任敏,趙高峰,王曉燕,趙曉輝,李昆,張盼偉,劉巧娜,趙丹丹,李東佼
1.首都師范大學(xué)資源環(huán)境與旅游學(xué)院,北京 100048 2.中國水利水電科學(xué)研究院,北京 100038
?
環(huán)境中氯苯甲醚類污染物研究進(jìn)展
任敏1,2,趙高峰2*,王曉燕1,趙曉輝2,李昆2,張盼偉2,劉巧娜2,趙丹丹2,李東佼2
1.首都師范大學(xué)資源環(huán)境與旅游學(xué)院,北京 100048 2.中國水利水電科學(xué)研究院,北京 100038
氯苯甲醚類化合物(CAs)是葡萄酒和飲用水中普遍存在和亟待去除的嗅味物質(zhì),在世界各地不同介質(zhì)中均可發(fā)現(xiàn)CAs的存在。CAs主要來自于五氯酚及其鈉鹽的微生物降解產(chǎn)物,具有持久性和可遠(yuǎn)距離遷移等持久性有機(jī)污染物(POPs)屬性,此外該類污染物還具有生殖毒性和神經(jīng)毒性等。目前國內(nèi)外尚未建立CAs測定的標(biāo)準(zhǔn)方法。以CAs中嗅味閾值最低的2,4,6-三氯苯甲醚(TCA)和毒性最強(qiáng)且近年被列為POPs的五氯苯甲醚(PCA)為主要研究對象,對CAs污染物的來源及分布、產(chǎn)生機(jī)理、代謝轉(zhuǎn)化與毒性效應(yīng)、檢測及去除方法展開論述。研究表明:CAs是一類污染來源和分布范圍廣,具有一定的毒性效應(yīng)的物質(zhì),目前有關(guān)CAs的研究較少,今后應(yīng)加強(qiáng)對CAs的環(huán)境遷移轉(zhuǎn)化規(guī)律和毒理學(xué)研究。
氯苯甲醚類化合物(CAs);嗅味物質(zhì);毒性;污染特征;檢測方法
氯苯甲醚類化合物(chloroanisoles,CAs)是由氯取代茴香醚苯環(huán)上的氫而形成的19種一氯~五氯代苯甲醚,具有揮發(fā)性低(0.28~60 Pa,20 ℃)、沸點(diǎn)高(184~298 ℃,101.325 kPa)、親脂性強(qiáng)、水溶性差、持久性強(qiáng)的特點(diǎn);隨著氯原子取代數(shù)的增加,揮發(fā)性降低、沸點(diǎn)升高、親脂性增強(qiáng)且水溶性變差,容易沿食物鏈富集和放大,并在脂肪等生物組織中積累[1-2],最終可能會(huì)對生物和人體造成危害。此外,CAs具有特殊霉味且嗅味閾值極低,是葡萄酒和飲用水等介質(zhì)中常見的嗅味污染物[3-4]。
目前,CAs污染已遍布全球[5],在葡萄酒[6]、水[7]、空氣[8]、土壤[9]、沉積物[10]和生物體[11]等介質(zhì)中均可檢測到。但該物質(zhì)在工業(yè)上并未大量生產(chǎn)[12],其污染主要來自于有氧條件下微生物降解五氯酚(pentachlorophenol,PCP)及其鈉鹽(Na-PCP)(統(tǒng)稱為PCP)的產(chǎn)物,同時(shí),由于CAs的生殖毒性和神經(jīng)毒性等毒性效應(yīng)使其備受關(guān)注[13-14]。目前國內(nèi)外尚未建立CAs的標(biāo)準(zhǔn)測定方法,且關(guān)于CAs的生物毒性研究仍然不足。筆者以嗅味閾值最低的2,4,6-三氯苯甲醚(2,4,6-TCA,簡稱TCA)和毒性最強(qiáng)且近年被列為持久性有機(jī)污染物的五氯苯甲醚(pentachloroanisole,PCA)為研究對象,對CAs的污染來源及現(xiàn)狀、產(chǎn)生機(jī)理、生物毒性效應(yīng)及檢測方法進(jìn)行了研究,以期為有效控制環(huán)境中CAs類污染物提供參考。
環(huán)境中CAs主要來自于滅藻劑、殺蟲劑、殺菌劑、除草劑和木材防腐劑中的氯酚類化合物(chlorophenols,CPs)及其他與CAs結(jié)構(gòu)相似的氯代烴(如六氯苯、林丹和五氯硝基苯等)[12]。CPs是芳香族化合物中污染較嚴(yán)重、毒性較大、用途最廣的一類化合物[15],其中,PCP是我國地表水中主要的CPs污染物[16],屬于泛歐環(huán)境部長會(huì)議(1998年)上提出的16種加以控制的持久性有機(jī)污染物之一[17],同時(shí)也是CAs污染的主要和直接來源。作為典型的嗅味物質(zhì),CAs污染已引起廣泛關(guān)注,特別是嗅味閾值最低的TCA。不同環(huán)境介質(zhì)中CAs的濃度如表1所示。
目前,CAs的研究主要集中在葡萄酒加工業(yè)、飲用水、地表水和空氣等方面。
1.1 葡萄酒加工業(yè)
葡萄酒中的霉味污染是現(xiàn)代葡萄酒加工業(yè)中存在的嚴(yán)重問題。2,4-DCA、2,6-DCA、TCA、2,3,4,6-TeCA和PCA等[6,18]具有土霉味,是造成葡萄酒嗅味,破壞葡萄酒品質(zhì)的潛在物質(zhì)。TCA是葡萄酒中主要的污染物,消費(fèi)者對葡萄酒中TCA的排斥閾值(CRT)和刺激值(DT)分別低至3.1和2.1 ngL[4]。TCA污染的葡萄酒約占該類污染物的80%[26]。據(jù)估計(jì),每年因TCA的污染使葡萄酒行業(yè)損失達(dá)100億美元甚至更多[27]。
表1 不同環(huán)境介質(zhì)中CAs濃度
注:1)TeCA為四氯苯甲醚;2)ND為未檢出;3)以干重計(jì)。
CAs在葡萄酒中的生成過程較為復(fù)雜,主要是由在天然軟木塞的加工過程中常加入的作為阻燃劑和殺菌劑的鹵代酚引起的。該類物質(zhì)在漂白和葡萄酒貯存過程中被存活在軟木塞中的霉菌、酵母菌及細(xì)菌等微生物甲基化、去氯原子化和去溴原子化生成嗅味CAs,CAs在密封過程中逐漸遷移至葡萄酒中[28]。在所有生產(chǎn)的天然軟木塞中有2%~5%被CAs污染[29]。
1.2 飲用水和地表水
CAs是水中土霉味的主要來源之一,由4-CA、2-CA、2,4-DCA、2,6-DCA、2,3,6-TCA和TCA引起,其中以TCA最為嚴(yán)重,其嗅閾值小于4 ngL,是引起水中土霉味的主要物質(zhì)之一[3,7,30]。
許多國家的飲用水中均存在嗅味問題:如1969年5月日本的琵琶湖發(fā)生了非常嚴(yán)重的飲用水異嗅味事件,影響了京都、大阪、神戶地區(qū)的居民供水[31];1996年美國自來水協(xié)會(huì)調(diào)查了美國的388個(gè)水廠,發(fā)現(xiàn)有43%的水廠經(jīng)歷過1周以上的嗅味問題[32];2007年冬季內(nèi)蒙古包頭市黃河水源水庫結(jié)冰20 d后出現(xiàn)強(qiáng)烈異味[20]。
地表水體中的土霉味是損害水質(zhì)量的重要因素,且超過某一濃度會(huì)給生態(tài)環(huán)境和人體帶來一定傷害。Nystrom等[33]在檢測瑞典的地表水時(shí)發(fā)現(xiàn),TCA普遍存在,湖水中含有的大量TCA,是湖水土霉味的主要來源。從20世紀(jì)50年代開始,PCP作為血吸蟲疫區(qū)常用的殺滅血吸蟲中間宿主(釘螺)的藥劑,在長江中下游持續(xù)使用幾十年,近年來雖然該地區(qū)已停用PCP,但其對環(huán)境造成的影響還會(huì)持續(xù)相當(dāng)長的一段時(shí)間[34],CPs在微生物和一系列反應(yīng)作用下部分生成嗅味CAs,對該地區(qū)的水質(zhì)產(chǎn)生影響。
1.3 空氣
1930年以來,很多歐洲國家將PCP用做殺蟲劑和木材防腐劑,廣泛用于建筑材料中。PCP通過微生物甲基化和脫氯為CAs,在潮濕條件下,微生物的甲基化和脫氯作用會(huì)更強(qiáng)。近年來,室內(nèi)嗅味問題日益嚴(yán)重,其中很大一部分是由CAs帶來的[1]。
瑞典在20世紀(jì)50~70年代,建設(shè)了大量的建筑物,當(dāng)時(shí)瑞典政府規(guī)定房屋建設(shè)需要用木材防腐劑,CPs和林丹等被大量使用,其生成的CAs引起室內(nèi)空氣嗅味。Lorentzen等[1]分析了瑞典有室內(nèi)空氣嗅味的5 833個(gè)樣品,其中457個(gè)樣品可檢測到CAs或CPs,由于CAs的嗅味特征,CAs可用來指示木屋中PCP使用及污染狀況;Gunschera等[22]分析了德國5個(gè)有嗅味建筑中的空氣和材料樣品發(fā)現(xiàn),引起嗅味的源頭是2,3,4,6-TeCA的廣泛存在;Camino-Sánchez等[8]的研究發(fā)現(xiàn),由于葡萄酒廠大量使用橡木,酒場空氣中可檢測到TCA和2,4,6-三氯苯酚(TCP),空氣中的TCA和TCP也會(huì)導(dǎo)致葡萄酒污染。
研究發(fā)現(xiàn),由于半揮發(fā)性有機(jī)氯化合物大部分施用于北半球,可能導(dǎo)致了北半球PCA濃度高于南半球[5];Atlas等[24]的研究表明,北半球南太平洋(美屬薩摩亞)中的PCA平均濃度為9.0×10-3ngm3,而在南半球(新西蘭)的PCA平均濃度為2.1×10-3ngm3。此外,在偏遠(yuǎn)地區(qū)空氣中也已發(fā)現(xiàn)PCA的存在[5],但目前對偏遠(yuǎn)地區(qū)空氣中PCA的來源還沒有定論,由于CAs可由其他有機(jī)氯化合物降解而來,且具有遠(yuǎn)距離遷移的屬性,推測偏遠(yuǎn)地區(qū)空氣中PCA可能來源于大氣的遷移、有機(jī)氯化合物的降解或水源的釋放。
2.1 CPs轉(zhuǎn)化為CAs的機(jī)理
目前,關(guān)于CPs甲基化反應(yīng)生成CAs及其衍生物的轉(zhuǎn)化機(jī)制在很大程度上是不確定的[35-36],其中,最具權(quán)威的研究是由Coque等[37]提出的轉(zhuǎn)甲基化學(xué)說,即絲狀真菌與環(huán)境中的CPs接觸時(shí)會(huì)對其產(chǎn)生高毒性,因?yàn)辂u代酚具有脂溶性,很容易穿過細(xì)胞膜和核膜進(jìn)而破壞組成細(xì)胞的重要蛋白質(zhì)甚至DNA。在CPs誘導(dǎo)下,微生物產(chǎn)生轉(zhuǎn)甲基酶,作為一種誘導(dǎo)酶,其具有很高的轉(zhuǎn)化能力,可將CPs轉(zhuǎn)化成醚類,從而降低其毒性,使微生物獲得可生存的環(huán)境[38]。
將CPs代謝轉(zhuǎn)化成CAs的微生物種類很多,目前研究較多的主要為白腐菌[39],其降解酶系具有非特異性,對多種芳香化合物都有很好的降解作用[40]。近年來,將白腐菌用于難降解污染物的研究逐漸成了環(huán)境科學(xué)的研究熱點(diǎn)之一。Walter等[41]對新西蘭被PCP污染的土壤進(jìn)行研究發(fā)現(xiàn),白腐菌(T.versicolor)可高效降解PCP,并可用于被PCP污染土壤的修復(fù)。
2.2 飲用水消毒過程中CAs產(chǎn)生機(jī)理
自20世紀(jì)70年代開始,人們就發(fā)現(xiàn)氯在消毒過程中能和水中的苯甲醚發(fā)生反應(yīng)生成CAs等嗅味物質(zhì),原水中的苯甲醚主要來源于槐子、紫丁香、葵花型等香精原料,啤酒中的抗氧劑以及腸內(nèi)殺蟲劑的原料。苯甲醚在我國主要水系沿岸被廣泛生產(chǎn)和使用[42],GB 5749—2006《生活飲用水衛(wèi)生標(biāo)準(zhǔn)》規(guī)定的排放限值為50 ngL。在氯消毒過程中,當(dāng)飲用水中出現(xiàn)苯甲醚時(shí),苯甲醚苯環(huán)上的氫會(huì)被氯取代,生成一氯苯甲醚、二氯苯甲醚、三氯苯甲醚。
2.3 氯代烴轉(zhuǎn)化為CAs的可能機(jī)理
六氯苯、林丹和五氯硝基苯等與CAs結(jié)構(gòu)相似的氯代烴可能會(huì)轉(zhuǎn)化為CAs,其可能的轉(zhuǎn)化途徑見文獻(xiàn)[12]。
3.1 CAs的代謝轉(zhuǎn)化
隨著氯原子取代數(shù)的增加,CAs毒性增強(qiáng),即PCA毒性最強(qiáng)[1],同理PCP是CPs中毒性最強(qiáng)的。在有氧環(huán)境下,PCP真菌甲基化為PCA的轉(zhuǎn)化率最高可達(dá)90%以上[43]。另有研究表明,在厭氧條件及生物體內(nèi),特別是在小鼠和兔子體內(nèi),PCA新陳代謝的主要途徑是通過脫甲基還原為PCP[44],可見二者在不同條件下相互轉(zhuǎn)化,毒性密切相關(guān)。Vodicnik等[45]以20 000 ngg的14C-PCA喂食雌鼠,結(jié)果發(fā)現(xiàn)除肝臟外各組織中PCA代謝迅速,代謝產(chǎn)物多為結(jié)合態(tài)PCP、自由態(tài)PCP和氧化產(chǎn)物四氯氫醌,說明在雌鼠體內(nèi)PCA已通過脫甲基化作用轉(zhuǎn)化為毒性更強(qiáng)的PCP。
PCP的毒性研究較早、也較成熟,關(guān)于其危害機(jī)制和危害現(xiàn)狀研究較充分。PCP是一種抑制性解偶聯(lián)劑,通過中斷氧化磷酸化的解偶聯(lián)過程,使細(xì)胞不能提供正常活動(dòng)所需要的能量[46]。此外,PCP還可直接抑制酶的活性[47],易于在動(dòng)植物體內(nèi)富集,并可通過食物鏈進(jìn)入人體[48]。
3.2 CAs的毒性效應(yīng)
從急性毒性角度看,PCA對無脊椎動(dòng)物和水生生物均具有極高毒性:無脊椎動(dòng)物的急性半數(shù)致死濃度為10 000~27 000 ngL,魚類的急性半數(shù)致死濃度為650 000~1 200 000 ngL。從慢性角度來看,PCA屬于環(huán)境內(nèi)分泌干擾物,可能會(huì)通過作用于內(nèi)分泌系統(tǒng),引起甲狀腺激素、性激素、腎上腺激素水平的降低[53-55],誘導(dǎo)產(chǎn)生肝中毒、癌癥,造成人體中樞神經(jīng)系統(tǒng)、肝、腎等的損傷,此外,還具有免疫毒性、生殖毒性和神經(jīng)毒性[13-14]
目前國際標(biāo)準(zhǔn)化組織(ISO)建立了軟木塞中TCA的檢測方法標(biāo)準(zhǔn)[56],但仍未建立19種CAs的標(biāo)準(zhǔn)檢測方法,現(xiàn)有的研究大多主要針對1種或幾種CAs的分析,而針對沉積物中CAs的分析方法研究較少。建立19種CAs的標(biāo)準(zhǔn)檢測方法不僅有助于衡量不同介質(zhì)和物質(zhì)中CAs的污染狀況,也有助于分析其毒理學(xué)作用。
4.1 前處理方法
目前已在多種介質(zhì)中發(fā)現(xiàn)CAs的存在,因CAs在各介質(zhì)存在形式不同,前處理方法也不同。不同介質(zhì)中CAs的前處理方法如表2所示。
表2 不同介質(zhì)中CAs的前處理方法
4.2 萃取方法
環(huán)境中CAs以痕量濃度存在,需經(jīng)過富集濃縮才能達(dá)到儀器檢測水平。根據(jù)CAs的物理化學(xué)性質(zhì)、不同環(huán)境介質(zhì)的屬性、不同萃取測定方法的特點(diǎn)及儀器檢測要求,萃取方法各不相同(表3)。
4.3 儀器檢測方法
CAs的儀器檢測方法主要包括氣相色譜-質(zhì)譜聯(lián)用(GC-MS)、氣相色譜-電子捕獲(GC-ECD)、氣相色譜串聯(lián)三重四極桿質(zhì)譜(GC-MS-MS)、氣相色譜串聯(lián)離子阱質(zhì)譜(GC-ITMS)等,其中GC-MS和GC-ECD應(yīng)用較多。研究表明,GC-MS可充分發(fā)揮色譜法高分離效率和質(zhì)譜法定性專屬性的能力,兼有二者之長,GC-MS較GC-ECD的分析時(shí)間短,選擇性強(qiáng),校正曲線線性關(guān)系更好,在美國、日本等各國應(yīng)用普遍[19,21,64];GC-ECD對含鹵素物質(zhì)有很高的靈敏度,但無法提供目標(biāo)化合物的結(jié)構(gòu)信息,只能依據(jù)保留時(shí)間定性,容易出現(xiàn)假陽性樣品,且由于其靈敏度太高和不能定性,使得儀器本身帶來的誤差較大[57,61]。因此,GC-MS對CAs的測定更具穩(wěn)定性、有效性,檢出限和定量限也較低,是未來發(fā)展的方向。此外,針對嗅味CAs可采用嗅閾值法、嗅味等級評定法和嗅味層次分析法[7]等進(jìn)行嗅味評定。
表3 不同介質(zhì)中的CAs的萃取方法
注:DiCA為二氯苯甲醚。
4.4 CAs的去除方法
通過改善衛(wèi)生條件和滅菌可減少葡萄酒中TCA污染[65]。Campoy等[66]用經(jīng)過特殊分離的白腐菌進(jìn)行研究,發(fā)現(xiàn)其可降解培養(yǎng)基上94.5%的TCA;Pereira等[67]用伽馬射線消除或轉(zhuǎn)化葡萄酒塞中的TCA為無嗅味的物質(zhì),去除率大于90%;此外,還有如氣相光催化法、密封超濾膜法、超臨界CO2萃取技術(shù)、特殊催化劑降解等方法可去除CAs。
水中嗅味CAs的去除方法主要包括傳統(tǒng)處理技術(shù)、膜處理技術(shù)、氧化技術(shù)和吸附技術(shù)[7]。傳統(tǒng)曝氣技術(shù)可以消除部分CAs[68];Bruchet等[69]發(fā)現(xiàn)采用超濾加活性炭可以很好的去除TCA。氧化技術(shù)主要是利用氧化劑將水中的CAs完全氧化為二氧化碳和水,從而達(dá)到去除目的,常用的氧化劑有臭氧和高錳酸鉀等[70-71];吸附技術(shù)主要是利用物質(zhì)的吸附屬性吸附嗅味CAs,常用的吸附劑包括活性炭和凹凸棒等[72-73]。
(1)氯苯甲醚類化合物(CAs)特別是近年來被斯德哥爾摩公約列為優(yōu)先控制的持久性有機(jī)污染物(POPs)的五氯苯甲醚(PCA)來源廣泛,已在多種介質(zhì)和生物體內(nèi)檢測到,且在偏遠(yuǎn)地區(qū)的空氣、土壤和水中均檢測到PCA的存在:PCA污染已遍布全球,應(yīng)對此多加關(guān)注。
(2)葡萄酒中的CAs主要來自微生物甲基化的氯酚類化合物(CPs),可充分利用具有該功能的微生物降解毒性更高的CPs;飲用水消毒過程中產(chǎn)生的CAs主要來源于氯與苯甲醚的反應(yīng),可通過減少使用氯消毒和苯甲醚的用量,控制飲用水中CAs濃度。氯代烴是難降解的有機(jī)污染物,可長時(shí)間遠(yuǎn)距離存在于環(huán)境中,氯代烴(如六氯苯、林丹和五氯硝基苯)轉(zhuǎn)化為CAs的機(jī)理在很大程度上是不確定的,對該機(jī)理的進(jìn)一步研究有助于預(yù)測CAs濃度。
(3)PCA是CAs中毒性最強(qiáng)的,并可與PCP相互轉(zhuǎn)化,特別是對于水生生物和無脊椎動(dòng)物,毒性不可小覷。目前沒有確切數(shù)據(jù)證明PCA具有生物放大作用,但其確實(shí)有一定的急慢性毒性效應(yīng),屬于內(nèi)分泌干擾物。有關(guān)CAs的生物毒理研究較少,今后的研究重點(diǎn)應(yīng)在化學(xué)分析的基礎(chǔ)上,與生物毒性檢測技術(shù)相結(jié)合,利用如重組基因酵母法、生物毒性傳感細(xì)胞檢測等生物毒性評估方法對CAs的健康風(fēng)險(xiǎn)進(jìn)行評估。
(4)CAs的嗅味影響物質(zhì)的品質(zhì),其毒性效應(yīng)也有損生物健康,可造成巨大的經(jīng)濟(jì)損失及生態(tài)環(huán)境的破壞。因此亟待建立各種介質(zhì)中CAs的標(biāo)準(zhǔn)檢測方法,以便準(zhǔn)確衡量其劑量效應(yīng)關(guān)系,并采取相應(yīng)的措施以減少污染。
[1] LORENTZEN J C,JURAN S A,NILSSON M,et al.Chloroanisoles may explain mold odor and represent a major indoor environment problem in Sweden[J].Indoor Air,2015,26(2):207-218.
[2] IKEMOTO T,TU N P C,WATANABE M X,et al.Analysis of biomagnification of persistent organic pollutants in the aquatic food web of the Mekong Delta,South Vietnam using stable carbon and nitrogen isotopes[J].Chemosphere,2008,72(1):104-114.
[3] YU S,QIN X,ZHU B,et al.Gas chromatography-mass spectrometry determination of earthy-musty odorous compounds in waters by two phase hollow-fiber liquid-phase microextraction using polyvinylidene fluoride fibers[J].Journal of Chromatography A,2014,1329(3):45-51.
[4] PRESCOTT J,NORRIS L,KUNST M,et al.Estimating a “consumer rejection threshold” for cork taint in white wine[J].Food Quality & Preference,2005,16(4):345-349.
[5] SCHREITMUELLER J,BALLSCHMITER K.Air-water equilibrium of hexachlorocyclohexanes and chloromethoxybenzenes in the North and South Atlantic[J].Environmental Science & Technology,1995,29(1):207-215.
[6] CARASEK E,CUDJOE E,PAWLISZYN J.Fast and sensitive method to determine chloroanisoles in cork using an internally cooled solid-phase microextraction fiber[J].Journal of Chromatography A,2007,1138(1/2):10-17.
[7] 毛敏敏.飲用水中氯代苯甲醚嗅味物質(zhì)的生成機(jī)理研究[D].杭州:浙江大學(xué),2014.
[9] TURGUT C,ATATANIR L,MAZMANCI B,et al.The occurrence and environmental effect of persistent organic pollutants(POPs) in Taurus Mountains soils[J].Environmental Science & Pollution Research,2012,19:325-334.
[10] PIERCE R H,VICTOR D M.Pentachlorophenol:the fate of pentachlorophenol in an aquatic ecosystem[M].New York:Springer ,1978:41-52.
[11] HAIMI J,SALMINEN J,HUHTA V,et al.Chloroanisoles in soils and earthworms[J].Science of the Total Environment,1993,134(5):439-448.
[12] United Nations Environment Programme.Stockholm conventionon persistent organicpollutants:persistent organic pollutants reviewcommittee:ninth meeting[R].Rome:Persistent Organic Pollutants Review Committee,2013.
[13] WELSH J J,COLLINS T F X,BLACK T N,et al.Teratogenic potential of purified pentachlorophenol and pentachloroanisole in subchronically exposed Sprague-Dawley rats[J].Food & Chemical Toxicology,1987,25(2):163-172.
[14] YAN C,EKKER M,CHAN H M.Relative developmental toxicities of pentachloroanisole and pentachlorophenol in a zebrafish model(Daniorerio)[J].Ecotoxicology & Environmental Safety,2015,112:7-14.
[15] 金小偉,查金苗,許宜平,等.氯酚類化合物對青魚和細(xì)鱗斜頜鯝幼魚的毒性[J].環(huán)境科學(xué)學(xué)報(bào),2010,30(6):1235-1242. JIN X W,ZHA J M,XU Y P,et al.Acute and chronictoxicities of three chlorophenols toMylopharyngodonpiceusandPlagiognathopsmicrolepis at early life stage[J].Acta Scientiae Circumstantiae,2010,30(6):1235-1242.
[16] 雷炳莉,金小偉,黃圣彪,等.太湖流域3種氯酚類化合物水質(zhì)基準(zhǔn)的探討[J].生態(tài)毒理學(xué)報(bào),2009,4(1):40-49. LEI B L,JIN X W,HUANG S B,et al.Discussion of quality criteria for three chlorophenols in Taihu Lake[J].Asian Journal of Ecotoxicology,2009,4(1):40-49.
[17] 徐偉鋒,顧國維,陳銀廣,等.A2/O污水處理工藝的動(dòng)態(tài)試驗(yàn)[J].水處理技術(shù),2006,32(7):39-41. XU W F,GU G W,CHEN Y G,et al.Dynamic experimental researches on A2/O wastewater treatment process[J].Technology of Water Treatment,2006,32(7):39-41.
[18] PIZARRO C,PéREZ-DEL-NOTARIO N,SENZ-MATEO A,et al.A simple and sensitive vortex assisted liquid-liquid microextraction method for the simultaneous determination of haloanisoles and halophenols in wines[J].Talanta,2014,128:1-8.
[19] RIU M,MESTRES M,BUSTO O,et al.Comparative study of two chromatographic methods for quantifying 2,4,6-trichloranisole in wines[J].Journal of Chromatography A,2007,1138(1/2):18-25.
[20] 楊小敏.包頭市給水廠異嗅味來源分析[D].西安:西安建筑科技大學(xué),2007.
[22] GUNSCHERA J,FUHRMANN F,SALTHAMMER T,et al.Formation and emission of chloroanisoles as indoor pollutants[J].Environmental Science & Pollution Research International,2004,11(3):161-202.
[24] ATLAS E,SULLIVAN K,GIAM C S.Widespread occurrence of polyhalogenated aromatic ethers in the marine atmosphere[J].Atmospheric Environment,1986,20(6):1217-1220.
[25] PALM A,STERNBERK J,REMBERGER M,et al.IVL report:screening av pentaklorfenol(PCP) i milj?n[R].(2002-06).http://www.ivl.se/download/18.343dc99d14e8bb0f58b740b/1445515499254/B1474.pdf.
[26] CAPONE D L,SKOUROUMOUNIS G K,SEFTON M A.Permeation of 2,4,6-trichloroanisole through cork closures in wine bottles[J].Australian Journal of Grape & Wine Research,2002,8(3):196-199.
[27] EVANS T J,BUTZKE C E,EBELER S E.Analysis of 2,4,6-trichloroanisole in wines using solid-phase microextraction coupled to gas chromatography-mass spectrometry[J].Journal of Chromatography A,1997,786(2):293-298.
[28] GRAM L,RAVN L,RASCH M,et al.Food spoilage:interactions between food spoilage bacteria[J].International Journal of Food Microbiology,2002,78(1/2):79-97.
[29] FULLER P.Cork taint:closing in on an industry problem.Australian and New Zealand[J].Wine Industry Journal,1995(10):58-60.
[30] BENANOU D,ACOBAS F,ROUBIN M R D,et al.Analysis of off-flavors in the aquatic environment by stir bar sorptive extraction-thermal desorption-capillary GC/MS/Olfactometry[J].Analytical & Bioanalytical Chemistry,2003,376(1):69-77.
[31] 李勇,張曉健,陳超.我國飲用水中嗅味問題及其研究進(jìn)展[J].環(huán)境科學(xué),2009,30(2):583-588. LI Y,ZHANG X J,CHEN C.Review on the tastes and odors compounds in drinking water of China[J].Environmental Science,2009,30(2):583-588.
[32] SUFFET I H,CORADO A,CHOU D,et al.AWWA taste and odor survey[J].Journal of the American Water Works Association,1996,88(4):168-180.
[33] NYSTROM A,GRIMVALL A,KRANTZRULCKER C,et al.Drinking water off-flavor caused by 2,4,6-trichloroanisole[J].Water Science and Technology,1992,25(2):241-249.
[34] 張兵,鄭明輝,劉芃巖,等.五氯酚在洞庭湖環(huán)境介質(zhì)中的分布[J].中國環(huán)境科學(xué),2001,21(2):165-167. ZHANG B,ZHENG M H,LIU P Y,et al.Distribution of pentachlorophenol in Dongting Lake environmental medium[J].China Environmental Science,2001,21(2):165-167.
[35] CSERJESI A J,JOHNSON E L.Methylation of pentachlorophenol byTrichodermavirgatum[J].Canadian Journal of Microbiology,1972,18:45-49.
[36] SUZUKI T.Enzymatic methylation of pentachlorophenol and its related compounds by cell-free extracts ofMycobacteriumsp.isolated from soil[J].Journal of Pesticide Science,1978,3(4):441-443.
[37] COQUE J J,ALVAREZ-RODRGUEZ M L,LARRIBA G.Characterization of an inducible chlorophenolO-methyltransferase fromTrichodermalongibrachiatuminvolved in the formation of chloroanisoles and determination of its role in cork taint of wines[J].Applied & Environmental Microbiology,2003,69(9):5089-5095.
[38] INSA S,SALVADV,ANTICE.Development of solid-phase extraction and solid-phase microextraction methods for the determination of chlorophenols in cork macerate and wine samples[J].Journal of Chromatography A,2004,1047(1):15-20.
[39] ALLEMAN B C,LOGAN B E,GILBERTSON R L.Toxicity of pentachlorophenol to six species of white rot fungi as a function of chemical dose[J].Applied & Environmental Microbiology,1992,58(12):4048-4050.
[40] BUMPUS J A,TIEN M,WRIGHT D,et al.Oxidation of persistent environmental pollutants by a white rot fungus[J].Science,1985,228:1434-1436.
[41] WALTER M,BOUL L,CHONG R,et al.Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi[J].Journal of Environmental Management,2004,71(4):361-369.
[42] 張燕,錢杰峰,劉蘭俠,等.水中苯甲醚的靜態(tài)與動(dòng)態(tài)頂空氣相色譜分析方法建立及比較[J].中華預(yù)防醫(yī)學(xué)雜志,2013,47(1):542-544. ZHANG Y,QIAN J F,LIU L X,et al.Analytical method and comparison for static and dynamic headspace gas chromatography of anisole in water[J].Chinese Journal of Preventive Medicine,2013,47(1):542-544.
[43] RIGOT J,MATSUMURA F.Assessment of the rhizosphere competency and pentachlorophenol-metabolizing activity of a pesticide-degrading strain of Trichodermaharzianum introduced into the root zone of corn seedlings[J].Journal of Environmental Science & Health:Part B.Pesticides Food Contaminants & Agricultural Wastes,2002,37(3):201-210.
[44] IKEDA G J,SAPIENZA P P,WARR P I.Disposition and metabolism of radiolabelled pentachloroanisole in rats and rabbits[J].Food & Chemical Toxicology,1994,32(12):1137-1146.
[45] VODICNIK M J,GLICKMAN A H.Studies on the disposition and metabolism of pentachloroanisole in female mice[J].Toxicology & Applied Pharmacology,1980,56(3):311-316.
[46] SMEJTEK P.The physicochemical basis of the membrane toxicity of pentachlorophenol:an overview[J].Journal of Membrane Science,1987,33(2):249-268.
[47] AHLBORG U G,THUNBERG T M.Chlorinated phenols:occurrence,toxicity,metabolism,and environmental impact[J].Critical Reviews in Toxicology,1980,7(1):1-35.
[48] GE J,PAN J,FEI Z,et al.Concentrations of pentachlorophenol(PCP) in fish and shrimp in Jiangsu Province,China[J].Chemosphere,2007,69(1):164-169.
[49] OLIVER B G,NIIMI A J.Bioconcentration factors of some halogenated organics for rainbow trout,limitations in their use for prediction of environmental residues[J].Environmental Science & Technology,1985,19(9):842-849.
[50] VORKAMP K,RIGET F,GLASIUS M,et al.Chlorobenzenes,chlorinated pesticides,coplanar chlorobiphenyls and other organochlorine compounds in Greenland biota[J].Science of the Total Environment,2004,331(1/2/3):157-175.
[51] US EPA.The national study of chemical residues in lake fish tissue:EPA-823-R-09-006[R/OL][2016-10-15].Washington DC:US EPA.Office of Water,2009.http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1005P2Z.txt.
[52] MUIR D.Environment Canada:Submitted by Canada Annex E.UNEP-POPS-POPRC8CO-SUBM-PCP-Canada_6-130111.En,2013[R/OL].http://chm.pops.int/TheConvention/POPsReview Committee/ Meetings/POPRC8/POPRC8Followup/SubmissionPCP/ tabid/3070/Default.aspx.
[53] 楊淑貞,韓曉冬,陳偉.五氯酚對生物體的毒性研究進(jìn)展[J].環(huán)境與健康雜志,2005,22(5):396-398. YANG S Z,HAN X D,CHEN W.Adwances in the toxicity of pentacholrophenol on organism[J].Journal of Environment and Health,2005,22(5):396-398.
[54] GERHARD I,FRICK A,MONGA B,et al.Pentachlorophenol exposure in women with gynecological and endocrine dysfunction[J].Environmental Research,1999,80(4):383-388.
[55] HUBERT C,BILéE G,DENICOURT-NOWICKI A,et al.Tandem dehalogenation-hydrogenation reaction of halogenoarenes as model substrates of endocrine disruptors in water:rhodium nanoparticles in suspension vs.on silica support[J].Applied Catalysis A:General,2011,394(Suppl 1/2):215-219.
[56] International Standard Organization.Cork stoppers-determination of releasable 2,4,6-trichloroanisol(TCA):ISO 20752-2007[S].Switzerland:ISO Copyright Office,2007.
[57] 張哲琦,李艷.氣相色譜電子捕獲技術(shù)分析檢測葡萄酒及軟木塞中TCA的研究進(jìn)展[J].釀酒科技,2013(9):74-79. ZHANG Z Q,LI Y.Research progress in the detection and of TCA in grape wineandcorks by gas chromatography-electron-capture[J].Liquor-Making Science & Technology,2013(9):74-79.
[58] 馬康,張金娜,何雅娟,等.頂空固相微萃取-氣質(zhì)聯(lián)用測定環(huán)境水樣中7種痕量土霉味物質(zhì)[J].分析化學(xué),2011(12):1823-1829. MA K,ZHANG J N,HE Y J,et al.Determination of seven musty odor compounds in water by gas chromatography mass spectrometry with headspace solid phase micro-extraction[J].Chinese Journal of Analytical Chemistry,2011(12):1823-1829.
[59] 朱銘洪.固相萃取-氣質(zhì)聯(lián)用測定環(huán)境水樣中5種痕量土霉味物質(zhì)[J].中國衛(wèi)生檢驗(yàn)雜志,2014(10):1393-1395. ZHU M H.Detection of 5 trace earthy-musty odorants in environmental water samples by solid phase extraction and gas chromatography-mass spectrometry[J].Chinese Journal of Health Laboratory Technology,2014(10):1393-1395.
[60] 張素娟.超聲波輔助-頂空固相微萃取-氣相色譜法測定軟木塞中痕量2,4,6-三氯苯甲醚[J].食品工程,2015(2):38-40. ZHANG S J.Determination of 2,4,6-trichloroanisole(TCA)in corks by ultrasonic oscillationassistedheadspace solid-phase micro-extraction and gas chromatography[J].Food Engineering,2015(2):38-40.
[61] 唐熙,梁鳴,李小晶,等.氣相色譜-質(zhì)譜法測定軟木塞中2種霉味物質(zhì)[J].色譜,2012,30(7):733-737. TANG X,LIANG M,LI X J,et al.Determination of two mouldy compounds in cork bygas chromatography-mass spectrometry[J].Chinese Journal of Chromatography,2012,30(7):733-737.
[62] 蔣新,許士奮,MARTENS D,等.長江南京段水、懸浮物及沉積物中多氯有毒有機(jī)污染物[J].中國環(huán)境科學(xué),2000,20(3):193-197. JIANG X,XU S F,MARTENS D,et al.Polychlorinated organic contaminants in waters,suspended solids and sediments of the Nanjing section,Yangtze River[J].China Environmental Science,2000,20(3):193-197.
[63] 常紅,徐萌,仇雁翎,等.上海典型區(qū)域散養(yǎng)雞鴨組織器官中有機(jī)氯農(nóng)藥的殘留水平及來源解析[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014(9):1712-1720. CHANG H,XU M,QIU Y L,et al.Levels and sources of organochlorine pesticides in tissues/organs of free-range chickens and ducks in Shanghai[J].Journal of Agro-environment Science,2014(9):1712-1720.
[64] 張哲琦,牟德華,李艷.優(yōu)化GC檢測2,4,6-三氯苯甲醚的萃取條件[J].食品工業(yè)科技,2014,35(24):89-95. ZHANG Z Q,MOU D H,LI Y.Optimization of extraction conditions of 2,4,6-trichloroanisoledetermination by gas chromatography[J].Science and Technology of Food Industry,2014,35(24):89-95.
[65] JUANOLA R,GUERRERO L,SUBIRD,et al.Relationship between sensory and instrumental analysis of 2,4,6-trichloroanisole in wine and cork stoppers[J].Analytica Chimica Acta,2004,513(1):291-297.
[66] CAMPOY S,RECIO E,RUMBERO A,et al.Biodegradation of 2,4,6-TCA by the white-rot fungus phlebiaradiata is initiated by a phase Ⅰ(O-demethylation)-phase Ⅱ(O-conjugation)reactions system:implications for the chlorine cycle[J].Environmental Microbiology,2009,11(1):99-110.
[67] PEREIRA C,GIL L,CARRI?O L.Reduction of the 2,4,6-trichloroanisole content in cork stoppers using gamma radiation[J].Radiation Physics & Chemistry,2007,76(4):729-732.
[68] LALEZARY S,PIRBAZARI M,MCGUIRE M J,et al.Air stripping of taste and odor compounds from water[J].Journal-American Water Works Association,1984,76(3):83-87.
[69] BRUCHET A,DUGUET J P,SUFFE I H.Role of oxidants and disinfectants on the removal,masking and generation of tastes and odours[J].Reviews in Environmental Science & Biotechnology,2004,49(9):297-306.
[70] FEI Q,XU B,CHEN Z,et al.Ozonation catalyzed by the raw bauxite for the degradation of 2,4,6-trichloroanisole in drinking water[J].Journal of Hazardous Materials,2009,168(1):246-252.
[71] LALEZARY S,PIRBAZARI M,MCGUIRE M J.Oxidation of five earthy-musty taste and odor compounds[J].Journal of the American Water Works Association,1986,78(3):62-69.
[72] 謝義忠,魏艷,康宇煒,等.凹凸棒土吸附去除飲用水中典型嗅味物質(zhì)的研究[J].化學(xué)工程師,2013,27(4):26-28. XIE Y Z,WEI Y,KANG Y W,et al.Study on the removal of the typical taste and odor chemicals in drinking waterby attapulgite clay adsorption[J].Chemical Engineer,2013,27(4):26-28.
[73] 靳朝喜,李懷超,邱穎,等.飲用水處理中嗅和味的去除研究進(jìn)展[J].北方環(huán)境,2010,22(3):50-53. JIN C X,LI H C,QIU Y,et al.The research progress of removal of foul and taste in drinking water[J].Northern Environmental,2010,22(3):50-53.
[74] 閆暉敏,顧海東,許文雅,等.分散固相萃取-氣相色譜-質(zhì)譜法測定地表水中的異味物質(zhì)[J].理化檢驗(yàn):化學(xué)分冊,2015,51(1):82-85. YAN H M,GU H D,XU W Y,et al.GC-MS determination of smelly substances in surface water with dispersive solid-phase extraction[J].Physical Testing and Chemical Analysis:Part B.Chemical Analysis,2015,51(1):82-85.
[75] CALLEJON R M,TRONCOSO A M,MORALES M L.Analysis for chloroanisoles and chlorophenols in cork by stir bar sorptive extraction and gas chromatography-mass spectrometry[J].Talanta,2007,71(5):2092-2097.
[76] CAMPILLO N,AGUINAGA N,VIAS P,et al.Purge-and-trap preconcentration system coupled to capillary gas chromatography with atomic emission detection for 2,4,6-trichloroanisole determination in cork stoppers and wines[J].Journal of Chromatography A,2004,1061(1):85-91.
[77] PIZARRO C,SENZGONZLEZ C,PéREZDELNOTARIO N,et al.Optimisation of a sensitive method based on ultrasound-assisted emulsification-microextraction for the simultaneous determination of haloanisoles and volatile phenols in wine[J].Journal of Chromatography A,2012,1244:37-45.○
Research progress of chloroanisoles pollutants in the environment
REN Min1,2, ZHAO Gaofeng2, WANG Xiaoyan1, ZHAO Xiaohui2, LI Kun2, ZHAGN Panwei2,LIU Qiaona2, ZHAO Dandan2, LI Dongjiao2
1.College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China 2.Institute of Water Resources and Hydropower Research, Beijing 100038, China
Chloroanisoles(CAs) are common odorous substances in wine and drinking water needing to be removed. CAs exist in different media in different parts of the world. They are often reported as off-flavor compounds which produce an earthy and musty flavors and odors in wine and drinking water, and are mainly from the degradation products of pentachlorophenols (PCP) and sodium salts. CAs have the properties of strong durability and long-range transport properties as POPs, especially the properties of reproductive toxicity and neurotoxicity. However, there are no standard methods for the determination of CAs in the world. Two kinds of CAs, 2,4,6-Trichloroanisole (TCA) and Pentachloroanisole (PCA), were studied, of which TCA has the lowest odor threshold and PCA has the highest toxicity. The source and distribution, production mechanism, metabolic transformation, toxic effects, detection and removal methods of CAs were discussed. To conclude, CAs are widely distributed with certain toxic effects. In the future, further study on the environmental migration, transformation laws and toxicology of CAs should be strengthened.
chloroanisoles; odorous substances; toxicity; pollution characteristics; detection method
2016-10-17
國家自然科學(xué)基金項(xiàng)目(21377168)
任敏(1989—),女,碩士,主要從事環(huán)境中有機(jī)物分析檢測研究,kkkrenminkkk@126.com
*責(zé)任作者:趙高峰(1978—),男,教授級高級工程師,博士,長期從事環(huán)境化學(xué)與毒理研究,zhaogf@iwhr.com
X132
1674-991X(2017)03-0357-09
10.3969/j.issn.1674-991X.2017.03.050
任敏,趙高峰,王曉燕,等.環(huán)境中氯苯甲醚類污染物研究進(jìn)展[J].環(huán)境工程技術(shù)學(xué)報(bào),2017,7(3):357-365.
REN M, ZHAO G F, WANG X Y, et al.Research progress of chloroanisoles pollutants in the environment[J].Journal of Environmental Engineering Technology,2017,7(3):357-365.