• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Peaked Periodic Wave Solutions to the Broer–Kaup Equation?

    2017-05-18 05:56:18BoJiang江波andQinShengBi畢勤勝DepartmentofAppliedMathematicsJiangsuUniversityofTechnologyChangzhou3001China
    Communications in Theoretical Physics 2017年1期
    關(guān)鍵詞:江波

    Bo Jiang(江波) and Qin-Sheng Bi(畢勤勝)Department of Applied Mathematics,Jiangsu University of Technology,Changzhou 3001,China

    2Faculty of Civil Engineering and Mechanics,Jiangsu University,Zhenjiang 212013,China

    1 Introduction

    In recent years,nonlinear wave equations with peaked wave solutions attracted much attention(see Refs.[1–9]and the references cited in).It is known that the wave type of peaked wave solutions may be solitary or periodic as in the case of Camassa–Holm equation.Peaked solitary wave,also called peakon,has a unique peak at crest or trough.Peaked periodic wave,however,is a type of periodic traveling wave with a peak at each crest or trough,which was also called periodic peakon by Lenells,[2?3]coshoidal wave by Boyd[4]and periodic cusp wave by Li and Liu.[5]Usually,we say a continuous function has a peak at some point if at this point its left and right derivatives are fi nite and have different sign,and naturally its wave pro fi le is called a peaked wave solution.

    The following nonlinear wave equation was proposed by Broer and Kaup(BK)as a model describing the bi-directional propagation of long waves in shallow water,where u(x,t)is related to the horizontal velocity,and v(x,t)represents the height of the water surface above a horizontal bottom.[10?11]It turns out that this equation was also derived from the Kadomtsev–Petviashvili equation.[12]Various aspects of BK equation(1)have been studied.[13?19]It was shown in Ref.[13]that Eq.(1)is integrable and possesses tri-Hamiltonian structure and an in fi nite number of conservation laws.The geometric properties of non-Noether symmetries as well as their applications were discussed in Ref.[14].A Darboux transformation and some exact solutions were presented in Ref.[15].Satsuma etal.obtained the soliton solutions and revealed fi ssion and fusion phenomena.[16]The author of Ref.[17]gave a family of traveling wave solution and its higher version.The interaction solutions between the solitons and other different types of nonlinear waves were given using a consistent tanh expansion method in Ref.[18].Very recently,by the bifurcation method of dynamical system,Meng etal.[19]constructed some smooth and peaked solitary wave solutions.However whether there are the peaked periodic waves to Eq.(1)remains unknown.

    In the present paper,we employ the qualitative analysis method for differential equations,which was first introduced by Lenells,[2?3]to prove the existence of peaked periodic waves to Eq.(1)and obtain some exact expressions of peaked periodic wave solutions.To the best of our knowledge,those obtained solutions have not been reported in the literature.

    2 Existence of Peaked Periodic Waves of Eq.(1)

    In this section we first introduce some notations.Cn(X)denotes the set of all n times continuously differentiable functions on the open set X.represents the space of smooth functions with compact support.refers to the set of all functions whose restriction on any compact subset is Lpintegrable.stands for

    Substituting u(x,t)=u(ξ)and v(x,t)=v(ξ)with ξ=x?ct into Eq.(1)leads to

    It can be observed that Eq.(2)is valid in the sense of distributions if u,v∈Therefore the following Definition is natural.

    Definition 1A pair of functions(u,v)where u,v∈is called a traveling wave solution of Eq.(1)if u and v satisfy Eq.(2)in the sense of distributions.

    Since every distribution has a primitive which is a distribution,we may integrate Eq.(2)to get

    with two integration constants α and β.By Eq.(3b),u can be solved as

    for v≠0.Substituting Eq.(4)into Eq.(3a)we can obtain an equation for the unknown v only

    whereμ =c2+4α.

    To deal with the regularity of the traveling wave solutions,we give the following lemma,which is inspired by the study of traveling waves of Camassa–Holm equation.[2]

    Lemma 1Let(u,v)be a traveling wave solution of Eq.(1).Then we have

    Therefore

    Proof Denote p(v)= ?8v3+μv2?β2.Thus p(v)is a polynomial in v and then Eq.(5)can be written as Since v∈

    Therefore(v2)ξis absolutely continuous and v2∈C1(R).Eq.(8)implies that(v2)ξξNote that v∈(R)?C(R).Moreover,

    For k≥3 the right-hand side of(9)is in(R).Therefore

    Thus Eq.(6)holds for j=1.Next,we assume that

    vk∈ Cj?1(R)for k ≥ 2j?1and j≥ 2.

    Then for k≥2jwe have

    Also we have vk?2p(v) ∈ Cj?1(R).Therefore the righthand side of Eq.(9)is in Cj?2(R).Hence,by induction on j,we know Eq.(6)holds.

    Furthermore,it follows from Eq.(10)that

    which implies that vξ∈ C(Rv?1(0)).Therefore,v ∈C1(Rv?1(0)).Now,we assume that v∈ Cj(Rv?1(0))for j≥1.Then for k≥2j+1,we have vk∈Cj+1(R).Thus

    which shows that vξ∈ Cj(Rv?1(0)).Hence,v ∈Cj+1(Rv?1(0)).Thus,by induction on j,we know Eq.(7)holds.

    Remark 1 In view of Eq.(4),it follows from Lemma 1 that u∈C∞(Rv?1(0)).From this fact and Eq.(7),we know that the traveling wave solutions(u,v)of Eq.(1)are smooth except at points where v=0.

    Since v is continuous on R,then v?1(0)is a closed set.This implies that Rv?1(0)is an open set.Since every open set is a countable union of disjoint open intervals,then there are disjoint open intervals(ai,bi),i≥1,such that Rv?1(0)=(ai,bi).Then it follows from Lemma 1 that v is smooth on every interval(ai,bi)and hence Eq.(5)holds pointwise on(ai,bi).Therefore,we may multiply both sides of Eq.(5)by v?2vξand integrate on(ai,bi)to get

    with a new integration constant h.

    Remark 2Notice that F(v)≥0 if v is a solution of Eq.(11).Moreover,from the continuity of v on R,we know that v→0 at the fi nite endpoints of(ai,bi).

    To establish the existence of periodic peaked wave solutions of Eq.(1),we need the following lemma.

    Lemma 2The solution of Eq.(11)has the following asymptotic properties:

    (i)If v approaches 0,then we have

    where v(ξ0)=0.

    (ii)If v approaches a simple zero m of F(v),then we have

    where v(ξ0)=m and f(ξ)=O(g(ξ))as ξ→ a means that|f(ξ)/g(ξ)|is bounded in some neighborhood of a.

    ProofSince the proof of(ii)can be found in Ref.[2],here we only consider the proof of(i).In a small neighbourhood of v=0,Eq.(11)can be expanded as

    where F(0)= β2>0.For ξ close enough to ξ0,integration of Eq.(14)yields

    which implies O(|ξ? ξ0|2)=O(v2).Thus we have

    From Eq.(17)we obtain Eq.(12).

    Remark 3If the solution v of Eq.(11)approaches a double zero or a triple zero m of F(v),by similar analysis to the proof of Lemma 2,we can prove that v(ξ)→ m as ξ→±∞.

    Using Lemma 2,we can obtain the following result which gives a sufficient condition for the existence of peaked periodic wave solutions of Eq.(1).

    Theorem 1 If β/=0 and F(v)has a simply zero at vssuch that vs>0(or vs<0)and F(v)>0 for v∈(0,vs)(or v∈(vs,0)),then there exists a periodic peaked wave solution v(ξ)of Eq.(1)satisfying minξ∈Rv(ξ)=0 and maxξ∈Rv(ξ)=vs(or minξ∈Rv(ξ)=vsand maxξ∈Rv(ξ)=0).

    Proof Here we only consider the case vs>0 since similar analysis can be employed for the case vs<0.It follows from Eq.(11)that

    where λ(v)is a second-order factor of F(v)such that λ(v)>0 for v∈ (0,vs).Assume that v is the solution in this interval.If v increases and approaches vs,by Eq.(13),we get that v is symmetric with respect to ξ1,where v(ξ1)=vs,i.e.v(ξ)=v(ξ1? (ξ? ξ1)),which means that v will reach vsand immediately turn back down.From Lemma 1,we know that v will not stop or turn back anywhere because that would yield a singularity of v at a point where v≠0.When v decreases and approaches the point v=0,according to Eq.(12),v will suddenly change its direction at ξ0=0,where v(ξ0)=0,i.e.vξ7→ ?vξ,so that v will yield a peak at v=0.Hence,we deduce that there exists a peaked periodic wave solution of Eq.(1)with minξ∈Rv(ξ)=0,maxξ∈Rv(ξ)=vs.Remark 4 For a solution v(ξ)of Eq.(11),if there exists a double zero or a triple zero vs≠0 of F(v)such that F(v)>0 for v∈(0,vs)(or v∈(vs,0)),in view of(i)of Lemma 2 and Remark 3,employing a similar analysis to the proof of Theorem 1,we can infer that v(ξ)gives a peaked solitary wave solution of Eq.(1)with a single peak at ξ0such that v(ξ0)=0,which satis fi es minξ∈Rv(ξ)=0(or maxξ∈Rv(ξ)=0)and lim|ξ|→∞=vs.

    3 Exact Peaked Periodic Wave Solutions of Eq.(1)

    To determine the peaked periodic wave solutions of Eq.(1)in speci fi ed parameter region of parameter space,we need to discuss the distribution of zero points of F(v)for β/=0.differentiating F(v)with respect to v yields F′(v)= ?12v2+2μv+h.(19)Let? = μ2+12h.If? <0,then F′(v)<0 holds for v∈R and thus F(v)is strictly monotonically decreasing on R.Moreover,in view of the fact that F(0)=β2>0,we can deduce that there exists a unique simple zero v(1)afor F(v)such that v(1)a>0.If?=0,solving the equation F′(v)=0 gives v=v?= μ/12 such that F(v?)=F′(v?)=F′′(v?)=0 and F′′′(v?)= ?24/=0,which means that v?is a triple zero of F(v).Moreover,due to the fact that F(0)>0 and F′(v)<0 for v ∈ R{v?},we can infer that v?>0.If? >0,setting F′(v)to zero leads to

    withFrom Eqs.(19)and(20),it follows that

    This shows that F(v)has a minimum atand has a maximum atFurther,we can check that

    Based on the above analysis,it can be checked that there exist in total nine qualitatively cases for F(v)when β≠0(see Fig.1).

    According to Theorem 1 and Fig.1,exact peaked periodic wave solutions of Eq.(1)in different parameter regions of parameter space can be presented.We will use some symbols on the elliptic functions and elliptic integrals(see Ref.[20]).sn(u,k)and cn(u,k)are Jacobian elliptic functions with the modulus k.sn?1(u,k)and cn?1(u,k)are the inverse functions of sn(u,k)and cn(u,k),respectively.

    Proposition 1(The expression of peaked periodic wave pointing upwards)If?><0

    whereandsatisfyingare three distinct simple zeros of F(v)(see Fig.1(f)),

    Proof It can be observed from Fig.1(f)that F(v)>0 for v∈I=where<0 is a simple zero of F(v).By Theorem 1,we know that there exists a peaked periodic wave solution with minξ∈Rv(ξ)=and maxξ∈Rv(ξ)=0.For the solution v1(ξ)in the interval I,it follows from Eq.(11)that

    Integration of Eq.(22)leads to

    In view of Eq.(4),completing the integrals in Eqs.(23)and(24)gives Eq.(21).

    Employing a similar analysis as above,we have the following results.

    Proposition 2(The expressions of peaked periodic waves pointing downwards)(i)Under the same assumptions as in Proposition 1,Eq.(1)has a peaked periodic wave solution pointing downwards with period 2T2,which on the interval(?T2,T2)has the explicit expression

    whereandare the same as described in Proposition 1,ω2= ω1,k2=k1and

    wheresatisfyingare a double zero and a simple zero of F(v)(see Fig.1(d)),

    (iii)If?>0,for β≠0,Eq.(1)has a peaked periodic wave solution pointing downwards with period 2T4,which on the interval(?T4,T4)has the explicit expression

    wheresatisfying 0

    (iv)If?>0,for β≠0,Eq.(1)has a peaked periodic wave solution pointing downwards with period 2T5,which on the interval(?T5,T5)has the explicit expression

    whereandsatisfyingare a simple zero and a double zero of F(v)(see Fig.1(h)),and

    (v)Under one of the parameter conditions:(c1)?<0,(c2)?>0 and>0,(c3)?>0,and<0,Eq.(1)has a peaked periodic wave solution pointing downwards with period 2T6,which on the interval(?T6,T6)has the explicit expression

    where>0 and mj±nji(mj,nj∈ R),are a unique real root and a pair of conjugate complex roots of F(v)=_0(see Figs.1(a),1(c),1(i)),A=

    To show the correctness of our results,we select the peaked periodic wave solutions for v given by Eqs.(21)and(25)as two examples and plot their planar graphs in Fig.2.In such two cases we take c=2,α= ?6 and β=4,so that the parameter conditions of Proposition 1 are satis fi ed.

    References

    [1]R.Camassa and D.D.Holm,Phys.Rev.Lett.71(1993)1661.

    [2]J.Lenells,J.Di ff.Equ.217(2005)393.

    [3]J.Lenells,J.Math.Anal.Appl.306(2005)72.

    [4]J.P.Boyd,Appl.Math.Comput.81(1997)173.

    [5]J.B.Li and Z.R.Liu,Appl.Math.Model.25(2000)41.

    [6]Z.R.Liu and R.Wang,Chaos,Solitons and Fractals 19(2004)77.

    [7]J.B.Zhou and L.X.Tian,Nonlinear Anal-Real 11(2010)356.

    [8]B.Jiang,Y.Lu,J.H.Zhang,and Q.S.Bi,Appl.Math.Comput.228(2014)220.

    [9]L.J.Qiao,S.Q.Tang,and H.X.Zhao,Commun.Theor.Phys.63(2015)731.

    [10]L.J.F.Broer,Appl.Sci.Res.31(1975)377.

    [11]D.J.Kaup,Prog.Theor.Phys.54(1975)396.

    [12]S.Y.Lou and X.B.Hu,J.Math.Phys.38(1997)6401.

    [13]B.A.Kupershmidt,Cormrmn.Math.Phys.99(1985)51.

    [14]G.Chavchanidze,Mem.differential Equations Math.Phys.36(2005)81.

    [15]Z.J.Zhou and Z.B.Li,Acta Phys.Sin.52(2003)262.

    [16]J.Satuma,K.Kajiwara,J.Matsukidaira,and J.Hietarinta,J.Phys.Soc.Jpn.61(1992)3096.

    [17]A.K.Svinin,Inverse Problems 17(2001)1061.

    [18]C.L.Bai and S.Y.Lou,Chin.Phys.Lett.30(2013)110202.

    [19]Q.Meng,W.Li,and B.He,Commun.Theor.Phys.62(2014)308.

    [20]P.F.Byrd and M.D.Friedman,Handbook of Elliptic Integrals for Engineers and Scientists,Springer,New York(1971).

    猜你喜歡
    江波
    A nanoparticle formation model considering layered motion based on an electrical explosion experiment with Al wires
    Effect of shock wave formation on propellant ignition in capillary discharge
    本期作者介紹
    你能相信誰
    酬東坡(新韻)
    江波繪畫作品
    想要不同的生活
    莫愁(2016年34期)2017-01-12 02:24:41
    想要不同的生活
    瘋狂style
    My Story以筆相伴靜書寫
    海外英語(2013年8期)2013-11-22 09:16:04
    黄片小视频在线播放| 色噜噜av男人的天堂激情| 嫩草影院精品99| 别揉我奶头~嗯~啊~动态视频| 中文在线观看免费www的网站| 白带黄色成豆腐渣| 男女下面进入的视频免费午夜| 老女人水多毛片| 欧美国产日韩亚洲一区| 99视频精品全部免费 在线| 男人舔女人下体高潮全视频| 免费搜索国产男女视频| 国产在视频线在精品| 黄色配什么色好看| av国产免费在线观看| 偷拍熟女少妇极品色| 亚洲人成伊人成综合网2020| 久久久久久久久久成人| av国产免费在线观看| 日韩欧美免费精品| 色av中文字幕| 欧美最新免费一区二区三区 | 99riav亚洲国产免费| 亚洲精品乱码久久久v下载方式| 国产成+人综合+亚洲专区| 国产av在哪里看| 丰满乱子伦码专区| 首页视频小说图片口味搜索| 亚洲,欧美,日韩| 最好的美女福利视频网| 在线免费观看的www视频| or卡值多少钱| 51午夜福利影视在线观看| 老鸭窝网址在线观看| 给我免费播放毛片高清在线观看| 午夜福利成人在线免费观看| 夜夜躁狠狠躁天天躁| 国产精品一区二区三区四区免费观看 | 亚洲av不卡在线观看| 99riav亚洲国产免费| 美女高潮的动态| 真人做人爱边吃奶动态| 三级男女做爰猛烈吃奶摸视频| 波多野结衣高清无吗| 久久亚洲精品不卡| 最近视频中文字幕2019在线8| 欧美乱妇无乱码| 国产精品伦人一区二区| 看免费av毛片| 又紧又爽又黄一区二区| 亚洲国产精品sss在线观看| 深夜精品福利| 有码 亚洲区| 国产成人福利小说| 欧美日韩乱码在线| 桃红色精品国产亚洲av| 无人区码免费观看不卡| 一卡2卡三卡四卡精品乱码亚洲| 国产aⅴ精品一区二区三区波| 天堂网av新在线| 欧美精品啪啪一区二区三区| 国产亚洲精品久久久久久毛片| 久久欧美精品欧美久久欧美| 精品久久久久久久久亚洲 | 久久国产乱子免费精品| 国产野战对白在线观看| 午夜久久久久精精品| 99久久99久久久精品蜜桃| 久久久久国产精品人妻aⅴ院| 欧美区成人在线视频| 91久久精品电影网| 国产一区二区在线观看日韩| 色哟哟·www| 一级毛片久久久久久久久女| 亚洲成av人片免费观看| 最新在线观看一区二区三区| 日本黄色片子视频| 亚洲av第一区精品v没综合| 午夜精品在线福利| 国产单亲对白刺激| 亚洲av成人精品一区久久| 日日摸夜夜添夜夜添av毛片 | 欧美日韩瑟瑟在线播放| 久久精品91蜜桃| av中文乱码字幕在线| 国产三级黄色录像| 嫩草影院入口| 日日夜夜操网爽| 亚洲精品亚洲一区二区| 久久久久久久精品吃奶| 天堂网av新在线| 国产高潮美女av| 成人特级av手机在线观看| 老司机午夜十八禁免费视频| 伦理电影大哥的女人| 精品一区二区免费观看| 亚洲人与动物交配视频| 亚洲一区二区三区不卡视频| 九九久久精品国产亚洲av麻豆| 欧美xxxx黑人xx丫x性爽| 男女那种视频在线观看| 黄色一级大片看看| 99热精品在线国产| 国产蜜桃级精品一区二区三区| 免费av毛片视频| 一区二区三区免费毛片| 免费人成视频x8x8入口观看| 桃色一区二区三区在线观看| 免费观看精品视频网站| 内射极品少妇av片p| 一区二区三区高清视频在线| 久久99热这里只有精品18| 少妇裸体淫交视频免费看高清| 成人性生交大片免费视频hd| 国产精品永久免费网站| 757午夜福利合集在线观看| 日本黄色视频三级网站网址| 女同久久另类99精品国产91| 搡女人真爽免费视频火全软件 | 性欧美人与动物交配| av专区在线播放| 国产视频一区二区在线看| 亚洲成人中文字幕在线播放| 午夜福利免费观看在线| 给我免费播放毛片高清在线观看| 亚洲人成网站在线播| 中文资源天堂在线| 久久精品人妻少妇| 精品乱码久久久久久99久播| 国产精品久久久久久人妻精品电影| 久久久国产成人精品二区| 人人妻人人看人人澡| 永久网站在线| 丰满人妻一区二区三区视频av| 夜夜爽天天搞| 精品午夜福利视频在线观看一区| 国产亚洲精品综合一区在线观看| ponron亚洲| 深夜精品福利| 精品欧美国产一区二区三| 亚洲人成网站在线播| 午夜视频国产福利| 亚洲精品一卡2卡三卡4卡5卡| 久久欧美精品欧美久久欧美| 欧美黑人欧美精品刺激| 免费看美女性在线毛片视频| 精品一区二区三区视频在线| 精品久久久久久成人av| 国产精品亚洲美女久久久| 日本黄色视频三级网站网址| 97人妻精品一区二区三区麻豆| 欧美性猛交黑人性爽| 男人和女人高潮做爰伦理| 亚洲国产精品久久男人天堂| 特级一级黄色大片| 国产精品久久久久久亚洲av鲁大| 日本精品一区二区三区蜜桃| 欧美xxxx黑人xx丫x性爽| 中文字幕精品亚洲无线码一区| 久久国产精品人妻蜜桃| 麻豆成人av在线观看| 丰满人妻一区二区三区视频av| 精品久久久久久久末码| 99精品久久久久人妻精品| 少妇被粗大猛烈的视频| 看黄色毛片网站| 悠悠久久av| 99在线人妻在线中文字幕| 免费人成视频x8x8入口观看| 观看免费一级毛片| 亚洲 国产 在线| 天堂动漫精品| 欧美成狂野欧美在线观看| 免费人成在线观看视频色| 国产高清视频在线播放一区| 90打野战视频偷拍视频| 99热6这里只有精品| 成人欧美大片| 成人毛片a级毛片在线播放| 听说在线观看完整版免费高清| 欧美中文日本在线观看视频| 国产乱人伦免费视频| 日韩欧美三级三区| 亚洲精华国产精华精| 久久国产精品人妻蜜桃| 午夜两性在线视频| 亚洲av.av天堂| 美女cb高潮喷水在线观看| 九色国产91popny在线| 少妇高潮的动态图| 精品久久久久久,| a级毛片免费高清观看在线播放| 男人和女人高潮做爰伦理| 级片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 美女大奶头视频| 亚洲性夜色夜夜综合| 国产69精品久久久久777片| 看片在线看免费视频| 悠悠久久av| 亚洲av美国av| 国产亚洲精品久久久com| 久久久精品大字幕| 亚洲第一区二区三区不卡| 亚洲综合色惰| 亚洲精华国产精华精| 免费黄网站久久成人精品 | 亚洲精品色激情综合| 夜夜爽天天搞| 亚洲不卡免费看| 9191精品国产免费久久| 亚洲国产欧洲综合997久久,| 一卡2卡三卡四卡精品乱码亚洲| 我的老师免费观看完整版| 日日干狠狠操夜夜爽| 亚洲在线自拍视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av免费高清在线观看| 丁香六月欧美| 夜夜看夜夜爽夜夜摸| 88av欧美| 日韩有码中文字幕| 国产精品电影一区二区三区| 午夜影院日韩av| 丝袜美腿在线中文| 精品久久久久久久久久免费视频| 亚洲精品亚洲一区二区| 欧美zozozo另类| 国产又黄又爽又无遮挡在线| 成人毛片a级毛片在线播放| 国产不卡一卡二| 精品免费久久久久久久清纯| 国产v大片淫在线免费观看| 色综合婷婷激情| av中文乱码字幕在线| 欧美一区二区亚洲| 性欧美人与动物交配| 少妇高潮的动态图| 男女下面进入的视频免费午夜| 一个人观看的视频www高清免费观看| 欧美国产日韩亚洲一区| 亚洲欧美日韩无卡精品| 国产伦精品一区二区三区视频9| 啪啪无遮挡十八禁网站| 日本三级黄在线观看| 又紧又爽又黄一区二区| 欧美黄色片欧美黄色片| 久久九九热精品免费| 人妻丰满熟妇av一区二区三区| 精品国产亚洲在线| АⅤ资源中文在线天堂| 国产精品影院久久| 亚洲 欧美 日韩 在线 免费| 宅男免费午夜| 99riav亚洲国产免费| 精品久久久久久久人妻蜜臀av| 欧美激情久久久久久爽电影| 国产主播在线观看一区二区| 欧美性猛交╳xxx乱大交人| 日韩亚洲欧美综合| 美女被艹到高潮喷水动态| 美女大奶头视频| 俺也久久电影网| 韩国av一区二区三区四区| 欧美bdsm另类| 色精品久久人妻99蜜桃| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 赤兔流量卡办理| 91字幕亚洲| 麻豆国产97在线/欧美| 久99久视频精品免费| 在线国产一区二区在线| 亚洲国产精品sss在线观看| 久久6这里有精品| 美女 人体艺术 gogo| 免费看光身美女| 99久久精品热视频| 男人和女人高潮做爰伦理| 国产伦精品一区二区三区四那| 亚洲欧美日韩无卡精品| 中亚洲国语对白在线视频| 免费观看精品视频网站| 亚洲精品日韩av片在线观看| 国产亚洲精品久久久com| 欧美日本视频| 久久亚洲精品不卡| 中亚洲国语对白在线视频| 夜夜躁狠狠躁天天躁| 91久久精品电影网| 亚洲av第一区精品v没综合| 老司机福利观看| 一级黄色大片毛片| 亚洲av日韩精品久久久久久密| 亚洲一区高清亚洲精品| 婷婷精品国产亚洲av| 国产精品三级大全| www.熟女人妻精品国产| 精品人妻偷拍中文字幕| 国产国拍精品亚洲av在线观看| 简卡轻食公司| 一个人看视频在线观看www免费| 久久这里只有精品中国| 男人的好看免费观看在线视频| 精品久久久久久久久久免费视频| 日韩欧美 国产精品| 一二三四社区在线视频社区8| 亚洲国产色片| 最近最新中文字幕大全电影3| 亚洲中文字幕一区二区三区有码在线看| 国产精品,欧美在线| 99在线视频只有这里精品首页| 午夜精品一区二区三区免费看| 99热精品在线国产| 国产探花在线观看一区二区| 国产高清视频在线播放一区| 午夜福利免费观看在线| 性欧美人与动物交配| 国产午夜福利久久久久久| 精品免费久久久久久久清纯| 窝窝影院91人妻| 热99在线观看视频| 男插女下体视频免费在线播放| 亚洲成av人片在线播放无| 国产欧美日韩一区二区三| 又爽又黄无遮挡网站| 日韩欧美 国产精品| 色播亚洲综合网| 看免费av毛片| 精华霜和精华液先用哪个| 18禁在线播放成人免费| 国产精品久久电影中文字幕| 国产精品综合久久久久久久免费| 久久久久久久午夜电影| 可以在线观看的亚洲视频| 精品福利观看| 日本免费a在线| 亚洲第一欧美日韩一区二区三区| 国产探花极品一区二区| 国产免费av片在线观看野外av| 男人和女人高潮做爰伦理| 伦理电影大哥的女人| 国产一区二区激情短视频| 色尼玛亚洲综合影院| 神马国产精品三级电影在线观看| 亚洲精华国产精华精| 91九色精品人成在线观看| 精品乱码久久久久久99久播| 国产v大片淫在线免费观看| 91午夜精品亚洲一区二区三区 | 色吧在线观看| 99久久精品国产亚洲精品| 婷婷精品国产亚洲av| 一二三四社区在线视频社区8| 久久久国产成人精品二区| 成人国产综合亚洲| 国产成年人精品一区二区| 女人被狂操c到高潮| av天堂中文字幕网| 亚洲熟妇熟女久久| 欧美3d第一页| 亚洲人成网站在线播放欧美日韩| 变态另类丝袜制服| 色视频www国产| 免费一级毛片在线播放高清视频| 在线观看免费视频日本深夜| 国产91精品成人一区二区三区| 乱人视频在线观看| 国产v大片淫在线免费观看| .国产精品久久| 我要搜黄色片| 99精品在免费线老司机午夜| 国内揄拍国产精品人妻在线| 99热6这里只有精品| 欧美+日韩+精品| www日本黄色视频网| 男插女下体视频免费在线播放| 午夜日韩欧美国产| 久久天躁狠狠躁夜夜2o2o| 国产又黄又爽又无遮挡在线| 97超级碰碰碰精品色视频在线观看| 国内精品一区二区在线观看| 久久精品国产清高在天天线| 51国产日韩欧美| 亚洲色图av天堂| 欧美一区二区亚洲| 一本精品99久久精品77| 91字幕亚洲| www.www免费av| 好看av亚洲va欧美ⅴa在| 亚洲av.av天堂| 欧美中文日本在线观看视频| 此物有八面人人有两片| 久久亚洲真实| 日日夜夜操网爽| 草草在线视频免费看| 亚洲人成电影免费在线| 免费av不卡在线播放| 床上黄色一级片| 亚洲不卡免费看| 97人妻精品一区二区三区麻豆| 精品一区二区三区视频在线| 亚洲va日本ⅴa欧美va伊人久久| 免费高清视频大片| 特大巨黑吊av在线直播| 12—13女人毛片做爰片一| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全电影3| 搡老岳熟女国产| 国产人妻一区二区三区在| 在线观看免费视频日本深夜| 亚洲七黄色美女视频| 亚洲天堂国产精品一区在线| 波多野结衣高清无吗| a在线观看视频网站| 91在线观看av| 亚洲,欧美精品.| 如何舔出高潮| 日韩欧美 国产精品| 久久亚洲真实| 午夜免费男女啪啪视频观看 | 国产美女午夜福利| 老熟妇乱子伦视频在线观看| 在线免费观看的www视频| 欧美3d第一页| 在线天堂最新版资源| 黄色视频,在线免费观看| 高潮久久久久久久久久久不卡| 少妇被粗大猛烈的视频| 亚洲人与动物交配视频| 精品国产亚洲在线| 亚洲精华国产精华精| 99久久99久久久精品蜜桃| 免费av毛片视频| 99热6这里只有精品| 日韩中文字幕欧美一区二区| 午夜亚洲福利在线播放| 亚洲中文日韩欧美视频| 波多野结衣高清作品| 高清在线国产一区| 色在线成人网| 成人av在线播放网站| 久久精品91蜜桃| 老鸭窝网址在线观看| 亚洲最大成人中文| 亚洲性夜色夜夜综合| 久久人人爽人人爽人人片va | 校园春色视频在线观看| h日本视频在线播放| 免费在线观看成人毛片| 老熟妇乱子伦视频在线观看| 国产一区二区三区在线臀色熟女| 国产探花在线观看一区二区| 亚洲av.av天堂| 免费看日本二区| 亚洲 国产 在线| 给我免费播放毛片高清在线观看| 亚洲经典国产精华液单 | 日本一本二区三区精品| 久久婷婷人人爽人人干人人爱| 国产精品亚洲av一区麻豆| 每晚都被弄得嗷嗷叫到高潮| 高清毛片免费观看视频网站| 亚洲国产高清在线一区二区三| 国产精品久久视频播放| 亚洲国产精品合色在线| a级毛片a级免费在线| 日韩大尺度精品在线看网址| 国产私拍福利视频在线观看| bbb黄色大片| 精品久久久久久成人av| 无遮挡黄片免费观看| 女人被狂操c到高潮| 99视频精品全部免费 在线| 欧美中文日本在线观看视频| 一区二区三区高清视频在线| 国模一区二区三区四区视频| 午夜视频国产福利| 亚洲熟妇中文字幕五十中出| 高清在线国产一区| 日韩欧美精品v在线| 能在线免费观看的黄片| 日本黄色视频三级网站网址| 久久天躁狠狠躁夜夜2o2o| 757午夜福利合集在线观看| 精品久久国产蜜桃| 亚洲在线观看片| 黄片小视频在线播放| 亚洲男人的天堂狠狠| 丰满的人妻完整版| 免费黄网站久久成人精品 | 99久久99久久久精品蜜桃| 欧美一区二区精品小视频在线| 久久性视频一级片| 激情在线观看视频在线高清| 嫩草影院新地址| 亚洲,欧美,日韩| 国产一区二区三区在线臀色熟女| av专区在线播放| 午夜福利免费观看在线| 91九色精品人成在线观看| 少妇裸体淫交视频免费看高清| 搞女人的毛片| av视频在线观看入口| 日本熟妇午夜| 夜夜爽天天搞| 久久国产精品影院| 高清毛片免费观看视频网站| 国产亚洲精品久久久久久毛片| 性色av乱码一区二区三区2| 日本一本二区三区精品| 国产精品一区二区三区四区久久| 99热这里只有精品一区| 97人妻精品一区二区三区麻豆| xxxwww97欧美| 国产三级中文精品| 国产成人aa在线观看| 亚洲精品在线美女| 午夜免费激情av| 又黄又爽又免费观看的视频| 俄罗斯特黄特色一大片| av专区在线播放| 哪里可以看免费的av片| 免费在线观看日本一区| 麻豆国产97在线/欧美| 九色国产91popny在线| 五月伊人婷婷丁香| 欧美3d第一页| 国产av在哪里看| 狂野欧美白嫩少妇大欣赏| 国产午夜福利久久久久久| 俺也久久电影网| 成人特级黄色片久久久久久久| 啪啪无遮挡十八禁网站| 少妇高潮的动态图| 亚洲av第一区精品v没综合| 一个人看视频在线观看www免费| 日本免费a在线| 中文字幕高清在线视频| 亚洲内射少妇av| 男女那种视频在线观看| 草草在线视频免费看| 99热这里只有精品一区| 美女大奶头视频| 亚洲成a人片在线一区二区| 久久精品人妻少妇| 非洲黑人性xxxx精品又粗又长| 又粗又爽又猛毛片免费看| 无人区码免费观看不卡| 91午夜精品亚洲一区二区三区 | 18禁裸乳无遮挡免费网站照片| 激情在线观看视频在线高清| 岛国在线免费视频观看| 免费看光身美女| 一夜夜www| 久久久久国产精品人妻aⅴ院| 欧美成人性av电影在线观看| 精品福利观看| 国产成人影院久久av| 永久网站在线| 美女cb高潮喷水在线观看| 亚洲成人免费电影在线观看| 国产精品久久视频播放| 麻豆成人av在线观看| 嫩草影院入口| 日本成人三级电影网站| 一本一本综合久久| 国产精品久久久久久久电影| 欧美成狂野欧美在线观看| 看黄色毛片网站| 国内毛片毛片毛片毛片毛片| 天天一区二区日本电影三级| 国产高清有码在线观看视频| 韩国av一区二区三区四区| 免费人成视频x8x8入口观看| 欧美区成人在线视频| 午夜老司机福利剧场| 在线天堂最新版资源| 成人av在线播放网站| 日本黄大片高清| 国产精华一区二区三区| 日本黄色视频三级网站网址| 国产真实乱freesex| 波多野结衣高清无吗| 99热这里只有是精品在线观看 | xxxwww97欧美| 3wmmmm亚洲av在线观看| 又爽又黄a免费视频| АⅤ资源中文在线天堂| 在线观看舔阴道视频| 免费人成视频x8x8入口观看| 久久精品91蜜桃| 久久久久性生活片| eeuss影院久久| 又黄又爽又刺激的免费视频.| 欧美一区二区国产精品久久精品| 国产免费男女视频| 嫩草影院入口| 每晚都被弄得嗷嗷叫到高潮| 国产69精品久久久久777片| 婷婷六月久久综合丁香| 亚洲三级黄色毛片| 18禁在线播放成人免费| 免费无遮挡裸体视频| 99在线视频只有这里精品首页| 97碰自拍视频| 欧美日韩亚洲国产一区二区在线观看| 黄片小视频在线播放| 色综合婷婷激情| 亚洲黑人精品在线| av在线蜜桃| 国产视频内射| 免费av毛片视频| 看片在线看免费视频| 成人午夜高清在线视频| 精品一区二区三区视频在线观看免费|