视频| 精品久久久久久久久av| 欧美日韩亚洲高清精品| 日产精品乱码卡一卡2卡三| 一级a做视频免费观看| 国产亚洲av片在线观看秒播厂| 亚洲精品乱码久久久久久按摩| 一二三四中文在线观看免费高清| 日日啪夜夜撸| 亚洲情色 制服丝袜| 大又大粗又爽又黄少妇毛片口| 亚洲天堂av无毛| 一本大道久久a久久精品| 久久久久久久久久人人人人人人| 久久综合国产亚洲精品| 欧美成人精品欧美一级黄| 男的添女的下面高潮视频| 91精品国产国语对白视频| 精品视频人人做人人爽| av又黄又爽大尺度在线免费看| 如何舔出高潮| 亚洲欧美精品自产自拍| 嫩草影院入口| 在线精品无人区一区二区三| 久久久久人妻精品一区果冻| 国产日韩欧美在线精品| 菩萨蛮人人尽说江南好唐韦庄| 国产中年淑女户外野战色| 欧美最新免费一区二区三区| 天美传媒精品一区二区| 国产淫语在线视频| 亚洲精品乱久久久久久| 亚洲av在线观看美女高潮| 男女边摸边吃奶| 久久韩国三级中文字幕| 久久av网站| 高清av免费在线| 国产黄色视频一区二区在线观看| 精品人妻熟女毛片av久久网站| 爱豆传媒免费全集在线观看| 国产爽快片一区二区三区| 男女边摸边吃奶| 国语对白做爰xxxⅹ性视频网站| 中文资源天堂在线| 久久久精品94久久精品| 大又大粗又爽又黄少妇毛片口| 日韩精品有码人妻一区| 91精品国产九色| 国产熟女欧美一区二区| 日日爽夜夜爽网站| 夫妻性生交免费视频一级片| 成人影院久久| 午夜影院在线不卡| 少妇人妻 视频| 午夜激情福利司机影院| 你懂的网址亚洲精品在线观看| 久久人人爽av亚洲精品天堂| 久久这里有精品视频免费| 一级毛片 在线播放| 热re99久久精品国产66热6| 国产精品一区二区性色av| 国语对白做爰xxxⅹ性视频网站| 伊人久久精品亚洲午夜| av一本久久久久| 亚洲精品一二三| 久久久久视频综合| 乱码一卡2卡4卡精品| 亚洲精品乱久久久久久| 中文字幕人妻熟人妻熟丝袜美| 国产午夜精品久久久久久一区二区三区| 午夜福利影视在线免费观看| 看免费成人av毛片| 国产精品女同一区二区软件| 欧美一级a爱片免费观看看| 一本—道久久a久久精品蜜桃钙片| 国产精品蜜桃在线观看| 只有这里有精品99| 老司机影院成人| 夫妻性生交免费视频一级片| 91在线精品国自产拍蜜月| 在线播放无遮挡| 午夜久久久在线观看| 狠狠精品人妻久久久久久综合| 亚洲激情五月婷婷啪啪| 色婷婷久久久亚洲欧美| 精品熟女少妇av免费看| 久久ye,这里只有精品| 精品亚洲乱码少妇综合久久| 少妇人妻久久综合中文| 香蕉精品网在线| 亚洲精品aⅴ在线观看| 最后的刺客免费高清国语| 在线播放无遮挡| 午夜久久久在线观看| 中文字幕人妻熟人妻熟丝袜美| av免费观看日本| 建设人人有责人人尽责人人享有的| 伊人亚洲综合成人网| 日韩欧美精品免费久久| 女性生殖器流出的白浆| 能在线免费看毛片的网站| 免费看光身美女| 国产亚洲最大av| 国产免费又黄又爽又色| 日韩制服骚丝袜av| 免费黄网站久久成人精品| 国产午夜精品久久久久久一区二区三区| 97精品久久久久久久久久精品| 全区人妻精品视频| 精品少妇内射三级| 另类亚洲欧美激情| 男女边吃奶边做爰视频| 成人美女网站在线观看视频| 欧美日韩视频精品一区| 亚洲精品第二区| 男女免费视频国产| av国产久精品久网站免费入址| 日本黄色日本黄色录像| av天堂久久9| 日韩欧美一区视频在线观看 | 亚洲国产精品国产精品| 26uuu在线亚洲综合色| 国产精品久久久久久久久免| 亚洲av男天堂| 国产精品久久久久久精品古装| 这个男人来自地球电影免费观看 | 五月伊人婷婷丁香| 日本黄色片子视频| 亚洲精品乱码久久久久久按摩| 午夜老司机福利剧场| 色94色欧美一区二区| 观看美女的网站| av专区在线播放| 一本色道久久久久久精品综合| 久久精品国产a三级三级三级| 欧美bdsm另类| 久久久久久久国产电影| 亚洲精品,欧美精品| 国产精品国产三级国产专区5o| 日本黄色日本黄色录像| 久久综合国产亚洲精品| 色94色欧美一区二区| 精品少妇内射三级| 国产精品.久久久| 午夜免费鲁丝| 国产成人一区二区在线| 亚洲欧洲精品一区二区精品久久久 | 人妻制服诱惑在线中文字幕| 久久人人爽av亚洲精品天堂| 久久毛片免费看一区二区三区| 丰满乱子伦码专区| 午夜免费观看性视频| 日韩av免费高清视频| 精品久久久噜噜| 十分钟在线观看高清视频www | 亚洲av欧美aⅴ国产| 热99国产精品久久久久久7| 夜夜看夜夜爽夜夜摸| 精品少妇内射三级| 老司机影院毛片| 六月丁香七月| 五月开心婷婷网| 啦啦啦视频在线资源免费观看| 看十八女毛片水多多多| 高清不卡的av网站| 黄色一级大片看看| 久久久久久久精品精品| 亚洲在久久综合| 中国国产av一级| 97超碰精品成人国产| 啦啦啦在线观看免费高清www| 中文字幕免费在线视频6| 精华霜和精华液先用哪个| 久久精品久久久久久久性| 亚洲真实伦在线观看| 美女视频免费永久观看网站| 街头女战士在线观看网站| 国产一级毛片在线| 99热国产这里只有精品6| 熟妇人妻不卡中文字幕| 一区二区av电影网| av线在线观看网站| 26uuu在线亚洲综合色| 黑人巨大精品欧美一区二区蜜桃 | 国产av一区二区精品久久| 国国产精品蜜臀av免费| 日韩一区二区视频免费看| 少妇的逼好多水| 国产欧美日韩精品一区二区| 免费av中文字幕在线| 亚洲精品一二三| 成人18禁高潮啪啪吃奶动态图 | 日韩一区二区三区影片| 国产免费一级a男人的天堂| 亚洲婷婷狠狠爱综合网| 久久久亚洲精品成人影院| 香蕉精品网在线| av又黄又爽大尺度在线免费看| 国产伦在线观看视频一区| 亚洲va在线va天堂va国产| 国产精品国产三级专区第一集| 99久久人妻综合| 欧美少妇被猛烈插入视频| 日韩熟女老妇一区二区性免费视频| 麻豆成人午夜福利视频| 哪个播放器可以免费观看大片| 丁香六月天网| 18禁在线播放成人免费| 高清午夜精品一区二区三区| 天堂俺去俺来也www色官网| 亚洲国产av新网站| 国产又色又爽无遮挡免| 欧美日韩国产mv在线观看视频| freevideosex欧美| 中文在线观看免费www的网站| 91久久精品国产一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲欧美清纯卡通| 国产免费一级a男人的天堂| 欧美精品亚洲一区二区| 街头女战士在线观看网站| 亚洲精品国产av蜜桃| av播播在线观看一区| 丰满饥渴人妻一区二区三| 日本午夜av视频| 自线自在国产av| 亚洲av.av天堂| 亚洲精品一区蜜桃| 美女主播在线视频| 国语对白做爰xxxⅹ性视频网站| 毛片一级片免费看久久久久| 国产又色又爽无遮挡免| 精品午夜福利在线看| 在线亚洲精品国产二区图片欧美 | 国产综合精华液| 久久久久久久亚洲中文字幕| 如日韩欧美国产精品一区二区三区 | 九色成人免费人妻av| 午夜免费观看性视频| 搡老乐熟女国产| 免费看光身美女| 美女内射精品一级片tv| 肉色欧美久久久久久久蜜桃| 曰老女人黄片| 亚洲真实伦在线观看| 欧美 日韩 精品 国产| 国产精品秋霞免费鲁丝片| 久久国产精品男人的天堂亚洲 | 精品久久久噜噜| 黄色怎么调成土黄色| .国产精品久久| 99久国产av精品国产电影| 在线观看av片永久免费下载| 成人二区视频| 最新中文字幕久久久久| 国产无遮挡羞羞视频在线观看| 亚洲欧美成人综合另类久久久| 国产成人精品一,二区| 久久ye,这里只有精品| 欧美日本中文国产一区发布| 能在线免费看毛片的网站| 成人毛片a级毛片在线播放| 亚洲欧美日韩另类电影网站| 国产 一区精品| 国产高清三级在线| 午夜久久久在线观看| 国产又色又爽无遮挡免| 国产亚洲最大av| 精品酒店卫生间| 夜夜骑夜夜射夜夜干| 日韩人妻高清精品专区| 国产精品蜜桃在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产精品不卡视频一区二区| 日日摸夜夜添夜夜爱| 国产成人精品久久久久久| 国产视频内射| 成人国产麻豆网| 男女无遮挡免费网站观看| 少妇裸体淫交视频免费看高清| 人人妻人人看人人澡| 亚洲四区av| 亚洲精品,欧美精品| 乱人伦中国视频| 久久久国产一区二区| 亚洲久久久国产精品| 精品国产国语对白av| 大话2 男鬼变身卡| 久久人人爽人人片av| 啦啦啦在线观看免费高清www| 人人妻人人爽人人添夜夜欢视频 | 一级毛片我不卡| 国产午夜精品久久久久久一区二区三区| 乱人伦中国视频|