• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Peaked Periodic Wave Solutions to the Broer–Kaup Equation?

    2017-05-18 05:56:18BoJiang江波andQinShengBi畢勤勝DepartmentofAppliedMathematicsJiangsuUniversityofTechnologyChangzhou3001China
    Communications in Theoretical Physics 2017年1期
    關(guān)鍵詞:江波

    Bo Jiang(江波) and Qin-Sheng Bi(畢勤勝)Department of Applied Mathematics,Jiangsu University of Technology,Changzhou 3001,China

    2Faculty of Civil Engineering and Mechanics,Jiangsu University,Zhenjiang 212013,China

    1 Introduction

    In recent years,nonlinear wave equations with peaked wave solutions attracted much attention(see Refs.[1–9]and the references cited in).It is known that the wave type of peaked wave solutions may be solitary or periodic as in the case of Camassa–Holm equation.Peaked solitary wave,also called peakon,has a unique peak at crest or trough.Peaked periodic wave,however,is a type of periodic traveling wave with a peak at each crest or trough,which was also called periodic peakon by Lenells,[2?3]coshoidal wave by Boyd[4]and periodic cusp wave by Li and Liu.[5]Usually,we say a continuous function has a peak at some point if at this point its left and right derivatives are fi nite and have different sign,and naturally its wave pro fi le is called a peaked wave solution.

    The following nonlinear wave equation was proposed by Broer and Kaup(BK)as a model describing the bi-directional propagation of long waves in shallow water,where u(x,t)is related to the horizontal velocity,and v(x,t)represents the height of the water surface above a horizontal bottom.[10?11]It turns out that this equation was also derived from the Kadomtsev–Petviashvili equation.[12]Various aspects of BK equation(1)have been studied.[13?19]It was shown in Ref.[13]that Eq.(1)is integrable and possesses tri-Hamiltonian structure and an in fi nite number of conservation laws.The geometric properties of non-Noether symmetries as well as their applications were discussed in Ref.[14].A Darboux transformation and some exact solutions were presented in Ref.[15].Satsuma etal.obtained the soliton solutions and revealed fi ssion and fusion phenomena.[16]The author of Ref.[17]gave a family of traveling wave solution and its higher version.The interaction solutions between the solitons and other different types of nonlinear waves were given using a consistent tanh expansion method in Ref.[18].Very recently,by the bifurcation method of dynamical system,Meng etal.[19]constructed some smooth and peaked solitary wave solutions.However whether there are the peaked periodic waves to Eq.(1)remains unknown.

    In the present paper,we employ the qualitative analysis method for differential equations,which was first introduced by Lenells,[2?3]to prove the existence of peaked periodic waves to Eq.(1)and obtain some exact expressions of peaked periodic wave solutions.To the best of our knowledge,those obtained solutions have not been reported in the literature.

    2 Existence of Peaked Periodic Waves of Eq.(1)

    In this section we first introduce some notations.Cn(X)denotes the set of all n times continuously differentiable functions on the open set X.represents the space of smooth functions with compact support.refers to the set of all functions whose restriction on any compact subset is Lpintegrable.stands for

    Substituting u(x,t)=u(ξ)and v(x,t)=v(ξ)with ξ=x?ct into Eq.(1)leads to

    It can be observed that Eq.(2)is valid in the sense of distributions if u,v∈Therefore the following Definition is natural.

    Definition 1A pair of functions(u,v)where u,v∈is called a traveling wave solution of Eq.(1)if u and v satisfy Eq.(2)in the sense of distributions.

    Since every distribution has a primitive which is a distribution,we may integrate Eq.(2)to get

    with two integration constants α and β.By Eq.(3b),u can be solved as

    for v≠0.Substituting Eq.(4)into Eq.(3a)we can obtain an equation for the unknown v only

    whereμ =c2+4α.

    To deal with the regularity of the traveling wave solutions,we give the following lemma,which is inspired by the study of traveling waves of Camassa–Holm equation.[2]

    Lemma 1Let(u,v)be a traveling wave solution of Eq.(1).Then we have

    Therefore

    Proof Denote p(v)= ?8v3+μv2?β2.Thus p(v)is a polynomial in v and then Eq.(5)can be written as Since v∈

    Therefore(v2)ξis absolutely continuous and v2∈C1(R).Eq.(8)implies that(v2)ξξNote that v∈(R)?C(R).Moreover,

    For k≥3 the right-hand side of(9)is in(R).Therefore

    Thus Eq.(6)holds for j=1.Next,we assume that

    vk∈ Cj?1(R)for k ≥ 2j?1and j≥ 2.

    Then for k≥2jwe have

    Also we have vk?2p(v) ∈ Cj?1(R).Therefore the righthand side of Eq.(9)is in Cj?2(R).Hence,by induction on j,we know Eq.(6)holds.

    Furthermore,it follows from Eq.(10)that

    which implies that vξ∈ C(Rv?1(0)).Therefore,v ∈C1(Rv?1(0)).Now,we assume that v∈ Cj(Rv?1(0))for j≥1.Then for k≥2j+1,we have vk∈Cj+1(R).Thus

    which shows that vξ∈ Cj(Rv?1(0)).Hence,v ∈Cj+1(Rv?1(0)).Thus,by induction on j,we know Eq.(7)holds.

    Remark 1 In view of Eq.(4),it follows from Lemma 1 that u∈C∞(Rv?1(0)).From this fact and Eq.(7),we know that the traveling wave solutions(u,v)of Eq.(1)are smooth except at points where v=0.

    Since v is continuous on R,then v?1(0)is a closed set.This implies that Rv?1(0)is an open set.Since every open set is a countable union of disjoint open intervals,then there are disjoint open intervals(ai,bi),i≥1,such that Rv?1(0)=(ai,bi).Then it follows from Lemma 1 that v is smooth on every interval(ai,bi)and hence Eq.(5)holds pointwise on(ai,bi).Therefore,we may multiply both sides of Eq.(5)by v?2vξand integrate on(ai,bi)to get

    with a new integration constant h.

    Remark 2Notice that F(v)≥0 if v is a solution of Eq.(11).Moreover,from the continuity of v on R,we know that v→0 at the fi nite endpoints of(ai,bi).

    To establish the existence of periodic peaked wave solutions of Eq.(1),we need the following lemma.

    Lemma 2The solution of Eq.(11)has the following asymptotic properties:

    (i)If v approaches 0,then we have

    where v(ξ0)=0.

    (ii)If v approaches a simple zero m of F(v),then we have

    where v(ξ0)=m and f(ξ)=O(g(ξ))as ξ→ a means that|f(ξ)/g(ξ)|is bounded in some neighborhood of a.

    ProofSince the proof of(ii)can be found in Ref.[2],here we only consider the proof of(i).In a small neighbourhood of v=0,Eq.(11)can be expanded as

    where F(0)= β2>0.For ξ close enough to ξ0,integration of Eq.(14)yields

    which implies O(|ξ? ξ0|2)=O(v2).Thus we have

    From Eq.(17)we obtain Eq.(12).

    Remark 3If the solution v of Eq.(11)approaches a double zero or a triple zero m of F(v),by similar analysis to the proof of Lemma 2,we can prove that v(ξ)→ m as ξ→±∞.

    Using Lemma 2,we can obtain the following result which gives a sufficient condition for the existence of peaked periodic wave solutions of Eq.(1).

    Theorem 1 If β/=0 and F(v)has a simply zero at vssuch that vs>0(or vs<0)and F(v)>0 for v∈(0,vs)(or v∈(vs,0)),then there exists a periodic peaked wave solution v(ξ)of Eq.(1)satisfying minξ∈Rv(ξ)=0 and maxξ∈Rv(ξ)=vs(or minξ∈Rv(ξ)=vsand maxξ∈Rv(ξ)=0).

    Proof Here we only consider the case vs>0 since similar analysis can be employed for the case vs<0.It follows from Eq.(11)that

    where λ(v)is a second-order factor of F(v)such that λ(v)>0 for v∈ (0,vs).Assume that v is the solution in this interval.If v increases and approaches vs,by Eq.(13),we get that v is symmetric with respect to ξ1,where v(ξ1)=vs,i.e.v(ξ)=v(ξ1? (ξ? ξ1)),which means that v will reach vsand immediately turn back down.From Lemma 1,we know that v will not stop or turn back anywhere because that would yield a singularity of v at a point where v≠0.When v decreases and approaches the point v=0,according to Eq.(12),v will suddenly change its direction at ξ0=0,where v(ξ0)=0,i.e.vξ7→ ?vξ,so that v will yield a peak at v=0.Hence,we deduce that there exists a peaked periodic wave solution of Eq.(1)with minξ∈Rv(ξ)=0,maxξ∈Rv(ξ)=vs.Remark 4 For a solution v(ξ)of Eq.(11),if there exists a double zero or a triple zero vs≠0 of F(v)such that F(v)>0 for v∈(0,vs)(or v∈(vs,0)),in view of(i)of Lemma 2 and Remark 3,employing a similar analysis to the proof of Theorem 1,we can infer that v(ξ)gives a peaked solitary wave solution of Eq.(1)with a single peak at ξ0such that v(ξ0)=0,which satis fi es minξ∈Rv(ξ)=0(or maxξ∈Rv(ξ)=0)and lim|ξ|→∞=vs.

    3 Exact Peaked Periodic Wave Solutions of Eq.(1)

    To determine the peaked periodic wave solutions of Eq.(1)in speci fi ed parameter region of parameter space,we need to discuss the distribution of zero points of F(v)for β/=0.differentiating F(v)with respect to v yields F′(v)= ?12v2+2μv+h.(19)Let? = μ2+12h.If? <0,then F′(v)<0 holds for v∈R and thus F(v)is strictly monotonically decreasing on R.Moreover,in view of the fact that F(0)=β2>0,we can deduce that there exists a unique simple zero v(1)afor F(v)such that v(1)a>0.If?=0,solving the equation F′(v)=0 gives v=v?= μ/12 such that F(v?)=F′(v?)=F′′(v?)=0 and F′′′(v?)= ?24/=0,which means that v?is a triple zero of F(v).Moreover,due to the fact that F(0)>0 and F′(v)<0 for v ∈ R{v?},we can infer that v?>0.If? >0,setting F′(v)to zero leads to

    withFrom Eqs.(19)and(20),it follows that

    This shows that F(v)has a minimum atand has a maximum atFurther,we can check that

    Based on the above analysis,it can be checked that there exist in total nine qualitatively cases for F(v)when β≠0(see Fig.1).

    According to Theorem 1 and Fig.1,exact peaked periodic wave solutions of Eq.(1)in different parameter regions of parameter space can be presented.We will use some symbols on the elliptic functions and elliptic integrals(see Ref.[20]).sn(u,k)and cn(u,k)are Jacobian elliptic functions with the modulus k.sn?1(u,k)and cn?1(u,k)are the inverse functions of sn(u,k)and cn(u,k),respectively.

    Proposition 1(The expression of peaked periodic wave pointing upwards)If?><0

    whereandsatisfyingare three distinct simple zeros of F(v)(see Fig.1(f)),

    Proof It can be observed from Fig.1(f)that F(v)>0 for v∈I=where<0 is a simple zero of F(v).By Theorem 1,we know that there exists a peaked periodic wave solution with minξ∈Rv(ξ)=and maxξ∈Rv(ξ)=0.For the solution v1(ξ)in the interval I,it follows from Eq.(11)that

    Integration of Eq.(22)leads to

    In view of Eq.(4),completing the integrals in Eqs.(23)and(24)gives Eq.(21).

    Employing a similar analysis as above,we have the following results.

    Proposition 2(The expressions of peaked periodic waves pointing downwards)(i)Under the same assumptions as in Proposition 1,Eq.(1)has a peaked periodic wave solution pointing downwards with period 2T2,which on the interval(?T2,T2)has the explicit expression

    whereandare the same as described in Proposition 1,ω2= ω1,k2=k1and

    wheresatisfyingare a double zero and a simple zero of F(v)(see Fig.1(d)),

    (iii)If?>0,for β≠0,Eq.(1)has a peaked periodic wave solution pointing downwards with period 2T4,which on the interval(?T4,T4)has the explicit expression

    wheresatisfying 0

    (iv)If?>0,for β≠0,Eq.(1)has a peaked periodic wave solution pointing downwards with period 2T5,which on the interval(?T5,T5)has the explicit expression

    whereandsatisfyingare a simple zero and a double zero of F(v)(see Fig.1(h)),and

    (v)Under one of the parameter conditions:(c1)?<0,(c2)?>0 and>0,(c3)?>0,and<0,Eq.(1)has a peaked periodic wave solution pointing downwards with period 2T6,which on the interval(?T6,T6)has the explicit expression

    where>0 and mj±nji(mj,nj∈ R),are a unique real root and a pair of conjugate complex roots of F(v)=_0(see Figs.1(a),1(c),1(i)),A=

    To show the correctness of our results,we select the peaked periodic wave solutions for v given by Eqs.(21)and(25)as two examples and plot their planar graphs in Fig.2.In such two cases we take c=2,α= ?6 and β=4,so that the parameter conditions of Proposition 1 are satis fi ed.

    References

    [1]R.Camassa and D.D.Holm,Phys.Rev.Lett.71(1993)1661.

    [2]J.Lenells,J.Di ff.Equ.217(2005)393.

    [3]J.Lenells,J.Math.Anal.Appl.306(2005)72.

    [4]J.P.Boyd,Appl.Math.Comput.81(1997)173.

    [5]J.B.Li and Z.R.Liu,Appl.Math.Model.25(2000)41.

    [6]Z.R.Liu and R.Wang,Chaos,Solitons and Fractals 19(2004)77.

    [7]J.B.Zhou and L.X.Tian,Nonlinear Anal-Real 11(2010)356.

    [8]B.Jiang,Y.Lu,J.H.Zhang,and Q.S.Bi,Appl.Math.Comput.228(2014)220.

    [9]L.J.Qiao,S.Q.Tang,and H.X.Zhao,Commun.Theor.Phys.63(2015)731.

    [10]L.J.F.Broer,Appl.Sci.Res.31(1975)377.

    [11]D.J.Kaup,Prog.Theor.Phys.54(1975)396.

    [12]S.Y.Lou and X.B.Hu,J.Math.Phys.38(1997)6401.

    [13]B.A.Kupershmidt,Cormrmn.Math.Phys.99(1985)51.

    [14]G.Chavchanidze,Mem.differential Equations Math.Phys.36(2005)81.

    [15]Z.J.Zhou and Z.B.Li,Acta Phys.Sin.52(2003)262.

    [16]J.Satuma,K.Kajiwara,J.Matsukidaira,and J.Hietarinta,J.Phys.Soc.Jpn.61(1992)3096.

    [17]A.K.Svinin,Inverse Problems 17(2001)1061.

    [18]C.L.Bai and S.Y.Lou,Chin.Phys.Lett.30(2013)110202.

    [19]Q.Meng,W.Li,and B.He,Commun.Theor.Phys.62(2014)308.

    [20]P.F.Byrd and M.D.Friedman,Handbook of Elliptic Integrals for Engineers and Scientists,Springer,New York(1971).

    猜你喜歡
    江波
    A nanoparticle formation model considering layered motion based on an electrical explosion experiment with Al wires
    Effect of shock wave formation on propellant ignition in capillary discharge
    本期作者介紹
    你能相信誰
    酬東坡(新韻)
    江波繪畫作品
    想要不同的生活
    莫愁(2016年34期)2017-01-12 02:24:41
    想要不同的生活
    瘋狂style
    My Story以筆相伴靜書寫
    海外英語(2013年8期)2013-11-22 09:16:04
    日本免费一区二区三区高清不卡| 一个人免费在线观看电影| 久久久久久久久大av| 美女大奶头视频| avwww免费| eeuss影院久久| 亚洲国产精品sss在线观看| 国产精品久久久久久精品电影| 色综合站精品国产| 啪啪无遮挡十八禁网站| 免费观看的影片在线观看| 男人和女人高潮做爰伦理| 一级黄片播放器| 国产麻豆成人av免费视频| 久久午夜亚洲精品久久| 免费看十八禁软件| 日韩高清综合在线| 成人无遮挡网站| 国产亚洲精品久久久com| 成人午夜高清在线视频| 欧美在线一区亚洲| 国产伦人伦偷精品视频| 亚洲中文字幕日韩| 国产激情偷乱视频一区二区| 窝窝影院91人妻| 亚洲午夜理论影院| 久久欧美精品欧美久久欧美| 色吧在线观看| 日日干狠狠操夜夜爽| 69人妻影院| bbb黄色大片| 欧美极品一区二区三区四区| 人人妻人人看人人澡| 99国产精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 精品国产美女av久久久久小说| 免费一级毛片在线播放高清视频| 特大巨黑吊av在线直播| 好看av亚洲va欧美ⅴa在| 男人舔奶头视频| 黄色女人牲交| 欧美性感艳星| 毛片女人毛片| 男女那种视频在线观看| 亚洲av电影不卡..在线观看| 国产成人av激情在线播放| 一个人看视频在线观看www免费 | 99在线人妻在线中文字幕| 制服丝袜大香蕉在线| 一区二区三区免费毛片| 日本黄色片子视频| 久久草成人影院| 国产精品亚洲美女久久久| 精品不卡国产一区二区三区| 国产三级在线视频| 亚洲av成人av| 99热6这里只有精品| 99久久综合精品五月天人人| 国产色婷婷99| 婷婷亚洲欧美| 国产高清激情床上av| 最近最新中文字幕大全免费视频| 麻豆成人午夜福利视频| 国产av麻豆久久久久久久| 成人国产综合亚洲| 91字幕亚洲| 丰满乱子伦码专区| 久9热在线精品视频| 中出人妻视频一区二区| 日本熟妇午夜| 天天一区二区日本电影三级| 欧美中文综合在线视频| 此物有八面人人有两片| 黑人欧美特级aaaaaa片| 性色avwww在线观看| 亚洲五月天丁香| 国模一区二区三区四区视频| 午夜福利在线观看吧| а√天堂www在线а√下载| 91在线精品国自产拍蜜月 | 欧美zozozo另类| 51午夜福利影视在线观看| 亚洲七黄色美女视频| 日日干狠狠操夜夜爽| 国产精品久久久久久人妻精品电影| 亚洲五月天丁香| 老汉色av国产亚洲站长工具| 色噜噜av男人的天堂激情| 搡女人真爽免费视频火全软件 | 蜜桃久久精品国产亚洲av| 国产 一区 欧美 日韩| 99久久成人亚洲精品观看| 日韩欧美国产在线观看| 精品久久久久久久久久久久久| 国产综合懂色| 国产高清三级在线| 亚洲在线自拍视频| 精品一区二区三区av网在线观看| 欧美一级a爱片免费观看看| 亚洲欧美日韩高清在线视频| 亚洲在线自拍视频| 成人欧美大片| 丁香六月欧美| 国产探花在线观看一区二区| 日韩欧美在线乱码| 久久久久免费精品人妻一区二区| 欧美乱色亚洲激情| 人人妻人人看人人澡| 看黄色毛片网站| 国产伦一二天堂av在线观看| 亚洲最大成人中文| 成人国产综合亚洲| 精品福利观看| 亚洲成人免费电影在线观看| 人妻夜夜爽99麻豆av| 国产精品98久久久久久宅男小说| 老熟妇乱子伦视频在线观看| 少妇高潮的动态图| 亚洲成人免费电影在线观看| 亚洲乱码一区二区免费版| av国产免费在线观看| 国产高清激情床上av| 精品国产三级普通话版| 久久这里只有精品中国| 欧美日韩精品网址| 欧美不卡视频在线免费观看| 国产精品久久久久久久电影 | 老司机在亚洲福利影院| 757午夜福利合集在线观看| 9191精品国产免费久久| 欧美绝顶高潮抽搐喷水| 国产精品99久久久久久久久| 亚洲无线观看免费| 国产精品国产高清国产av| 亚洲av免费在线观看| 我的老师免费观看完整版| 91在线观看av| 99在线视频只有这里精品首页| 国产真实乱freesex| 亚洲国产色片| 久久久久国内视频| 国产成人欧美在线观看| 婷婷丁香在线五月| 中文字幕人妻熟人妻熟丝袜美 | 国产精品免费一区二区三区在线| 久久久久久大精品| 精品久久久久久久毛片微露脸| av视频在线观看入口| 成人无遮挡网站| 久9热在线精品视频| 身体一侧抽搐| 国产爱豆传媒在线观看| 波多野结衣高清无吗| 国产成+人综合+亚洲专区| 国产av一区在线观看免费| svipshipincom国产片| 一级毛片女人18水好多| 久久久久久久久中文| 小蜜桃在线观看免费完整版高清| 亚洲天堂国产精品一区在线| 欧美大码av| 淫妇啪啪啪对白视频| 天堂网av新在线| 亚洲av中文字字幕乱码综合| 成人欧美大片| 又黄又爽又免费观看的视频| 热99re8久久精品国产| 国产亚洲精品久久久com| 亚洲av熟女| 日韩高清综合在线| 国产在线精品亚洲第一网站| 免费av观看视频| av国产免费在线观看| 我要搜黄色片| 一卡2卡三卡四卡精品乱码亚洲| 九色国产91popny在线| 小蜜桃在线观看免费完整版高清| 午夜影院日韩av| 久久亚洲真实| 观看免费一级毛片| 人妻夜夜爽99麻豆av| 久久久久久大精品| 欧美成狂野欧美在线观看| 中文在线观看免费www的网站| 高潮久久久久久久久久久不卡| 亚洲成人久久性| 美女大奶头视频| 黄色视频,在线免费观看| av女优亚洲男人天堂| 中文字幕久久专区| 国产伦一二天堂av在线观看| 变态另类成人亚洲欧美熟女| 亚洲精品在线美女| 亚洲专区中文字幕在线| 日本免费一区二区三区高清不卡| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品合色在线| 国产伦在线观看视频一区| 老熟妇乱子伦视频在线观看| 又黄又爽又免费观看的视频| 久久欧美精品欧美久久欧美| 日本五十路高清| 久久精品国产自在天天线| 久久久成人免费电影| www日本黄色视频网| 搡女人真爽免费视频火全软件 | 亚洲av成人不卡在线观看播放网| 啦啦啦免费观看视频1| 久久亚洲精品不卡| 十八禁网站免费在线| 欧美一区二区亚洲| 国产成人影院久久av| 国产成人aa在线观看| 欧美丝袜亚洲另类 | 不卡一级毛片| 免费一级毛片在线播放高清视频| 欧美激情在线99| 最近最新中文字幕大全免费视频| 亚洲狠狠婷婷综合久久图片| 久久久久久久久大av| 在线观看一区二区三区| 国产亚洲欧美在线一区二区| 亚洲成av人片免费观看| 日韩欧美在线二视频| 亚洲欧美日韩高清在线视频| 日韩欧美 国产精品| 欧美午夜高清在线| 91av网一区二区| 久久中文看片网| 国内毛片毛片毛片毛片毛片| 18禁裸乳无遮挡免费网站照片| 精品人妻一区二区三区麻豆 | 国产不卡一卡二| 久久香蕉国产精品| 亚洲精华国产精华精| 午夜福利视频1000在线观看| 热99re8久久精品国产| 久久久久精品国产欧美久久久| 久久伊人香网站| 91九色精品人成在线观看| 欧美三级亚洲精品| 久久精品国产亚洲av香蕉五月| 极品教师在线免费播放| 亚洲av免费高清在线观看| 精品午夜福利视频在线观看一区| 午夜免费男女啪啪视频观看 | xxxwww97欧美| 丰满人妻熟妇乱又伦精品不卡| 国产成+人综合+亚洲专区| 精品电影一区二区在线| 97碰自拍视频| 久久这里只有精品中国| 国产成人福利小说| 少妇裸体淫交视频免费看高清| 最近最新免费中文字幕在线| 成年免费大片在线观看| 午夜激情福利司机影院| 亚洲人成网站高清观看| 国产精品一区二区三区四区免费观看 | 桃色一区二区三区在线观看| 中文在线观看免费www的网站| 亚洲最大成人中文| 亚洲中文字幕日韩| 少妇的逼好多水| 亚洲精品久久国产高清桃花| 蜜桃久久精品国产亚洲av| 欧美绝顶高潮抽搐喷水| 精品一区二区三区人妻视频| 91麻豆精品激情在线观看国产| 国产亚洲欧美在线一区二区| 大型黄色视频在线免费观看| 88av欧美| 中文字幕精品亚洲无线码一区| 国产色爽女视频免费观看| 色哟哟哟哟哟哟| 美女黄网站色视频| 亚洲成a人片在线一区二区| 亚洲av二区三区四区| 久久久成人免费电影| 日韩亚洲欧美综合| 国产探花在线观看一区二区| 91字幕亚洲| 国产伦人伦偷精品视频| 99久国产av精品| 亚洲av二区三区四区| 国产国拍精品亚洲av在线观看 | 免费高清视频大片| 国产中年淑女户外野战色| 在线观看舔阴道视频| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩无卡精品| 叶爱在线成人免费视频播放| 日本 欧美在线| 97超级碰碰碰精品色视频在线观看| 国产精品美女特级片免费视频播放器| 最近最新中文字幕大全电影3| 99久久久亚洲精品蜜臀av| 亚洲18禁久久av| 亚洲精品美女久久久久99蜜臀| 国产精品自产拍在线观看55亚洲| 一个人观看的视频www高清免费观看| www.www免费av| 国产亚洲欧美98| 69人妻影院| 国产精华一区二区三区| 国产伦精品一区二区三区四那| 欧美丝袜亚洲另类 | 欧美成人a在线观看| 久久午夜亚洲精品久久| 欧美日韩福利视频一区二区| 在线免费观看不下载黄p国产 | 精品久久久久久久毛片微露脸| 国产亚洲精品久久久com| 免费人成在线观看视频色| 国产亚洲精品一区二区www| 一区二区三区高清视频在线| 色在线成人网| 999久久久精品免费观看国产| 一级黄色大片毛片| 老司机在亚洲福利影院| 午夜福利18| 岛国视频午夜一区免费看| 国产一区二区三区在线臀色熟女| 国产精品日韩av在线免费观看| 男人和女人高潮做爰伦理| 一级作爱视频免费观看| 久久久久九九精品影院| 国产高清videossex| 青草久久国产| 黄色丝袜av网址大全| 亚洲无线观看免费| 国产三级在线视频| 精品久久久久久,| 亚洲熟妇熟女久久| 国产不卡一卡二| а√天堂www在线а√下载| 日韩欧美在线二视频| 啦啦啦韩国在线观看视频| 精品福利观看| 美女黄网站色视频| 欧美色视频一区免费| av专区在线播放| 国产三级中文精品| 久久久国产精品麻豆| 男人舔女人下体高潮全视频| 岛国视频午夜一区免费看| 18美女黄网站色大片免费观看| 亚洲av免费高清在线观看| 精品熟女少妇八av免费久了| 国产成人av激情在线播放| 国产精品乱码一区二三区的特点| 中文字幕av成人在线电影| 搡女人真爽免费视频火全软件 | 18+在线观看网站| 久久性视频一级片| 尤物成人国产欧美一区二区三区| 亚洲欧美日韩东京热| 成人三级黄色视频| 亚洲精品国产精品久久久不卡| 热99re8久久精品国产| 欧美日韩瑟瑟在线播放| 国内精品美女久久久久久| 久久久久久久久大av| 美女 人体艺术 gogo| 精品久久久久久久人妻蜜臀av| 亚洲无线观看免费| 91久久精品电影网| 黄片大片在线免费观看| 高潮久久久久久久久久久不卡| 嫩草影视91久久| 中文字幕人妻丝袜一区二区| 色视频www国产| 中文在线观看免费www的网站| 波野结衣二区三区在线 | 国产精品98久久久久久宅男小说| 国产精品久久久人人做人人爽| 欧美日韩乱码在线| 午夜精品在线福利| 国产v大片淫在线免费观看| www.www免费av| 亚洲av电影不卡..在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产三级在线视频| 午夜福利免费观看在线| 精品人妻一区二区三区麻豆 | 亚洲精品456在线播放app | 国产精品乱码一区二三区的特点| 99国产极品粉嫩在线观看| 国模一区二区三区四区视频| 校园春色视频在线观看| 欧美+日韩+精品| 欧美av亚洲av综合av国产av| 亚洲美女黄片视频| 19禁男女啪啪无遮挡网站| 麻豆成人午夜福利视频| 国产成人a区在线观看| 黄色成人免费大全| 亚洲精品亚洲一区二区| 久久久久久久午夜电影| 18美女黄网站色大片免费观看| 又爽又黄无遮挡网站| 色视频www国产| 精品久久久久久久人妻蜜臀av| 久久亚洲精品不卡| 母亲3免费完整高清在线观看| 欧美国产日韩亚洲一区| 老司机在亚洲福利影院| 欧美av亚洲av综合av国产av| 最近视频中文字幕2019在线8| 亚洲人与动物交配视频| 国产毛片a区久久久久| www日本黄色视频网| 综合色av麻豆| 精品久久久久久久久久久久久| 99久久九九国产精品国产免费| 久久99热这里只有精品18| 久久性视频一级片| 岛国在线观看网站| 国产一区二区在线av高清观看| 国产成人啪精品午夜网站| 中出人妻视频一区二区| 欧美另类亚洲清纯唯美| 人人妻人人看人人澡| 好男人电影高清在线观看| 听说在线观看完整版免费高清| 级片在线观看| 国产99白浆流出| 久久这里只有精品中国| 每晚都被弄得嗷嗷叫到高潮| 哪里可以看免费的av片| a在线观看视频网站| 一卡2卡三卡四卡精品乱码亚洲| 精品福利观看| 美女高潮喷水抽搐中文字幕| 亚洲七黄色美女视频| 国产精品嫩草影院av在线观看 | 久久这里只有精品中国| 久久天躁狠狠躁夜夜2o2o| 日本一本二区三区精品| 我的老师免费观看完整版| 免费高清视频大片| 日本撒尿小便嘘嘘汇集6| 18+在线观看网站| 日本免费一区二区三区高清不卡| 女生性感内裤真人,穿戴方法视频| 女警被强在线播放| 搡老妇女老女人老熟妇| 亚洲精品456在线播放app | 亚洲欧美精品综合久久99| 国产精品亚洲美女久久久| 3wmmmm亚洲av在线观看| 少妇人妻精品综合一区二区 | 亚洲精品亚洲一区二区| 岛国在线免费视频观看| 88av欧美| 亚洲精品美女久久久久99蜜臀| 国产黄色小视频在线观看| 夜夜躁狠狠躁天天躁| 九九久久精品国产亚洲av麻豆| 男女视频在线观看网站免费| 女同久久另类99精品国产91| 丝袜美腿在线中文| 波多野结衣巨乳人妻| 性色av乱码一区二区三区2| 免费av观看视频| 国产精品av视频在线免费观看| 亚洲人成网站在线播| 人人妻,人人澡人人爽秒播| 女人十人毛片免费观看3o分钟| 国产亚洲精品久久久久久毛片| 啪啪无遮挡十八禁网站| 好看av亚洲va欧美ⅴa在| 日日干狠狠操夜夜爽| 熟妇人妻久久中文字幕3abv| 天天添夜夜摸| 99久久九九国产精品国产免费| а√天堂www在线а√下载| 国产成人欧美在线观看| 国产精品久久久久久亚洲av鲁大| 黄色视频,在线免费观看| 女生性感内裤真人,穿戴方法视频| 国产精品爽爽va在线观看网站| 日韩有码中文字幕| 午夜福利在线观看吧| 99久久成人亚洲精品观看| 波多野结衣巨乳人妻| 亚洲av成人不卡在线观看播放网| 国产伦精品一区二区三区视频9 | x7x7x7水蜜桃| 在线免费观看不下载黄p国产 | 国产精品美女特级片免费视频播放器| 全区人妻精品视频| 又粗又爽又猛毛片免费看| 一个人免费在线观看的高清视频| 国产精品亚洲av一区麻豆| 在线天堂最新版资源| 亚洲激情在线av| 午夜福利视频1000在线观看| 久久精品国产综合久久久| 欧美+亚洲+日韩+国产| 宅男免费午夜| 日韩有码中文字幕| 搞女人的毛片| 久久精品夜夜夜夜夜久久蜜豆| 99视频精品全部免费 在线| 99国产极品粉嫩在线观看| 欧美激情久久久久久爽电影| 亚洲欧美一区二区三区黑人| www日本在线高清视频| 国产精品久久视频播放| 大型黄色视频在线免费观看| 校园春色视频在线观看| 哪里可以看免费的av片| 在线十欧美十亚洲十日本专区| 禁无遮挡网站| 日本黄色视频三级网站网址| 成人性生交大片免费视频hd| 在线观看av片永久免费下载| 91麻豆精品激情在线观看国产| 丰满人妻熟妇乱又伦精品不卡| 久久婷婷人人爽人人干人人爱| 成人欧美大片| 国产精品,欧美在线| 淫妇啪啪啪对白视频| 日韩 欧美 亚洲 中文字幕| 午夜精品一区二区三区免费看| 亚洲精品成人久久久久久| 99热这里只有是精品50| 99久久精品热视频| 亚洲国产精品久久男人天堂| 亚洲,欧美精品.| 欧美高清成人免费视频www| 天天添夜夜摸| 在线a可以看的网站| 日韩高清综合在线| 三级男女做爰猛烈吃奶摸视频| bbb黄色大片| 一进一出抽搐gif免费好疼| 搡老妇女老女人老熟妇| 欧美乱色亚洲激情| 国产黄色小视频在线观看| 精品久久久久久久久久免费视频| 长腿黑丝高跟| 三级毛片av免费| 欧美日韩精品网址| 亚洲五月天丁香| 国产亚洲精品综合一区在线观看| 午夜免费成人在线视频| 婷婷精品国产亚洲av在线| 欧美在线一区亚洲| 99热这里只有是精品50| 麻豆久久精品国产亚洲av| 最新中文字幕久久久久| 久久婷婷人人爽人人干人人爱| 最近在线观看免费完整版| 好看av亚洲va欧美ⅴa在| 乱人视频在线观看| 亚洲久久久久久中文字幕| 欧美+亚洲+日韩+国产| 日韩欧美精品免费久久 | 欧美在线黄色| 日韩欧美三级三区| 欧美黑人巨大hd| 午夜日韩欧美国产| 男女下面进入的视频免费午夜| 麻豆成人午夜福利视频| 啦啦啦韩国在线观看视频| 国产真实伦视频高清在线观看 | 99久久九九国产精品国产免费| 97人妻精品一区二区三区麻豆| 好男人在线观看高清免费视频| 悠悠久久av| 国产高清有码在线观看视频| 可以在线观看毛片的网站| 啦啦啦免费观看视频1| 欧美丝袜亚洲另类 | 日韩欧美在线乱码| 搡女人真爽免费视频火全软件 | 蜜桃久久精品国产亚洲av| 国产一区二区亚洲精品在线观看| 在线播放无遮挡| 一本久久中文字幕| 免费在线观看影片大全网站| www.999成人在线观看| 久久精品国产亚洲av涩爱 | 日韩免费av在线播放| 欧美在线黄色| 国产精品女同一区二区软件 | 免费看a级黄色片| 又爽又黄无遮挡网站| 亚洲中文字幕日韩| 中文字幕熟女人妻在线| 天堂网av新在线| eeuss影院久久| 美女 人体艺术 gogo| 亚洲电影在线观看av| 女人十人毛片免费观看3o分钟| 精品久久久久久久久久免费视频| 亚洲美女黄片视频| 午夜免费激情av| 日日夜夜操网爽| 午夜免费男女啪啪视频观看 | 在线观看午夜福利视频| 成人欧美大片| 美女免费视频网站| 日韩有码中文字幕| h日本视频在线播放| 久久这里只有精品中国| 久久6这里有精品| 天堂av国产一区二区熟女人妻| 午夜福利欧美成人| 欧美日韩一级在线毛片| 国产探花极品一区二区| 国产欧美日韩精品亚洲av| 成年免费大片在线观看|