• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of hollow fiber T-type zeolite membrane modules for ethanol dehydration☆

    2017-05-28 10:22:55XueruiWangJiJiangDezhongLiuYouquanXueChunZhangXuehongGu

    Xuerui Wang,Ji Jiang,Dezhong Liu,Youquan Xue,Chun Zhang,Xuehong Gu*

    State Key Laboratory of Materials-Oriented Chemical Engineering,College of Chemistry and Chemical Engineering,The Synergetic Innovation Center for Advanced Materials,Nanjing Tech University,5 Xinmofan Road,Nanjing 210009,China

    1.Introduction

    Zeolite membranes show great potential applications in organic solvent dehydration[1–3],gas permeation[4],membrane reactors[5],seawater desalination[6]and so on.In the past two decades,intensive efforts have been made for the fabrication and application of zeolite membranes.Several commercial companies,such as Mitsui Engineering and Shipbuilding(Japan),Jiangsu Nine Heaven(China)and GFT Membrane Systems GmbH(Germany),have built up more than 200 industrial plants based on LTA zeolite membranes[7–9].However,high capital investment of the separation equipment(5000–10,000 USD per square meter for an assembled module)has limited their application in niche markets and implementation to large-scale industrial plants that use larger membrane area[10–11].The fabrication cost is mainly attributed to the membrane modules,which is composed of zeolite membranes,sealing materials,and stainless steel.However,at least 70%of the membrane cost is dominated by support rather than membrane layer[12–13].Since there are no suitable alternatives to the expensive ceramic supports[13],an attractive strategy for reducing the investment is to increase membrane permeation flux and membrane packing density in the modules(membrane surface area per unit volume).

    Recently,increasing attentions have been drawn to hollow fiber(HF)zeolite membranes due to their high permeation flux as well as high packing density[14–18].The membrane packing density could increase from 30 to 250 m2·m?3for tubes up to 1000 m2·m?3for hollow fibers[14,15].Hollow fiber supports could be easily prepared by a combined phase-inversion and sintering method,which produces a thin wall with asymmetric structure[19,20].Commonly,hollow fiber supported zeolite membranes possess high permeability due to the much lower transfer resistance of hollow fiber supports compared with the conventional tubular supports.So far,much work has been done in the preparation of hollow fiber zeolite membranes,such as LTA[14–16],Silicalite-1[17],CHA[21]and T-type zeolite membranes[18].However,there is very few work devoted to the design of practical membrane modules for hollow fiber zeolite membranes,which is essential to the industrial applications.

    Recently,we reported the preparation of high-performance HF T-type zeolite membranes[18].A preliminary module was successfully fabricated for organic solvent dehydration.However,the permeation flux of the membrane module dropped by approximately 60%compared with the single hollow fiber T-type zeolite membranes.We speculated that the module con figuration could have an important effect on the separation efficiency.In this work,we investigated hollow fiber zeolite membrane modules with different con figurations for dehydration of ethanol/water mixtures.The influence of operation parameters on separation efficiency was also evaluated in terms of operation temperature,the water content in feed,and feed flow rate.Computational fluid dynamics(CFD)technique was employed to visualize the flow field distribution of the hollow fiber modules with different con figurations.The cross-section layout of the modules was systematically investigated to optimize module design.Furthermore,the operation stability of membrane module for dehydration of ethanol solution was investigated.

    2.Experimental

    2.1.Membrane preparation

    Hollow fiber T-type zeolite membranes were hydrothermally synthesized on yttria-stabilized zirconia(YSZ)hollow fiber supports with an effective length of~200 mm in batch scale.The YSZ supports were home-made by a wet-spinning method with a calcination temperature of 1550°C for 5 h.The supports had outer/inner diameters of~1.8/1.0 mm,average pore size of~0.9μm and porosity of~30%.Prior to hydrothermal synthesis,T-type zeolite particles(ca.1.4 μm in average particle size)were planted onto the outer surface of hollow fiber substrates by the vacuum-coating method.The process was conducted under the condition of 10 kPa in vacuum degree,1.0 wt%in seed concentration and 40 s in coating time,which has been optimized in our previous work[18].After drying at 60°C overnight,the seeded substrates were used for membrane synthesis.The synthesis precursor was prepared by dissolving sodium aluminate,colloidal silica,sodium hydroxide and potassium hydroxide in D.I.water at room temperature.The molar composition of the synthesis precursor was 1 SiO2:0.05 Al2O3:0.26 Na2O:0.09 K2O:17 H2O.All the chemicals were purchased from commercial companies in China.Hydrothermal synthesis was carried out at 100°C for 40 h.The as-synthesized membranes were washed by D.I.water and dried in an oven overnight before the module assembly.

    2.2.Membrane module assembly

    Membrane modules were assembled by packing the hollow fiber T-type zeolite membranes bundles inside of the stainless steel cylinders.The open end of the membrane was fixed onto a stainless steel plate by silicon rubber,while the other end was free and capped with silicon rubber.Fig.1 shows the photograph of four membrane modules,which were composed of one(Module A),three(Module B)and seven(Module C and Module D)hollow fiber membrane bundles.The open end of membrane module was connected to a vacuum line for pervaporation(PV).Detailed dimensions of the membrane modules were listed in Table 1.A tubular membrane module(Module E)was also assembled for comparison.The tubular T-type zeolite membranes with a length of 40 cm were provided by Jiangsu Nine Heaven High-Tech Co.,Ltd.

    Table 1Dimension parameters for the membrane modules

    2.3.Evaluation of membrane and membrane module with PV and CFD simulation

    Single hollow fiber membranes were evaluated by gas-tightness test.One end of the membrane was sealed by silicon rubber and the other end was connected to a vacuum line with an initial vacuum degree ofP1.After gas permeation through the membrane layer in dry air for60 s,the vacuum degree in the vacuum line decreased to a certain value ofP2.The pressure difference betweenP1andP2was used to evaluate the membrane quality.

    PV performance of the membrane module was identified by dehydration of ethanol/water mixture.Fig.2 shows a schematic diagram of the apparatus for measuring PV performance of the membrane modules.The feed solution was continuously pumped into the shell side of the membrane module and the permeate was removed from the lumens of the membranes by a vacuum pump,which maintained a downstream pressure below 200 Pa throughout the operation.The permeated vapor was collected with two liquid nitrogen traps in parallel for sampling without interruption of the operation.Both of the feed and permeate were analyzed by a gas chromatograph(GC,GC-2014A,Shimadzu)equipped with a thermal conductivity detector.The separation factor(α)for componentiover componentjand the water permeation flux(J)are respectively de fined as:

    Fig.1.Photographs of hollow fiber T-type zeolite membrane modules.(a)Module A,(b)Module B,(c)Module C,and(d)Module D.

    Fig.2.Schematic diagram of the experimental apparatus for evaluating membrane modules.

    wherexiandxjare mass fractions of componentiand componentjfor the feed;yiandyjare the corresponding mass fractionsin the permeate;wis the mass of the permeated water,kg;tis the collecting time,h;andAis the active separation area of the membrane,m2.

    Computational fluid dynamics(CFD)simulations were performed to visualize the flow rate distribution in the hollow fiber modules with a three-dimensional model.The module geometry was identical to that used for the experiments.The turbulence was modeled by the standardk-εmodel[22]based on the following assumptions:(1)the pure aquatic system was applied;and(2)the mass transport through membranes was ignored.

    3.Results and Discussion

    3.1.Quick evaluation of membrane quality

    SEM images of a hollow fiber T-type zeolite membrane was shown in Fig.3.The T-type zeolite crystals were randomly-oriented and well inter-grown in the membrane layer with a thickness of about 20 μm.Typical PV performances of 5 pieces of the 20 cm hollow fiber T-type zeolite membranes were listed in Table 2.The permeation fluxes were(2.22 ± 0.15)kg·m?2·h?1and the separation factor fluctuated between 351 and 579.The separation performance of T-type zeolite membranes prepared in batch scale is slightly lower than that prepared in laboratory[18].It is important to evaluate the membrane quality by an easy and quick method for the scaled-up production.Thus,we used a gas-tightness experiment to preliminarily evaluate the membrane quality.Generally,high-quality T-type zeolite membranes should have low permeances for nitrogen and oxygen due to molecular sieving effect[23].However,the gas permeances should be high for the membranes with pinholes or defects,which could be judged by a gas-tightness experiment in dry air.To con firm the reliability,over 60 pieces of hollow fiber membranes were subjected to gas-tightness tests and evaluated by PV dehydration of 90 wt%ethanol/water mixture at 70°C.Fig.4 shows the relationship between pressure difference and PV performance of single hollow fiber T-type zeolite membranes.For the membranes with a pressure drop of lower than 50 Pa,the water concentration in permeate was always higher than 90 wt%.The separation performance rapidly decreased when the pressure drop increased from 50 Pa to 100 Pa,indicating the existence of more defects even pinholes in those membrane layers.The results suggested that it is feasible to quickly screen hollow fiber T-type zeolite membranes by the gas-tightness test.In the following experiment,the membranes with a pressure drop of lower than 50 Pa were used for module assembly.

    Table 2Typical PV performance of the 20 cm T-type zeolite membranes for 90 wt%ethanol/water mixture at 70°C

    Fig.4.Correlation between gas-tightness and PV performance of single hollow fiber T-type zeolite membranes.

    Fig.3.SEM surface(a)and cross-sectional(b)images of hollow fiber T-type zeolite membranes.

    3.2.Membrane modules for ethanol dehydration

    3.2.1.Effect of temperature

    Fig.5 shows PV performance of hollow fiber membrane modules(Module A,B and C)as a function of operation temperature.The feed is 90 wt%ethanol/water mixtures with a constant feed flow of 2 L·min?1.It was observed that the water permeation fluxes increased with operation temperature for all the three membrane modules.Similar phenomenon was also reported for tubular NaA zeolite membrane modules[24].However,the water permeation fluxes for Module B and Module C was enhanced by 20%and 25%compared with Module A at 70°C.The difference in permeation flux should be contributed by the different geometric con figurations.The optimized module geometry could suppress undesirable concentration polarizations caused by uneven flow in shell side and consequently improve the permeation flux for pervaporation[25].It was noted that the achieved separation factors had a consequence of Module A<Module B<Module C.As reported by Bakeretal.[26],concentration polarization could largely reduce the separation factor for pervaporation.As shown in Fig.5,the difference in both permeation flux and separation factor was enlarged at a higher temperature for all the three modules,which should be attributed to the concentration polarizations caused by the enhanced permeation flux.

    Fig.5.PV performance of the membrane modules with different con figurations.

    3.2.2.Effect of feedflow

    In order to con firm concentration polarization,we further evaluated module performance under different feed flows.Fig.6 shows the water permeation fluxes as a function of feed flow over the three modules for dehydration of 90 wt%ethanol/water mixtures at 70°C.Module A exhibited relatively stable water permeation flux when varying feed flow from 0.5 to 2 L·min?1.However,obvious enhancement in water permeation flux was observed for both Module B and Module C.The results indicated that the membrane bundle size within the module had a significant effect on the separation performance of membrane module.For module A,100 pieces of hollow fiber membranes were packed in one bundle,which could be difficult for the feed stream to flow through at such a feed condition.As a result,the module exhibited low mass transfer efficiency.Recently,Liuetal.[27]investigated the flow distribution in hollow fiber module by computational fluid dynamics(CFD)technique.A nonuniform flow distribution was demonstrated inside the bundle of hollow fiber ceramic-PDMS composite membranes.Higher separation efficiency for Module B and Module C was achieved because of the smaller hollow fiber bundles(35 and 15 pieces of membrane in one membrane bundle).As shown in Fig.6,only a slight increase in water permeation flux(<4%)was achieved for Module C at a flow rate of 2 L·min?1compared with Module B,which was due to the minor effect of bundle size on concentration polarization at a smaller size.Although the uniform distribution of HF T-type zeolite membranes might minimize the effect of concentration polarization and lead to high efficiency,it is more difficult to fabricate such a membrane module with high packing density.Furthermore,due to the brittleness and slenderness of HF T-type zeolite membrane,the adhesion of membrane to silicon rubber might be weakened by feed flow during long PV test.In order to con firm the speculation,we fabricated a module equipped with separated 7 pieces of HF T-type zeolite membranes.After several hours of PV dehydration,the separation factor decreased to less than 50,indicating the poor reliability for practical applications.

    CFD simulation was further used to analyze the flow distributions in the module with different geometric con figurations.The feed flow was kept at 2 L·min?1.The simulated contours ofxvelocities in the middle(x=0.11 m)of Modules A–C at 70 °C were showed in Fig.7.It was found that the geometric con figuration significantly affected the velocity distributions in the modules.The increased bundles of hollow fiber membranes distinctly improved the bulk flow patterns,which resulted in thinner velocity boundary layer and more homogeneous velocity distributions.Thus,the uniform velocity distributions reduced concentration polarizations and temperature gradient in the modules,which strongly improved their performances.Therefore,higher increase in water permeation flux and separation factor were achieved for Module B and Module C.

    Fig.6.PV performances of the membrane modules as a function of feed flow.

    3.2.3.Effect of water content

    From the perspective of process design,average water permeation flux is an important parameter for estimating required membrane area for specific applications.Fig.8(a)demonstrates the dehydration of 90 wt%ethanol/water mixture(ca.4 kg)at 70°C by three membrane modules under a batch operation mode.Anhydrous ethanol with a water content of approximate 0.1 wt%could be obtained after 67.0 h,40.5 h and 31.5 h for Module A,Module B and Module C,respectively.The average water permeation fluxes during the whole dehydration process were calculated to be 0.07 kg·m?2·h?1,0.12 kg·m?2·h?1,and 0.14 kg·m?2·h?1for Module A,Module B and Module C,respectively.As reported in our previous work,the average water permeation flux of Module B was fairly close to that of the tubular T-type zeolite membrane module(0.11 kg·m?2·h?1)[28].As mentioned above,single hollow fiber zeolite membranes showed much higher water permeation flux than the tubular membranes[18,28].Thus,the results suggested that the separation efficiency was strongly dependent on the module con figuration.The water permeation flux as a function of feed water content was shown in Fig.8(b).The water permeation flux of modules decreased with feed water content,which was in accordance with single hollow fiber T-type zeolite membranes[18].The water permeation fluxes always had a sequence of Module A<Module B<Module C in the range of 0.1 wt%–10 wt%water content.We speculated that it was difficult for the feed to flow through the big membrane bundles.As a result,the water content in the bundles was always lower than the bulk concentration.A schematic diagram of the water molecule distribution is illustrated in Fig.9.

    Fig.7.Contours of x velocity(m·s?1)predicted by CFD simulation in Modules A–C.

    Fig.8.Dehydration of ethanol solution(4.0 kg)by hollow fiber membrane modules with different geometric con figurations.

    Fig.9.Schematic diagram for water molecule distribution in small and big hollow fiber bundles.

    3.3.Operation stability

    For practical applications,we further assembled a larger membrane module(Module D)to evaluate the reliability during multi-cycle dehydration in batch scale.Each bundle in Module D was composed of 35 pieces of hollow fiber T-type zeolite membranes.The effective membrane area was approximately 0.25 m2.The module was used to dehydrate 3 kg 90 wt%ethanol/water mixtures at 70°C.The feed was pumped to the module at a flow rate of 2 L·min?1and the retentate was recycled to the feed tank.The process was operated continuously until the water content was lower than 0.1 wt%.As can be seen in Fig.10,operation duration for the first cycle was slightly shorter than those in the later cycles.As we know,the molecular size of ethanol(0.43 nm)is very similar to the aperture size of T-type zeolite(0.36 nm×0.51 nm).Therefore,ethanol molecules could continuously enter into zeolitic pores at the initial stage during pervaporation,which would strongly exert on the water molecule diffusion through membrane layer.The operation durations were almost identical in the later three cycles,suggesting good stability of the membrane module for ethanol dehydration.

    Fig.10.Dehydration of 90 wt%ethanol solutions with HF zeolite membrane module at 70°C.

    3.4.Comparison with tubular membrane module

    A tubular membrane module with a membrane area of 0.1 m2(Module E)was also fabricated,which was comprised of 7 tubular T-type zeolite membranes.No turbulence promoters were used in Module E.The module had a water permeation flux of 0.72 kg·m?2·h?1for PV dehydration of 90 wt%ethanol/water mixtures at 70°C,which was similar to the single tubular membrane(0.81 kg·m?2·h?1).It might be due to the large space between the tubes as hypothesized in Fig.9.A comparison between Module E and the hollow fiber membrane modules was shown in Fig.11.Except for Module A,PV performances of hollow fiber membrane modules were comparable to that of the tubular membrane module.However,the packing density of hollow fiber membrane module was 10 times higher than that of tubular membrane module(Table 1).The packing density could be as high as 600 m2·m?3for Module D.Therefore,it is very promising to reduce the facility size and capital investment for PV plants by using hollow fiber zeolite membranes.

    Fig.11.Comparison between hollow fiber membrane modules and tubular membrane module.

    4.Conclusions

    The membrane quality could be quickly evaluated by gas-tightness tests.Hollow fiber T-type zeolite membrane modules were successfully fabricated for dehydration of ethanol solutions.The permeation fluxes of the modules were dependent on the operation temperature,feed flow and feed water content.High permeation flux could be achieved at high feed flow,operation temperature and feed water content.The separation efficiency was strongly dependenton the geometric con figurations of the membrane modules.CFD simulation revealed that strong concentration polarization occurred in the case of big membrane bundle.The membrane module with seven hollow fiber membrane bundles exhibited optimized separation efficiency.The hollow fiber T-type zeolite membrane module had an average water permeation lf ux as high as 0.78 kg·m?2·h?1for 90 wt%ethanol/water mixture at 70°C.Moreover,the packing density could reach as high as 600 m2·m?3.Therefore,hollow fiber membrane modules could reduce the fabrication cost of separation equipment,which has promising applications in organic dehydration.

    [1]T.C.Bowen,R.D.Noble,J.L.Falconer,Fundamentals and applications of pervaporation through zeolite membranes,J.Membr.Sci.245(1–2)(2004)1–33.

    [2]P.D.Chapman,T.Oliveira,A.G.Livingston,K.Li,Membranes for the dehydration of solvents by pervaporation,J.Membr.Sci.318(1–2)(2008)5–37.

    [3]S.L.Wee,C.T.Tye,S.Bhatia,Membrane separation process-pervaporation through zeolite membrane,Sep.Purif.Technol.63(3)(2008)500–516.

    [4]N.W.Ockwig,T.M.Nenoff,Membranes for hydrogen separation,Chem.Rev.107(2007)4078–4110.

    [5]E.E.McLeary,J.C.Jansen,F.Kapteijn,Zeolite based films,membranes and membrane reactors:Progress and prospects,Microporous Mesoporous Mater.90(1–3)(2006)198–220.

    [6]J.Dong,Z.Xu,S.Yang,S.Murad,K.R.Hinkle,Zeolite membranes for ion separations from aqueous solutions,Curr.Opin.Chem.Eng.8(2015)15–20.

    [7]Y.Morigami,M.Kondo,J.Abe,H.Kita,K.Okamoto,The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane,Sep.Purif.Technol.25(1–3)(2001)251–260.

    [8]J.Gascon,F.Kapteijn,B.Zornoza,V.Sebastián,C.Casado,J.Coronas,Practical approach to zeolitic membranes and coatings:State of the art,opportunities,barriers,and future perspectives,Chem.Mater.24(15)(2012)2829–2844.

    [9]Y.S.Lin,M.C.Duke,Recent progress in polycrystalline zeolite membrane research,Curr.Opin.Chem.Eng.2(2013)209–216.

    [10]M.Tsapatsis,Toward high-throughput zeolite membranes,Science334(2011)767–768.

    [11]J.Caro,Are MOF membranes better in gas separation than those made of zeolites?Curr.Opin.Chem.Eng.1(2011)77–83.

    [12]J.Caro,M.Noack,Zeolite membranes-status and prospective,Adv.Nano.Mater.1(2010)1–96.

    [13]M.P.Pina,R.Mallada,M.Arruebo,M.Urbiztondo,N.Navascués,O.de la Iglesia,J.Santamaria,Zeolite films and membranes.Emerging applications,Microporous Mesoporous Mater.144(1–3)(2011)19–27.

    [14]X.Xu,W.Yang,J.Liu,L.Lin,N.Stroh,H.Brunner,Synthesis of NaA zeolite membrane on a ceramic hollow fiber,J.Membr.Sci.229(1–2)(2004)81–85.

    [15]Z.Wang,Q.Ge,J.Shao,Y.Yan,High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition,J.Am.Chem.Soc.131(2009)6910–6911.

    [16]L.Lai,J.Shao,Q.Ge,Z.Wang,Y.Yan,The preparation of zeolite NaA membranes on the inner surface of hollow fiber supports,J.Membr.Sci.409-410(2012)318–328.

    [17]X.Shu,X.Wang,Q.Kong,X.Gu,N.Xu,High- flux Mfizeolite membrane supported on YSZ hollow fiber for separation of ethanol/water,Ind.Eng.Chem.Res.51(37)(2012)12073–12080.

    [18]X.Wang,Y.Chen,C.Zhang,X.Gu,N.Xu,Preparation and characterization of highflux T-type zeolite membranes supported on YSZ hollow fibers,J.Membr.Sci.455(2014)294–304.

    [19]X.Tan,S.Liu,K.Li,Preparation and characterization of inorganic hollow fiber membranes,J.Membr.Sci.188(2001)87–95.

    [20]C.C.Wei,K.Li,Yttria-stabilized zirconia(YSZ)-based hollow fiber solid oxide fuel cells,Ind.Eng.Chem.Res.47(2008)1506–1512.

    [21]Y.Hasegawa,C.Abe,M.Nishioka,K.Sato,T.Nagase,T.Hanaoka,Formation of high flux CHA-type zeolite membranes and their application to the dehydration of alcohol solutions,J.Membr.Sci.364(1–2)(2010)318–324.

    [22]F.Zhang,W.Jing,W.Xing,Modeling of cross- flow filtration processes in an airlift ceramic membrane reactor,Ind.Eng.Chem.Res.48(2009)10637–10642.

    [23]Y.Cui,H.Kita,K.Okamoto,Preparation and gas separation performance of zeolite T membrane,J.Mater.Chem.14(2004)924–932.

    [24]M.Kondo,M.Komori,H.Kita,K.Okamoto,Tubular-type pervaporation module with zeolite NaA membrane,J.Membr.Sci.133(1)(1997)133–141.

    [25]M.M.Teoh,S.Bonyadi,T.S.Chung,Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process,J.Membr.Sci.311(1–2)(2008)371–379.

    [26]R.W.Baker,J.G.Wijmans,A.L.Athayde,R.Daniels,J.H.Ly,M.Le,The effect of concentration polarization on the separation of volatile organic compounds from water by pervaporation,J.Membr.Sci.137(1–2)(1997)159–172.

    [27]D.Liu,G.Liu,L.Meng,Z.Dong,K.Huang,W.Jin,Hollow fiber modules with ceramicsupported PDMS composite membranes for pervaporation recovery of bio-butanol,Sep.Purif.Technol.146(2015)24–32.

    [28]X.Wang,Z.Yang,C.Yu,L.Yin,C.Zhang,X.Gu,Preparation of T-type zeolite membranes using a dip-coating seeding suspension containing colloidal SiO2,Microporous Mesoporous Mater.197(2014)17–25.

    亚洲国产成人一精品久久久| 亚洲人与动物交配视频| 欧美另类一区| 欧美日韩av久久| 亚洲内射少妇av| 亚洲av国产av综合av卡| 91精品一卡2卡3卡4卡| 日本91视频免费播放| 综合色丁香网| 三级国产精品欧美在线观看| 中文在线观看免费www的网站| 亚洲国产最新在线播放| 精品午夜福利在线看| 交换朋友夫妻互换小说| 99re6热这里在线精品视频| 丝瓜视频免费看黄片| 亚洲精品中文字幕在线视频 | 免费观看a级毛片全部| 国产一区二区三区综合在线观看 | 少妇高潮的动态图| 内地一区二区视频在线| 91精品伊人久久大香线蕉| 亚洲美女视频黄频| 九九在线视频观看精品| 日韩欧美一区视频在线观看 | 日本黄大片高清| 夜夜看夜夜爽夜夜摸| h日本视频在线播放| 老熟女久久久| 亚洲欧美一区二区三区国产| 日日摸夜夜添夜夜爱| 五月伊人婷婷丁香| 亚洲欧美一区二区三区黑人 | 国产亚洲av片在线观看秒播厂| 婷婷色av中文字幕| 一级av片app| 自线自在国产av| 99热这里只有精品一区| 日韩亚洲欧美综合| 国产精品欧美亚洲77777| 最新中文字幕久久久久| 美女大奶头黄色视频| 美女大奶头黄色视频| 婷婷色麻豆天堂久久| 亚洲精品日韩在线中文字幕| h日本视频在线播放| 国产欧美日韩精品一区二区| 国产91av在线免费观看| 少妇人妻精品综合一区二区| 亚洲国产精品成人久久小说| 男人爽女人下面视频在线观看| 曰老女人黄片| 男人爽女人下面视频在线观看| 欧美日韩国产mv在线观看视频| 黄色怎么调成土黄色| 一级毛片久久久久久久久女| 91久久精品国产一区二区三区| 少妇人妻久久综合中文| 草草在线视频免费看| 成人国产麻豆网| 草草在线视频免费看| 一区二区av电影网| 黄片无遮挡物在线观看| 99精国产麻豆久久婷婷| 国产精品不卡视频一区二区| 韩国高清视频一区二区三区| 亚洲欧美日韩另类电影网站| 欧美少妇被猛烈插入视频| 日韩中字成人| 久久免费观看电影| av.在线天堂| 国产一区二区三区综合在线观看 | 26uuu在线亚洲综合色| 深夜a级毛片| 日韩人妻高清精品专区| 亚洲熟女精品中文字幕| 日韩中字成人| 99视频精品全部免费 在线| 成年女人在线观看亚洲视频| 热re99久久精品国产66热6| 亚洲综合精品二区| 久久久久久久精品精品| 男女边吃奶边做爰视频| 亚洲欧美成人综合另类久久久| 国产精品偷伦视频观看了| 精品人妻熟女毛片av久久网站| 亚洲久久久国产精品| 色94色欧美一区二区| 精品熟女少妇av免费看| 欧美日韩视频精品一区| 日韩中文字幕视频在线看片| 国产精品欧美亚洲77777| 亚洲av欧美aⅴ国产| 色94色欧美一区二区| 国产精品国产av在线观看| 国产精品.久久久| 久久免费观看电影| 少妇人妻一区二区三区视频| 午夜久久久在线观看| 亚洲欧美日韩卡通动漫| 欧美精品亚洲一区二区| 老司机亚洲免费影院| 男男h啪啪无遮挡| 精品久久久精品久久久| 国产淫片久久久久久久久| 51国产日韩欧美| 亚洲美女搞黄在线观看| 性色av一级| 久久久久国产精品人妻一区二区| 久久韩国三级中文字幕| 久久午夜福利片| 亚洲无线观看免费| 亚洲精品日韩在线中文字幕| 亚洲自偷自拍三级| 日本av手机在线免费观看| 狂野欧美激情性bbbbbb| 国产色爽女视频免费观看| 黄色日韩在线| 日本vs欧美在线观看视频 | 亚洲国产成人一精品久久久| 久久久久久久亚洲中文字幕| 久久久久久久久久人人人人人人| 国产黄频视频在线观看| 亚洲精品色激情综合| 国产成人免费观看mmmm| 欧美激情国产日韩精品一区| 两个人免费观看高清视频 | 亚洲美女搞黄在线观看| 妹子高潮喷水视频| 少妇 在线观看| 中文字幕亚洲精品专区| 免费少妇av软件| 国产成人freesex在线| 日韩欧美 国产精品| 成人毛片a级毛片在线播放| 91久久精品电影网| 伊人亚洲综合成人网| 亚洲av中文av极速乱| 久久精品久久久久久噜噜老黄| 日韩伦理黄色片| 国产成人免费观看mmmm| 青春草亚洲视频在线观看| 好男人视频免费观看在线| 五月天丁香电影| 少妇人妻精品综合一区二区| 日韩 亚洲 欧美在线| 精品99又大又爽又粗少妇毛片| 超碰97精品在线观看| 久久久久久久国产电影| 免费黄频网站在线观看国产| 国产精品国产av在线观看| www.av在线官网国产| av有码第一页| 久久久久久久久久人人人人人人| 色94色欧美一区二区| 国产高清不卡午夜福利| 国产精品国产三级专区第一集| 日韩大片免费观看网站| 青春草亚洲视频在线观看| 国产亚洲午夜精品一区二区久久| 女人精品久久久久毛片| 国产精品国产三级国产av玫瑰| 十分钟在线观看高清视频www | 高清av免费在线| 18禁裸乳无遮挡动漫免费视频| 日本猛色少妇xxxxx猛交久久| 毛片一级片免费看久久久久| 下体分泌物呈黄色| 亚洲欧美日韩另类电影网站| 97精品久久久久久久久久精品| 黄色视频在线播放观看不卡| av女优亚洲男人天堂| 妹子高潮喷水视频| 99久久人妻综合| 少妇的逼水好多| 亚洲成人av在线免费| 国产极品天堂在线| 又大又黄又爽视频免费| 精品国产乱码久久久久久小说| 日韩精品有码人妻一区| 久久精品久久久久久噜噜老黄| 一级a做视频免费观看| 大片免费播放器 马上看| 国产69精品久久久久777片| 熟妇人妻不卡中文字幕| 黄色欧美视频在线观看| 久久久久久久久久人人人人人人| 国产精品偷伦视频观看了| 丰满人妻一区二区三区视频av| 免费大片18禁| 91精品伊人久久大香线蕉| 色婷婷久久久亚洲欧美| 麻豆成人午夜福利视频| 韩国av在线不卡| 国产深夜福利视频在线观看| 久久精品国产亚洲av涩爱| 中文天堂在线官网| 99久久中文字幕三级久久日本| 免费av中文字幕在线| 国产精品国产三级国产av玫瑰| 美女国产视频在线观看| 国产成人精品婷婷| 精品一区在线观看国产| 成人特级av手机在线观看| 曰老女人黄片| 涩涩av久久男人的天堂| 国产伦在线观看视频一区| 免费观看在线日韩| 亚洲av国产av综合av卡| av免费在线看不卡| 热re99久久国产66热| 久久久久精品性色| 午夜激情福利司机影院| 中文字幕久久专区| av天堂中文字幕网| 国产精品成人在线| 欧美性感艳星| 欧美 日韩 精品 国产| 久久久久久人妻| 亚洲精品一区蜜桃| 少妇精品久久久久久久| 日韩熟女老妇一区二区性免费视频| 最新的欧美精品一区二区| 国产欧美另类精品又又久久亚洲欧美| 91久久精品国产一区二区三区| 国产综合精华液| 精品少妇内射三级| 下体分泌物呈黄色| 中文字幕亚洲精品专区| 成人综合一区亚洲| 亚洲久久久国产精品| 免费观看在线日韩| 看非洲黑人一级黄片| 日韩中文字幕视频在线看片| 天美传媒精品一区二区| 老司机亚洲免费影院| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品国产av蜜桃| 久久久a久久爽久久v久久| 久久这里有精品视频免费| 国产探花极品一区二区| 国产有黄有色有爽视频| 久久久亚洲精品成人影院| 免费观看a级毛片全部| 亚洲综合色惰| 久久久精品94久久精品| 国产高清有码在线观看视频| 婷婷色综合www| 亚洲精品成人av观看孕妇| 纯流量卡能插随身wifi吗| 少妇精品久久久久久久| a级片在线免费高清观看视频| 精品酒店卫生间| 日本黄大片高清| 国产精品无大码| 丰满人妻一区二区三区视频av| 狂野欧美激情性xxxx在线观看| 亚洲色图综合在线观看| 老司机亚洲免费影院| 婷婷色av中文字幕| av在线老鸭窝| 人人妻人人爽人人添夜夜欢视频 | 草草在线视频免费看| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美日韩卡通动漫| 热re99久久精品国产66热6| 日韩成人伦理影院| 天天躁夜夜躁狠狠久久av| 自拍欧美九色日韩亚洲蝌蚪91 | 高清在线视频一区二区三区| 国产免费又黄又爽又色| 18+在线观看网站| 九九在线视频观看精品| 亚洲精品,欧美精品| www.色视频.com| av在线播放精品| 亚洲精品国产av成人精品| 精品亚洲乱码少妇综合久久| 日日摸夜夜添夜夜添av毛片| 国产精品人妻久久久久久| 寂寞人妻少妇视频99o| 99久久中文字幕三级久久日本| 国产免费一区二区三区四区乱码| 欧美成人精品欧美一级黄| 国产亚洲av片在线观看秒播厂| 国产伦精品一区二区三区四那| 亚洲经典国产精华液单| 精华霜和精华液先用哪个| 久久ye,这里只有精品| 丝袜脚勾引网站| 亚洲丝袜综合中文字幕| 国产成人精品无人区| 街头女战士在线观看网站| 亚洲综合色惰| 黄色怎么调成土黄色| 最近的中文字幕免费完整| 国产日韩欧美在线精品| 全区人妻精品视频| 久久久久精品久久久久真实原创| av卡一久久| av线在线观看网站| 在线天堂最新版资源| 爱豆传媒免费全集在线观看| 天美传媒精品一区二区| 建设人人有责人人尽责人人享有的| 久热这里只有精品99| 欧美日韩一区二区视频在线观看视频在线| 日韩av不卡免费在线播放| 大片电影免费在线观看免费| 日韩亚洲欧美综合| 日本欧美视频一区| 在线观看av片永久免费下载| 偷拍熟女少妇极品色| a 毛片基地| 亚洲美女搞黄在线观看| 亚洲国产精品999| 成人毛片a级毛片在线播放| 18禁裸乳无遮挡动漫免费视频| 国精品久久久久久国模美| 新久久久久国产一级毛片| 永久网站在线| 欧美日韩精品成人综合77777| 成人国产av品久久久| 精品熟女少妇av免费看| 成人国产麻豆网| 91在线精品国自产拍蜜月| 秋霞在线观看毛片| av专区在线播放| 天天操日日干夜夜撸| 久久午夜综合久久蜜桃| 亚洲国产欧美日韩在线播放 | 久久午夜综合久久蜜桃| 国产 精品1| 在线观看www视频免费| 日韩电影二区| 80岁老熟妇乱子伦牲交| 这个男人来自地球电影免费观看 | a级一级毛片免费在线观看| 最近中文字幕2019免费版| 99热国产这里只有精品6| 毛片一级片免费看久久久久| 下体分泌物呈黄色| kizo精华| 99热国产这里只有精品6| 夜夜骑夜夜射夜夜干| 一本色道久久久久久精品综合| 自拍偷自拍亚洲精品老妇| 中文精品一卡2卡3卡4更新| 嫩草影院新地址| 久久人人爽人人片av| 午夜免费男女啪啪视频观看| 国产真实伦视频高清在线观看| 国内精品宾馆在线| 国产精品99久久久久久久久| 久久久久久久久大av| 麻豆成人午夜福利视频| 18+在线观看网站| 美女主播在线视频| 免费观看无遮挡的男女| 国产精品久久久久久久久免| 蜜桃在线观看..| 久久99蜜桃精品久久| 午夜免费鲁丝| 国产在线一区二区三区精| 高清午夜精品一区二区三区| 中文精品一卡2卡3卡4更新| 99热全是精品| 亚洲久久久国产精品| 一区二区av电影网| 夜夜骑夜夜射夜夜干| 青春草视频在线免费观看| 成年美女黄网站色视频大全免费 | 亚洲精品视频女| 久久人人爽人人爽人人片va| 欧美日韩国产mv在线观看视频| av视频免费观看在线观看| 精品久久久久久久久亚洲| 国产精品久久久久成人av| 赤兔流量卡办理| 欧美日韩精品成人综合77777| 国产综合精华液| 中文字幕免费在线视频6| 欧美高清成人免费视频www| 日本与韩国留学比较| 嫩草影院入口| 精品视频人人做人人爽| 欧美亚洲 丝袜 人妻 在线| 国产av国产精品国产| 韩国av在线不卡| 国产成人一区二区在线| 观看av在线不卡| 国产av国产精品国产| 国产深夜福利视频在线观看| 精品国产露脸久久av麻豆| 国产一区亚洲一区在线观看| 在现免费观看毛片| av专区在线播放| 自拍偷自拍亚洲精品老妇| 久久青草综合色| 精品亚洲成a人片在线观看| 日韩欧美 国产精品| 黑人猛操日本美女一级片| 国产欧美日韩一区二区三区在线 | 国产色婷婷99| 欧美精品人与动牲交sv欧美| 一级毛片电影观看| 三级国产精品片| 精品少妇黑人巨大在线播放| 3wmmmm亚洲av在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲av成人精品一区久久| 国产精品一区二区性色av| 国产精品女同一区二区软件| 内地一区二区视频在线| 亚洲欧美精品自产自拍| 搡老乐熟女国产| 亚洲av综合色区一区| 国产精品一区二区三区四区免费观看| 永久网站在线| 亚洲天堂av无毛| 春色校园在线视频观看| 日韩在线高清观看一区二区三区| 亚洲国产av新网站| 一级黄片播放器| 十八禁网站网址无遮挡 | 国产精品久久久久成人av| 一级爰片在线观看| 亚洲精品aⅴ在线观看| 99九九线精品视频在线观看视频| 妹子高潮喷水视频| 精品熟女少妇av免费看| 久久99热这里只频精品6学生| 国产精品麻豆人妻色哟哟久久| 自拍偷自拍亚洲精品老妇| 久久人人爽av亚洲精品天堂| 老熟女久久久| 免费观看在线日韩| 成人漫画全彩无遮挡| av黄色大香蕉| 亚洲av国产av综合av卡| 日本爱情动作片www.在线观看| 丝瓜视频免费看黄片| 成人毛片a级毛片在线播放| 久久国产亚洲av麻豆专区| 一级毛片aaaaaa免费看小| 国内揄拍国产精品人妻在线| 色婷婷久久久亚洲欧美| 欧美老熟妇乱子伦牲交| av播播在线观看一区| 成人无遮挡网站| 日韩,欧美,国产一区二区三区| 日韩中文字幕视频在线看片| 色视频www国产| 九草在线视频观看| 亚洲内射少妇av| 高清毛片免费看| 日韩av在线免费看完整版不卡| 性色avwww在线观看| 大片电影免费在线观看免费| 又粗又硬又长又爽又黄的视频| 国产69精品久久久久777片| 最近中文字幕2019免费版| 国产男女内射视频| 久久精品国产亚洲av天美| 亚洲精品久久久久久婷婷小说| 一区二区三区免费毛片| 午夜视频国产福利| 26uuu在线亚洲综合色| av女优亚洲男人天堂| 在线精品无人区一区二区三| av免费在线看不卡| 国产中年淑女户外野战色| av有码第一页| 精品久久久久久久久av| 极品教师在线视频| 肉色欧美久久久久久久蜜桃| 久久ye,这里只有精品| 内地一区二区视频在线| 欧美精品人与动牲交sv欧美| 国产高清有码在线观看视频| 日韩视频在线欧美| 一区在线观看完整版| 老司机影院成人| 性高湖久久久久久久久免费观看| 多毛熟女@视频| 高清毛片免费看| 亚洲熟女精品中文字幕| 秋霞在线观看毛片| 亚洲电影在线观看av| 黄色毛片三级朝国网站 | 少妇人妻 视频| 亚洲精品第二区| 久久久久久久久久人人人人人人| 久久久久人妻精品一区果冻| 国产一区有黄有色的免费视频| 五月伊人婷婷丁香| 久久99热6这里只有精品| 边亲边吃奶的免费视频| 亚洲va在线va天堂va国产| 免费av不卡在线播放| 国产高清有码在线观看视频| 欧美变态另类bdsm刘玥| 九九久久精品国产亚洲av麻豆| 国产精品国产三级国产专区5o| 精品人妻偷拍中文字幕| 热99国产精品久久久久久7| 夜夜看夜夜爽夜夜摸| 精品卡一卡二卡四卡免费| 久久久久国产网址| 国产高清有码在线观看视频| 亚洲在久久综合| 成人特级av手机在线观看| 少妇精品久久久久久久| 国产欧美日韩综合在线一区二区 | 伊人久久国产一区二区| 黄片无遮挡物在线观看| 熟女人妻精品中文字幕| 天堂中文最新版在线下载| videossex国产| 亚洲经典国产精华液单| 高清不卡的av网站| 不卡视频在线观看欧美| 成人18禁高潮啪啪吃奶动态图 | 亚洲欧美清纯卡通| 伦理电影大哥的女人| 国产综合精华液| 蜜桃在线观看..| 免费久久久久久久精品成人欧美视频 | 日韩大片免费观看网站| 九九爱精品视频在线观看| 少妇被粗大猛烈的视频| 国产精品久久久久久久久免| 国产精品无大码| 麻豆乱淫一区二区| 纵有疾风起免费观看全集完整版| 插阴视频在线观看视频| 人人妻人人澡人人爽人人夜夜| 久久精品久久精品一区二区三区| 亚洲久久久国产精品| 男女国产视频网站| 久久狼人影院| 在线观看三级黄色| av在线老鸭窝| 桃花免费在线播放| 精品人妻一区二区三区麻豆| 久久久久精品久久久久真实原创| 丝袜在线中文字幕| 欧美日韩在线观看h| 国产视频内射| 亚洲精品日韩在线中文字幕| 曰老女人黄片| 三级国产精品欧美在线观看| 午夜老司机福利剧场| 黄色配什么色好看| 国产黄片视频在线免费观看| 午夜福利,免费看| 少妇裸体淫交视频免费看高清| 久久av网站| 丰满迷人的少妇在线观看| 亚洲精华国产精华液的使用体验| 久久ye,这里只有精品| 两个人免费观看高清视频 | 亚洲av综合色区一区| 一区二区三区精品91| 日韩一区二区三区影片| 美女大奶头黄色视频| av女优亚洲男人天堂| 我的老师免费观看完整版| 99久国产av精品国产电影| 你懂的网址亚洲精品在线观看| 午夜老司机福利剧场| 国产av精品麻豆| 插阴视频在线观看视频| 精品国产露脸久久av麻豆| av卡一久久| 亚洲av二区三区四区| 国产成人a∨麻豆精品| 久久久国产精品麻豆| 男男h啪啪无遮挡| 夫妻性生交免费视频一级片| 人妻人人澡人人爽人人| 国产熟女欧美一区二区| 最后的刺客免费高清国语| 黑丝袜美女国产一区| 好男人视频免费观看在线| 日韩熟女老妇一区二区性免费视频| 免费观看性生交大片5| 一个人看视频在线观看www免费| 欧美性感艳星| 亚洲国产精品999| 亚洲情色 制服丝袜| 亚洲国产精品999| 一级二级三级毛片免费看| 在线播放无遮挡| 亚洲国产精品一区三区| 午夜福利,免费看| 在线观看美女被高潮喷水网站| 国产成人一区二区在线| 久久人人爽av亚洲精品天堂| 国产成人一区二区在线| 丰满迷人的少妇在线观看| 亚洲精华国产精华液的使用体验| a级毛片免费高清观看在线播放| 欧美变态另类bdsm刘玥| 一级二级三级毛片免费看| 亚洲久久久国产精品| 一区二区三区四区激情视频| 看十八女毛片水多多多| 最后的刺客免费高清国语| 国产av精品麻豆| 一本大道久久a久久精品| 中文字幕人妻丝袜制服| 老司机亚洲免费影院| 亚洲精品aⅴ在线观看| 国产成人aa在线观看|