• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Cu2O/Ag Composite with Visible Light Photocatalytic Degradation Activity for in situ SERS Analysis

    2017-05-18 09:31:14YipingWuBinbinWuXinghuTng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年2期
    關(guān)鍵詞:科技成果效率農(nóng)業(yè)

    Yi-ping Wu,Bin-bin Wu,Xing-hu Tng

    a.Department of Chemical and Materials Engineering,Hefei University,Hefei 236061,China

    b.Institute of Intelligent Machines,Chinese Academy of Sciences,Hefei 230031,China

    Synthesis of Cu2O/Ag Composite with Visible Light Photocatalytic Degradation Activity for in situ SERS Analysis

    Yi-ping Wua?,Bian-bian Wua,Xiang-hu Tangb?

    a.Department of Chemical and Materials Engineering,Hefei University,Hefei 236061,China

    b.Institute of Intelligent Machines,Chinese Academy of Sciences,Hefei 230031,China

    (Dated:Received on December 26,2016;Accepted on March 29,2017)

    A multifunctional Cu2O/Ag micro-nanocomposite,which has the characteristics of high catalytic activities under the visible light and high surface-enhanced Raman scattering(SERS) activity,was fabricated via a facile method and employed for the in situ SERS monitoring of the photocatalytic degradation reaction of crystal violet.Through the variation of the AgNO3concentration,Ag content on the Cu2O template can be controllably tuned,which has great influence on the SERS effect.The results indicate that Ag nanoparticles form on the Cu2O nanoframes to obtain the Cu2O/Ag nanocomposite,which can act as an excellent bifunctional platform for in situ monitoring of photocatalytic degradation of organic pollutions by SERS.

    Cuprous oxide,Silver nanoparticle,Surface-enhanced Raman scattering, Photo-catalytic degradation,In situ detection

    I.INTRODUCTION

    Metal oxide semiconductors with micro-nano structure,such as TiO2,ZnO,and Cu2O,Co3O4particles, can act as common photocatalytic materials to degrade organic pollutants into water,small molecules,and CO2under the irradiation of ultraviolet or visible light[1-7]. These materials are generally photo-chemically stable and nontoxic.This technology not only can reduce environmental pollutants effectively but also making full use of solar energy,which is in line with the development trend of green chemistry,and has been widely focused on.However,large gaps between the semiconductor metal atoms in the valence band and conduction band limit the absorbed sunlight in the visible light,leading to the low efficiency of solar light and thus reducing the ability to degrade dye pollutants in the past decades[8, 9].

    To effectively utilize solar light,noble metal nanoparticles,such as gold and silver,are often decorated on the surface of the semiconductor metal oxide to form a composite material[10].When the composite material is irradiated by the light,the metal semiconductor’s electrons are driven from the valence band to the conduction band.These electrons can promptly leave the semiconductor surface,with the noble metal nanoparticles capturing them and effectively preventing the electrons from falling again to the valence band.Therefore,the photocatalytic degradation properties of this composite material under sunlight are increased significantly[11-13].Lu and co-workers synthesized a Au nuclear Cu2O composite for photocatalytic degradation of methyl orange under visible light using the UV-Vis spectrum[14].Lu et al.synthesized Ag/ZnO hollow microspheres and studied its catalytic properties. These results demonstrated that Ag nanoparticles can not only facilitate the light given to the electronic principle hole but also increase the O2adsorption,produce more active hydroxyl groups,and increase the catalytic activity[15].

    In the last decade,noble metal nanoparticles of gold and silver were commonly used in the surface enhanced Raman spectroscopy(SERS)and their effect on the Raman signal enhancement of the probe molecules was obvious[16,17].Liu et al.synthesized a highly controllable morphology of spiny Au particles and Au/Ag bimetallic nanoparticles by reducing a gold solution with sodium citrate and different amounts of silver nitrate[18].The highly ordered Ag nanowire was prepared by using alumina as a template and the high SERS activity was measured by Sun group[19].The noble metal nanoparticles,which are modified on the surface of the template,are not easy to agglomerate and the gap between the nanoparticles can be adjusted by the experimental parameters,so the stability and sensitivity of the nanoparticles can be improved[20]. Our group has performed some studies on the assembly of noble metal nanoparticles on the template[21,22].

    In this work,the Cu2O micro-nano materials with polyhedral morphology are designed as the template, which is modified in situ with silver nanoparticles byreducing silver nitrate and the density of silver nanoparticles can be adjusted by adding different amounts of silver nitrate.The obtained Cu2O/Ag composites have the foremost advantage of adsorption performance of a polyhedral Cu2O crystal that has a large specific surface area.Second,the aggregation of silver nanoparticles can be avoided by modifying them on the surface of the template.Furthermore,the density of silver can also be controlled,all of which can allow this composite material to detect high molecular signals as a SERS substrate.Finally,Cu2O and Ag nanoparticles both have catalytic activity in the composite and the absorption efficiency of the visible light is higher because of their synergistic effects.The study provides new,efficient,and catalytic micro/nano materials using sunlight directly;more importantly the photocatalytic degradation process can be monitored in situ by using the SERS technique,which will provide some experimental basis on the research of the photocatalytic mechanism.

    II.EXPERIMENTS

    A.Reagents and apparatus

    All chemicals used were analytical-reagent grade and used as received.Copper sulfate pentahydrate (CuSO4·5H2O),silver nitrate,glucose,ethanol,anhydrous sodium carbonate,sodium citrate(Na3C6H5O7), polyvinylpyrrolidone(PVP),4-mercaptopyridine(4-Mpy),malachite green(MG),and crystal violet(CV) were purchased from Shanghai Chemical Reagent Ltd. Co.of China.All solutions were prepared using ultrapure water(resistance>18 M?·cm).

    Scanning electron microscopy(SEM)images were obtained using a SU8000 field emission scanning electron microscope.X-ray diffraction(XRD)images were obtained using a Bruker D8 Advance X-ray diffractometer.Raman spectra images were generated using a LabRAM HR800 confocal microscope Raman system (Horiba Jobin Yvon).Using a 50×microscope objective,the laser beam focused on a sample that was approximately 1μm in size.The laser power was approximately 1 mW and the recording time was 1 s for each spectrum.

    B.Sample preparation

    1.Cu2O particles

    For the synthesis of Cu2O particles,0.68 g CuSO4·5H2O was completely dissolved in 76 mL of deionized water,followed by injecting 4 mL of a sodium mixture solution(0.74 mol/L sodium citrate and 1.2 mol/L sodium carbonate mixed solution)into the glass vial with vigorous stirring.The color of the solution changed from the light blue to dark blue transparent.Finally,after the addition of 3 g of PVP and 4 mL of a 1.4 mol/L glucose solution,the reaction was proceeded for 15 min at 80°C to be completed and cooled down to room temperature under stirring.

    2.Cu2O/Ag composites

    The decorating of Cu2O with Ag nanoparticles was based on the following method.A volume of 21 mL of the above Cu2O reaction liquid,without centrifugation and washing after cooling down to room temperature,was added into a beaker.Different aliquot of a AgNO3solution(8 mmol/L)(1.0,1.2,and 1.4 mL) were slowly dripped into the reaction liquid under vigorous magnetic stirring,and the reaction liquid color changed from brown to dark gray.The mixture was stirred for 20 min to complete the reaction.The product was collected by filtration using nanofiltration membrane and washed with distilled water and ethanol for three times.Finally,filtered samples were dried in an oven for 30 min at 50°C,the obtained composites were named as Cu2O/Ag(1-3),and dispersed in distilled water in accordance with the proportion of 1:20.

    C.Samples detection

    1.SERS sensitivity detection of composite materials

    SERS sensitivity detection of composite materials were recorded for 4-Mpy and MG.First,20μL of Cu2O/Ag-2 composites were added into 20μL of 4-Mpy at five different concentrations until each reached a final concentration of 10-5,10-6,10-7,10-8,10-9mol/L. Then,10μL of the corresponding suspensions was cast on a silicon slide,after which each sample was collected at a 532 nm excitation.Using the same method,SERS measurements for MG at different concentrations were obtained.

    2.Visible light photocatalytic degradation properties for in situ SERS analysis

    The photocatalytic degradation of the Cu2O/Ag-2 composite for CV was monitored by SERS in situ.A final mixture concentration of 10-5mol/L CV in distilled water and 2×10-5mol/L in real water sample with Cu2O/Ag-2 composite was obtained by using the same method as above.Then,20μL of the corresponding suspensions was cast on a silicon slide,after which, the Raman signal was continuously collected at 532 nm excitation.

    III.RESULTS AND DISCUSSION

    The formation of Cu2O and Cu2O/Ag composites were characterized by SEM.Figure 1(a)exhibits the Cu2O crystal template which indicates they are polyhedron and the size is estimated to be 1μm.When addingdifferent amounts of AgNO3solution(1.0,1.2,and 1.4 mL)into the template,the obtained Cu2O/Ag(1-3) composites are shown in Fig.1(b-d),in which the size of the Ag nanoparticles is approximately 60 nm.By changing the amount of AgNO3solution,the distribution density of the Ag nanoparticles modified on the surface of the template can be achieved and the original morphology of the Cu2O crystal template is not destroyed during the reduction.This allows the distribution of Ag on the Cu2O/Ag-2 composite material to be the most uniform as shown in their high-magnification images on the top right corner of Fig.1(b-d),respectively,so only the Cu2O/Ag-2 composites are used in the following detection without special instructions.

    XRD was carried out to determine the phases present in the Cu2O crystal and Cu2O/Ag composite.The corresponding diffraction patterns are displayed in Fig.2. The formation of a cubic phase Cu2O is confirmed (Fig.2(a))by the presence of characteristic peaks at 2θ values of 29.55°,36.4°,42.3°,61.4°,and 73.55°associated with(110),(111),(200),(220),and(311)planes, respectively(JCPDS No.05-0667).After Ag NPs are coated on the Cu2O,the peaks of Cu2O become a little weak and new sharp peaks,attributed to Ag NPs, appear.These new diffraction peaks are located at 2θ=38.0°,44.3°,64.4°,77.4°,which can be indexed to the(111),(200),(220),and(311)planes of the facecentered cubic structure of silver(JCPDS No.04-0783) (Fig.2(b))[23,24].These results indicate that Ag NPs have been coated on the surface of the Cu2O template. Additionally,there were no other miscellaneous peaks, which showed that the composite was of high purity.

    To further confirm the presence of Ag nanoparticles on the surface of the Cu2O template,we analyzed the Cu2O/Ag composite by electron mapping image analysis(Fig.3).The images were acquired by visualizing the inelastically scattered electrons in the energy loss windows for elemental O,Cu,and Ag.The different color areas shown in Fig.3(b-d)represent O,Cu,and Ag enriched areas of the sample,respectively,which indicate the presence of Ag in the outer surface of the Cu2O template.The images also show that the Ag is well dispersed on the surface of the Cu2O template.

    In this work,our aim is to have optimum photocatalytic materials for the degradation of organic pollutants under visible light.Furthermore,the photocatalytic degradation process can be detected by the SERS technique,so SERS enhanced activity for this type of optimum photocatalytic materials is important. To evaluate the potential application of the as-obtained Cu2O/Ag composite as a SERS substrate,4-Mpy was chosen as the probe molecule.Figure 4(a)reveals the series of SERS spectra of 4-Mpy of 10-5,10-6,10-7, 10-8,10-9mol/L with Cu2O/Ag as the substrates. The results clearly show that the determination capability of our SERS probe was below 10-9mol/L,that is, the Cu2O/Ag exhibits good SERS activity and sensitivity as a SERS substrate.The primary vibrations of 4-Mpy conformed the results in literature.Generally,the strong peaks located at 1587 cm-1can be attributed to the ring stretch mode of the 4-Mpy molecule.The peak at 1217 cm-1is attributed to the CH deformation and NH stretching modes,the peak at 1100 cm-1is assigned to the X-sensitive and 1062 cm-1is assigned to the CH deformation modes,respectively.All the above bands are similar to those in the SERS of 4-Mpy adsorbed on the Ag mirror.Lastly,1030 cm-1is attributed to the SERS of 4-Mpy adsorbed on the bare Cu2O template surface[25,26].Therefore,we can assume that chemical enhancement is the second main factor that enhanced the SERS signals,other than electromagnetic enhancement mechanism.In addition to 4-Mpy,the Cu2O/Ag composite has also been proven as an effective SERSsubstrate for the detection of MG as shown in Fig.4(b) [27].

    FIG.1 SEM images of(a)pure Cu2O crystal and(b-d) Cu2O/Ag(1-3)composites and their high-magnification images on the top right corner,respectively.

    FIG.2 XRD patterns of(a)Cu2O and(b)Cu2O/Ag composite.

    To further evaluate the SERS activity of this composite,a quantization relationship between the relative signal intensity of Raman and the concentration.Figure 5(a)illustrated the corresponding plot of ISERSversus-log[4-Mpy],in which ISERSis the SERS intensity recorded for the band at 1587 cm-1which is one of the strongest bands in the 4-Mpy spectrum.The results show that the data can be fitted by a linear plot and the limit of detection(R6G)is about 10-9mol/L, which is considered as the lowest concentration leading the SERS intensity of the marker band at 1587 cm-1. The relative standard deviation(RSD)of major peaks is often used to estimate the reproducibility of SERS signals.Figure 5(b)and(c)show the RSD of the integrated Raman intensity of 10-6mol/L 4-Mpy at 1217 and 1587 cm-1collected on 20 randomly selected places of Cu2O/Ag particles substrate are 0.1466 and 0.1525,respectively,which clearly reveals the high reproducibility of the substrate.4-Mpy was also chosen as the probe molecule to evaluate the intensity of the as-obtained Cu2O/Ag-1 and Cu2O/Ag-3 composites as a SERS substrate.The results show the limit of detection(LOD)were both only 10-8mol/L,furthermore the integrated Raman intensity of 10-6mol/L 4-Mpy at 1217 cm-1collected on 20 randomly selected places of Cu2O/Ag-1 and particles Cu2O/Ag-3 substrate are 0.3005 and 0.3526,respectively.That indicates SERS activity and reproducibility of Cu2O/Ag-2 are higher than Cu2O/Ag-1 and particles Cu2O/Ag-3 which are quite in accord with the SEM images(SERS spectra here are not given).

    FIG.3 SEM images of(a)the Cu2O/Ag composite.Electron energy loss of(b)O,(c)Cu,and(d)Ag.(e)EDAX pattern of the composite.

    FIG.4 SERS spectra of(a)4-Mpy and(b)MG with different concentrations(10-5,10-6,10-7,10-8,10-9mol/L) adsorbed on Cu2O/Ag substrate.

    We evaluated the effect of the photocatalytic activity of Cu2O/Ag composites by photocatalytic degradation of a CV(10-5mol/L)aqueous solution under visiblelight irradiation[28].The changes in the concentration of CV were monitored by examining the variations in the SERS absorption.Figure 6(a)shows SERS spectra changes of CV(10-5)mol/L over the Cu2O/Ag composite.With the passage of time,the Raman signalfaded quickly,which means the reaction speed of CV degradation on the surface of the composite is rapid, and the concentration was reduced to the SERS detection limit(about<10-9mol/L)at approximately 250 s. This indicates that the degradation of CV is nearly completed.The other parallel experiment was carried out under the same conditions but the duration was only 350 s,as shown in Fig.6(b).The degradation reaction speed of CV is similar to the above experiment and after approximately 300 s,a wide peak in the 1250 cm-1to 1500 cm-1appears,which may be resulted from the formation of amorphous carbon after the extended laser irradiation time on the surface of the Cu2O/Ag composite material.The detection results show that the composite material has a high efficiency for the degradation of CV under visible light irradiation in a short amount of time.

    FIG.5(a)Logarithmic plot of[4-Mpy]versus SERS intensity together with linear fitting and error bars.(b)and(c)the relative standard deviation(RSD)of the integrated Raman intensity of 10-6mol/L 4-Mpy at 1217 and 1587 cm-1collected on 20 randomly selected places of Cu2O/Ag particles substrate,respectively.

    FIG.6 Time-course SERS mapping of 20μL sample with 10-5mol/L CV under the photocatalytic degradation of Cu2O/Ag-2 composite.The duration is(a)500 s,(b)350 s,and the laser is 532 nm.

    To evaluate its practical photocatalytic ability,the Cu2O/Ag composite was applied to detect CV in real water samples by the standard addition method[29]. The water samples,which were collected from Dongpu Reservoir of Hefei without any pretreatment except filtration,were added with CV standard sample and the finial concentrations of CV was 2×10-5mol/L.Despite of the complexity of the real samples,the photocatalytic degradation of 2×10-5mol/L CV was monitored, the results are shown in Fig.7.It indicates that the Cu2O/Ag composites have a higher photocatalytic ability in the determination of CV in real water samples.

    當(dāng)前,我國的農(nóng)業(yè)技術(shù)推廣在農(nóng)業(yè)經(jīng)濟(jì)發(fā)展中已取得了明顯成效,但與發(fā)達(dá)國家相比還是存在不小的差距。就科技成果而言,其推廣力度不夠、效率不高、實踐性不強,需要進(jìn)一步加大宣傳。

    FIG.7 Time-course SERS mapping of 20μL sample with 2×10-5mol/L CV in real water samples under the photocatalytic degradation of Cu2O/Ag-2 composite,the duration was 600 s,the laser was 532 nm.

    Photo-catalytic degradation of CV in situ and rapid detection with the Cu2O/Ag composites as SERS substrate,using a laser at 532 nm,were accomplished.Wespeculate there are three main reasons.First,the mechanism was proposed to be the formation of hydroxyl radical species(·OH)as shown in Fig.8.The electron of the Cu2O on the electronic band is excited into the conduction band under the irradiation of visible light. Then,O2-·are generated because the excited electrons are captured by the absorbed O2,and·OH are generated by the surface hydroxyl trapping the corresponding holes.On the other hand,the interaction between the above generated O2-·and the absorbed H2O will further generate·OH.It was known that the final·OH radicals are able to oxidize pollutants because of their high oxidative capacity(the reduction potential of·OH is approximately 2.8 V)[30,31].Second,the mechanism of the photocatalytic activity in the metal-semiconductor of the Cu2O/Ag composite lies mainly in the transfer of an electron and hole,rapidly and effectively.Ag,with a high value of electron work function,can make the electron transfer process from the conducting band of the Cu2O to Ag more rapidly,meanwhile,effectively preventing the electrons from falling back into the valence band of Cu2O[32].The charge separation in turn prevents the recombination of electrons and holes and thus,enhances the photocatalytic activity of Cu2O [33].Third,the charge redistribution results in positively charged Ag and negatively charged Cu2O with the highest charge density region located adjacent to the junction,which may induce a larger electromagnetic field,so that the Cu2O/Ag composite can act as a high sensitivity SERS substrate[24,34].

    FIG.8 Schematic of the electron-hole generation in Cu2O/Ag composite and some of the mechanisms.

    IV.CONCLUSION

    In summary,we have developed a facile,successive, one-step procedure for producing tunable Ag NPs on Cu2O nanoframes to obtain a Cu2O/Ag composite with highly sensitive SERS signals and an excellent photocatalytic degradation material for organic pollution. The results show that the composite material has a highly efficient degradation ability for organic pollution, such as CV,under visible light irradiation in a short amount of time,in which the photocatalytic degradation process was monitored in situ by the SERS technique.We believe that such a strategy can not only effectively utilize solar light to degrade organic pollution but also could be extended to other systems,such as the mechanistic study of degrading organic pollution by an in situ SERS technique.

    V.ACKNOWLEDGMENTS

    This work was supported by the Key Projects of Natural Science Research of Universities in Anhui Province(No.KJ2015A183,No.KJ2015A201)and Talents Foundation of Hefei University(No.15RC05), Anhui Province Natural Science Foundation (No.1608085MD78),the Key Pro jects of Anhui Province University Outstanding Youth Talent Support Program(gxyqZD2016274),the National Natural Science Foundation of China(No.21305142, No.51403048).

    [1]N.M.Mahmoodi,M.Arami,N.Y.Limaee,and N.S. Tabrizi,Chem.Eng.J.112,191(2005).

    [2]A.O.Musa,T.Akomolafe,and M.J.Carter,Sol.Energ.Mater.Sol.Cell 51,305(1998).

    [3]T.Wang,B.J.Jin,Z.B.Jiao,G.X.Lu,J.H.Ye,and Y.P.Bi,J.Mater.Chem.A 2,15553(2014).

    [4]M.R.Hoffmann,S.T.Martin,W.Y.Choi,and D.W. Bahnemann,Chem.Rev.95,69(1995).

    [5]H.J.Shi,J.Z.Zhao,Y.L.Wang,and G.H.Zhao, Biosens.Bioelectron.81,503(2016).

    [6]Z.Y.Wu,G.H.Zhao,Y.J.Zhang,J.Liu,Y.N.Zhang, and H.J.Shi,J.Mater.Chem.A 3,3416(2015).

    [7]X.F.Huang,Q.Shen,J.B.Liu,N.J.Yang,and G.H. Zhao,Energy Environ.Sci.9,3161(2016).

    [8]M.Schreier,J.S.Luo,P.Gao,T.Moehl,M.T.Mayer, and M.Gr¨atzel,J.Am.Chem.Soc.138,1938(2016).

    [9]X.Su,J.Chang,S.L.Wu,B.T.Tang,and S.F.Zhang, Nanoscale 8,6155(2016).

    [10]Z.L.Hua,Z.Y.Dai,X.Bai,Z.F.Ye,P.Wang,H.X. Gu,and X.Huang,Chem.Eng.J.283,514(2016).

    [11]L.Jian,D.D.Cai,G.P.Su,D.P.Lin,M.S.Lin,J. Y.Li,J.H.Liu,X.Wan,S.L.Tie,and S.Lan,Appl. Catal.A-Gen 512,74(2016).

    [12]X.L.Li,Y.J.Ma,Z.Yang,S.S.Xu,L.M.Wei,D. Huang,T.Wang,N.T.Hu,and Y.F.Zhang,Dalton Trans.45,7258(2016).

    [13]J.Miao,H.Yang,D.Z.Zhu,A.J.Xie,F.Z.Huang,S. K.Li,and Y.H.Shen,Mater.Lett.163,106(2016).

    [14]B.Lu,A.P.Liu,H.P.Wu,Q.P.Shen,T.Y.Zhao, and J.S.Wang,Langmuir 32,3085(2016).

    [15]W.W.Lu,S.Y.Gao,and J.J.Wang,J.Phys.Chem. C 112,16792(2008).

    [16]S.Lee,A.Ongko,H.Y.Kim,S.G.Yim,G.Jeon,H. J.Jeong,S.Lee,M.Kwak,and S.Y.Yang,Nanotechnology 27,315301(2016).

    [17]K.Liu,Y.C.Bai,L.Zhang,Z.B.Yang,Q.K.Fan,H. Q.Zheng,Y.D.Yin,and C.B.Gao,Nano Lett.16, 3675(2016).

    [18]B.H.Liu,G.M.Han,Z.P.Zhang,R.Y.Liu,C.L. Jiang,S.H.Wang,and M.Y.Han,Anal.Chem.84, 255(2012).

    [19]B.L.Sun,X.H.Jiang,S.X.Dai,and Z.L.Du,Mater. Lett.63,2570(2009).

    [20]B.Li,Y.E.Shi,J.C.Cui,Z.Liu,X.L.Zhang,and J. H.Zhan,Anal.Chim.Acta 923,66(2016).

    [21]Y.P.Wu,F.Zhou,L.B.Yang,and J.H.Liu,Chem. Commun.49,5025(2013).

    [22]Y.P.Wu,P.Li,L.B.Yang,and J.H.Liu,J.Raman Spectrosc.45,68(2014).

    [23]Y.M.Sui,W.Y.Fu,H.B.Yang,Y.Zeng,Y.Y.Zhang, Q.Zhao,Y.E.Li,X.M.Zhou,Y.Leng,M.H.Li,and G.T.Zou,Cryst.Growth Des.10,99(2010).

    [24]L.H.Yang,J.Lv,Y.M.Sui,W.Y.Fu,X.M.Zhou,J. W.Ma,S.Su,W.J.Zhang,P.Lv,D.Wu,Y.N.Mu, and H.B.Yang,CrystEngComm 16,2298(2014).

    [25]H.Guo,L.Ding,T.J.Zhang,and Y.J.Mo,J.Mol. Struct.1035,231(2013).

    [26]H.L.Liu,Z.L.Yang,L.Y.Meng,Y.D.Sun,J.Wang, L.B.Yang,J.H.Liu,and Z.Q.Tian,J.Am.Chem. Soc.136,5332(2014).

    [27]L.B.Zhong,J.Yin,Y.M.Zheng,Q.Liu,X.X.Cheng, and F.H.Luo,Anal.Chem.86,6262(2014).

    [28]Y.P.Wu,P.Li,B.H.Yang,and X.H.Tang,Mater. Res.Bull.76,155(2016).

    [29]X.Y.Li,R.J.Cheng,H.J.Shi,B.Tang,H.S.Xiao, and G.H.Zhao,J.Hazard Mater.304,474(2016).

    [30]F.Liao,T.Wang,and M.W.Shao,J.Mater.Sci-Mater. Electron.26,4722(2015).

    [31]K.Chhor,J.F.Bocquet,and C.Colbeau-Justin,Mater. Chem.Phys.86,123(2004).

    [32]X.Z.Li and F.B.Li,Environ Sci.Technol.35,2381 (2001).

    [33]Y.L.Pan,S.Z.Deng,L.Polavarapu,N.Y.Gao,P.Y. Yuan,C.H.Sow,and Q.H.Xu,Langmuir 28,12304 (2012).

    [34]C.Y.Huang,C.X.Xu,J.F.Lu,Z.H.Li,and Z.S. Tian,Appl.Surf.Sci.365,291(2016).

    ?Authors to whom correspondence should be addressed.E-mail: tangxh2011@iim.cas.cn,wuyp@hfuu.edu.cn

    猜你喜歡
    科技成果效率農(nóng)業(yè)
    國內(nèi)農(nóng)業(yè)
    國內(nèi)農(nóng)業(yè)
    國內(nèi)農(nóng)業(yè)
    擦亮“國”字招牌 發(fā)揮農(nóng)業(yè)領(lǐng)跑作用
    提升朗讀教學(xué)效率的幾點思考
    甘肅教育(2020年14期)2020-09-11 07:57:42
    打通科技成果轉(zhuǎn)化“最后一公里”
    商周刊(2019年1期)2019-01-31 02:36:24
    跟蹤導(dǎo)練(一)2
    “錢”、“事”脫節(jié)效率低
    科技成果
    航天器工程(2014年6期)2014-03-11 16:36:16
    科技成果
    航天器工程(2014年5期)2014-03-11 16:36:03
    国产亚洲精品第一综合不卡| 好看av亚洲va欧美ⅴa在| 别揉我奶头~嗯~啊~动态视频| av网站免费在线观看视频| 成人免费观看视频高清| 99re在线观看精品视频| 亚洲 国产 在线| 妹子高潮喷水视频| 动漫黄色视频在线观看| 欧美成人午夜精品| 国产精品国产高清国产av| 成人精品一区二区免费| 高潮久久久久久久久久久不卡| 91大片在线观看| 午夜久久久在线观看| 女人被狂操c到高潮| 老司机午夜十八禁免费视频| 18禁黄网站禁片午夜丰满| 日韩大码丰满熟妇| 国产精品久久久久久人妻精品电影| 久久久久久大精品| 男女做爰动态图高潮gif福利片 | 老熟妇仑乱视频hdxx| 亚洲国产高清在线一区二区三 | 欧美国产日韩亚洲一区| 欧美一级毛片孕妇| 91麻豆av在线| 成年女人毛片免费观看观看9| 黄色片一级片一级黄色片| 国产国语露脸激情在线看| 在线观看免费午夜福利视频| 国产av又大| av网站免费在线观看视频| 国产精品久久视频播放| 久久久久久久久久久久大奶| 亚洲七黄色美女视频| 欧美激情高清一区二区三区| 一个人免费在线观看的高清视频| 国产精品二区激情视频| 精品人妻在线不人妻| 国产精品久久久久久亚洲av鲁大| 国产欧美日韩一区二区三区在线| 成人av一区二区三区在线看| 天堂影院成人在线观看| av片东京热男人的天堂| 两性夫妻黄色片| 这个男人来自地球电影免费观看| 国产精品久久视频播放| 在线观看免费日韩欧美大片| 制服诱惑二区| 99香蕉大伊视频| 91国产中文字幕| 好男人在线观看高清免费视频 | 一个人观看的视频www高清免费观看 | 精品国内亚洲2022精品成人| 亚洲精品av麻豆狂野| 日日摸夜夜添夜夜添小说| 久久青草综合色| 久久影院123| 久久人人爽av亚洲精品天堂| 久久人妻av系列| 成人精品一区二区免费| 亚洲专区字幕在线| 国产精品98久久久久久宅男小说| 亚洲色图av天堂| 欧美精品啪啪一区二区三区| 久久久久国产精品人妻aⅴ院| 亚洲国产精品合色在线| 又黄又爽又免费观看的视频| 国产精品国产高清国产av| 在线十欧美十亚洲十日本专区| 在线十欧美十亚洲十日本专区| 搞女人的毛片| 久久久久国产精品人妻aⅴ院| 国产精品亚洲一级av第二区| 亚洲欧美激情在线| 一二三四在线观看免费中文在| 亚洲欧美日韩另类电影网站| 精品国产亚洲在线| 欧美亚洲日本最大视频资源| 黄色 视频免费看| 涩涩av久久男人的天堂| 男人舔女人下体高潮全视频| 日韩欧美一区视频在线观看| 午夜福利一区二区在线看| 欧美黄色片欧美黄色片| 在线免费观看的www视频| 国产精品二区激情视频| 久久精品人人爽人人爽视色| 久久中文字幕一级| 日日干狠狠操夜夜爽| 亚洲国产欧美一区二区综合| www.www免费av| 亚洲色图 男人天堂 中文字幕| 亚洲免费av在线视频| 校园春色视频在线观看| 久久伊人香网站| 亚洲精品国产色婷婷电影| 黄片播放在线免费| 亚洲中文日韩欧美视频| 色老头精品视频在线观看| 国产精品98久久久久久宅男小说| 女同久久另类99精品国产91| 老汉色∧v一级毛片| 亚洲精品在线观看二区| 在线观看免费视频网站a站| 国产精品久久久人人做人人爽| 天堂动漫精品| 国产一区二区在线av高清观看| 亚洲九九香蕉| a级毛片在线看网站| 禁无遮挡网站| 精品国产一区二区久久| 欧美黄色淫秽网站| 99久久综合精品五月天人人| 亚洲欧美日韩高清在线视频| 91老司机精品| 中文字幕高清在线视频| 久久久久国产精品人妻aⅴ院| 亚洲中文字幕一区二区三区有码在线看 | 午夜成年电影在线免费观看| 黄片播放在线免费| 精品国产国语对白av| 亚洲最大成人中文| 999久久久精品免费观看国产| 伊人久久大香线蕉亚洲五| 美女大奶头视频| 久久精品国产清高在天天线| 欧美日韩中文字幕国产精品一区二区三区 | 99国产精品免费福利视频| 极品教师在线免费播放| 18禁裸乳无遮挡免费网站照片 | 叶爱在线成人免费视频播放| 日本 欧美在线| 真人一进一出gif抽搐免费| 国产区一区二久久| 久久午夜综合久久蜜桃| 看片在线看免费视频| 国产精品国产高清国产av| 欧美中文综合在线视频| 亚洲精品国产色婷婷电影| 一级毛片女人18水好多| 国产伦一二天堂av在线观看| 日韩中文字幕欧美一区二区| 亚洲伊人色综图| 两个人免费观看高清视频| 亚洲精品粉嫩美女一区| 免费人成视频x8x8入口观看| av福利片在线| 精品午夜福利视频在线观看一区| 黄片播放在线免费| 好看av亚洲va欧美ⅴa在| 亚洲人成网站在线播放欧美日韩| 婷婷精品国产亚洲av在线| 国产欧美日韩一区二区三| 成在线人永久免费视频| 午夜福利视频1000在线观看 | 悠悠久久av| 男人舔女人下体高潮全视频| 亚洲久久久国产精品| 91成年电影在线观看| 色精品久久人妻99蜜桃| 操美女的视频在线观看| 久久人人爽av亚洲精品天堂| 美国免费a级毛片| 夜夜看夜夜爽夜夜摸| 天天躁狠狠躁夜夜躁狠狠躁| 黄色视频不卡| 男女下面插进去视频免费观看| 亚洲成av人片免费观看| 一卡2卡三卡四卡精品乱码亚洲| 人妻丰满熟妇av一区二区三区| 不卡av一区二区三区| 麻豆久久精品国产亚洲av| 国产精品久久久av美女十八| 中文字幕人妻丝袜一区二区| 两个人视频免费观看高清| 午夜精品久久久久久毛片777| 久久久久国产一级毛片高清牌| 欧美最黄视频在线播放免费| 国语自产精品视频在线第100页| 嫩草影视91久久| 国产私拍福利视频在线观看| 黄频高清免费视频| 别揉我奶头~嗯~啊~动态视频| 国产单亲对白刺激| 一级毛片精品| 久久香蕉精品热| 无遮挡黄片免费观看| 日本精品一区二区三区蜜桃| 黄频高清免费视频| 午夜老司机福利片| 我的亚洲天堂| 变态另类成人亚洲欧美熟女 | 在线观看免费午夜福利视频| 亚洲精品国产一区二区精华液| 亚洲中文日韩欧美视频| 一区二区三区激情视频| 亚洲美女黄片视频| 日本精品一区二区三区蜜桃| 中国美女看黄片| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩高清在线视频| 亚洲专区国产一区二区| 国产三级在线视频| 亚洲中文av在线| 大香蕉久久成人网| 大码成人一级视频| 50天的宝宝边吃奶边哭怎么回事| 欧美不卡视频在线免费观看 | 人妻久久中文字幕网| 成人精品一区二区免费| 亚洲精品中文字幕在线视频| 亚洲成人国产一区在线观看| 99国产精品一区二区蜜桃av| bbb黄色大片| 日韩欧美国产在线观看| 色老头精品视频在线观看| 村上凉子中文字幕在线| 久久久国产精品麻豆| 日韩大码丰满熟妇| 女人被狂操c到高潮| 久久精品国产综合久久久| 黄色 视频免费看| 久热这里只有精品99| 高清黄色对白视频在线免费看| 操出白浆在线播放| 免费观看精品视频网站| 国产精品亚洲一级av第二区| 丁香欧美五月| videosex国产| tocl精华| 国内久久婷婷六月综合欲色啪| 女人爽到高潮嗷嗷叫在线视频| 老熟妇仑乱视频hdxx| 男女床上黄色一级片免费看| a在线观看视频网站| 国产精品久久电影中文字幕| 99国产精品一区二区三区| 人人妻人人澡欧美一区二区 | 日本三级黄在线观看| 欧美日本视频| 麻豆久久精品国产亚洲av| 欧美黑人欧美精品刺激| 老鸭窝网址在线观看| 欧美另类亚洲清纯唯美| 无限看片的www在线观看| 黑人巨大精品欧美一区二区蜜桃| 老汉色av国产亚洲站长工具| 中亚洲国语对白在线视频| 午夜福利成人在线免费观看| 日日爽夜夜爽网站| 夜夜看夜夜爽夜夜摸| 一进一出好大好爽视频| 搡老熟女国产l中国老女人| 亚洲自偷自拍图片 自拍| 久久久国产欧美日韩av| 丝袜美腿诱惑在线| 久久这里只有精品19| 黄色毛片三级朝国网站| 久久久久久免费高清国产稀缺| 一a级毛片在线观看| 亚洲七黄色美女视频| 精品午夜福利视频在线观看一区| 国产精品亚洲美女久久久| 欧美一区二区精品小视频在线| 亚洲精品国产精品久久久不卡| av福利片在线| 99国产精品99久久久久| 18禁观看日本| 欧美黄色片欧美黄色片| 青草久久国产| 国产精品永久免费网站| 激情在线观看视频在线高清| 男女下面进入的视频免费午夜 | 日韩 欧美 亚洲 中文字幕| 欧美日韩亚洲综合一区二区三区_| 久久久精品国产亚洲av高清涩受| 日日夜夜操网爽| 激情视频va一区二区三区| 黄片小视频在线播放| 69av精品久久久久久| 性欧美人与动物交配| 99国产精品一区二区三区| 久久狼人影院| 色播亚洲综合网| 久久久久精品国产欧美久久久| 97人妻天天添夜夜摸| 婷婷六月久久综合丁香| 日韩大码丰满熟妇| 久久国产精品人妻蜜桃| 麻豆久久精品国产亚洲av| 亚洲精品美女久久久久99蜜臀| 一级作爱视频免费观看| 看片在线看免费视频| 国产三级在线视频| 日本a在线网址| 国产精品久久电影中文字幕| 97人妻天天添夜夜摸| 久久天堂一区二区三区四区| 高清毛片免费观看视频网站| 久久国产精品人妻蜜桃| 国产欧美日韩一区二区三区在线| 中文字幕人妻丝袜一区二区| 国产熟女午夜一区二区三区| 久久人妻av系列| 亚洲国产高清在线一区二区三 | 黄色毛片三级朝国网站| 久久久久久人人人人人| 亚洲精品美女久久av网站| 两性夫妻黄色片| 一级毛片女人18水好多| 女人被躁到高潮嗷嗷叫费观| 亚洲熟妇中文字幕五十中出| 午夜福利视频1000在线观看 | 亚洲国产看品久久| 亚洲国产欧美一区二区综合| 免费久久久久久久精品成人欧美视频| 女性被躁到高潮视频| 国产xxxxx性猛交| 日日干狠狠操夜夜爽| 婷婷丁香在线五月| 日韩精品中文字幕看吧| 亚洲成人精品中文字幕电影| 日本a在线网址| 日韩欧美国产在线观看| 午夜视频精品福利| 国产伦人伦偷精品视频| 欧美中文综合在线视频| 又紧又爽又黄一区二区| 国产私拍福利视频在线观看| 禁无遮挡网站| 精品一区二区三区av网在线观看| 在线观看免费视频日本深夜| 少妇被粗大的猛进出69影院| 日本 欧美在线| 伦理电影免费视频| 九色亚洲精品在线播放| 1024香蕉在线观看| 一边摸一边抽搐一进一小说| 熟女少妇亚洲综合色aaa.| 久久精品亚洲熟妇少妇任你| 啦啦啦免费观看视频1| 久久久久久久精品吃奶| 亚洲avbb在线观看| 在线观看66精品国产| 亚洲av美国av| 亚洲色图 男人天堂 中文字幕| 久久久久久久久免费视频了| 激情视频va一区二区三区| 天堂√8在线中文| 人人妻人人澡人人看| 女人爽到高潮嗷嗷叫在线视频| 欧美av亚洲av综合av国产av| 十八禁人妻一区二区| 日本三级黄在线观看| 纯流量卡能插随身wifi吗| 国内毛片毛片毛片毛片毛片| 国产97色在线日韩免费| 午夜激情av网站| 午夜福利,免费看| 午夜精品久久久久久毛片777| 无限看片的www在线观看| 男女做爰动态图高潮gif福利片 | 免费久久久久久久精品成人欧美视频| 精品少妇一区二区三区视频日本电影| 在线天堂中文资源库| 精品无人区乱码1区二区| 亚洲av五月六月丁香网| 精品人妻在线不人妻| 免费在线观看黄色视频的| 黑人操中国人逼视频| 少妇被粗大的猛进出69影院| 日韩有码中文字幕| 色老头精品视频在线观看| 美女高潮喷水抽搐中文字幕| 精品无人区乱码1区二区| 色婷婷久久久亚洲欧美| 99热只有精品国产| 亚洲欧美激情综合另类| 国产成+人综合+亚洲专区| 免费看a级黄色片| 十八禁网站免费在线| 日韩欧美三级三区| 长腿黑丝高跟| 精品午夜福利视频在线观看一区| 国产精华一区二区三区| 高清在线国产一区| 夜夜看夜夜爽夜夜摸| 国产一区二区激情短视频| 大码成人一级视频| 久久久久久免费高清国产稀缺| 嫩草影院精品99| 正在播放国产对白刺激| 自线自在国产av| 老鸭窝网址在线观看| 丁香六月欧美| 久久国产乱子伦精品免费另类| 日本 欧美在线| 精品久久久久久久人妻蜜臀av | 性色av乱码一区二区三区2| 正在播放国产对白刺激| www.自偷自拍.com| 夜夜爽天天搞| 免费在线观看日本一区| 巨乳人妻的诱惑在线观看| 精品欧美国产一区二区三| 一本大道久久a久久精品| 亚洲男人天堂网一区| 性欧美人与动物交配| 亚洲成人久久性| 亚洲aⅴ乱码一区二区在线播放 | 极品教师在线免费播放| 九色国产91popny在线| 欧美av亚洲av综合av国产av| 香蕉国产在线看| 欧美日韩瑟瑟在线播放| 国产成年人精品一区二区| 久久草成人影院| 一进一出抽搐gif免费好疼| 免费观看人在逋| 久久午夜综合久久蜜桃| 色在线成人网| 男人的好看免费观看在线视频 | 满18在线观看网站| 中文字幕高清在线视频| 国产主播在线观看一区二区| 国产国语露脸激情在线看| 侵犯人妻中文字幕一二三四区| 露出奶头的视频| 久久人妻av系列| 亚洲自拍偷在线| 久久久国产成人免费| 9热在线视频观看99| 美女高潮到喷水免费观看| 欧美国产日韩亚洲一区| 嫩草影视91久久| 在线观看午夜福利视频| 日本五十路高清| 久久久久久国产a免费观看| 国内久久婷婷六月综合欲色啪| 人人妻,人人澡人人爽秒播| 午夜福利视频1000在线观看 | 丝袜美腿诱惑在线| 我的亚洲天堂| 亚洲片人在线观看| 亚洲欧美激情综合另类| 亚洲五月色婷婷综合| 欧美日韩乱码在线| 麻豆一二三区av精品| 免费av毛片视频| 国产区一区二久久| 老司机靠b影院| 久久精品成人免费网站| av电影中文网址| 天堂动漫精品| 日韩欧美在线二视频| 成人国产一区最新在线观看| 高清毛片免费观看视频网站| 757午夜福利合集在线观看| 亚洲中文av在线| 两个人看的免费小视频| 啦啦啦免费观看视频1| 国产国语露脸激情在线看| 日韩中文字幕欧美一区二区| 久久久久久久精品吃奶| netflix在线观看网站| 日韩三级视频一区二区三区| www.熟女人妻精品国产| 日本欧美视频一区| 人人妻人人澡人人看| 欧美日韩黄片免| a在线观看视频网站| 国产成+人综合+亚洲专区| 国产一区二区激情短视频| 高清在线国产一区| 日本欧美视频一区| 久久久久久亚洲精品国产蜜桃av| 男人舔女人的私密视频| 精品免费久久久久久久清纯| 久久 成人 亚洲| 国产欧美日韩一区二区三| 狂野欧美激情性xxxx| 18禁观看日本| 成年人黄色毛片网站| 老司机深夜福利视频在线观看| 一区福利在线观看| 欧美丝袜亚洲另类 | 两个人看的免费小视频| 男女做爰动态图高潮gif福利片 | 9191精品国产免费久久| 久久中文看片网| 亚洲精品国产一区二区精华液| 涩涩av久久男人的天堂| 精品国产一区二区久久| 女人被躁到高潮嗷嗷叫费观| 91国产中文字幕| 欧美精品啪啪一区二区三区| 欧美日本中文国产一区发布| 日本vs欧美在线观看视频| 男人舔女人的私密视频| 亚洲一卡2卡3卡4卡5卡精品中文| 成人特级黄色片久久久久久久| 亚洲五月天丁香| 国产精品国产高清国产av| 免费女性裸体啪啪无遮挡网站| 成人欧美大片| 亚洲熟妇中文字幕五十中出| 老司机福利观看| 人人妻人人澡欧美一区二区 | 亚洲国产高清在线一区二区三 | 亚洲成av片中文字幕在线观看| 亚洲第一电影网av| 午夜福利欧美成人| 久久精品亚洲精品国产色婷小说| 久久久精品欧美日韩精品| 免费在线观看日本一区| 99精品欧美一区二区三区四区| 国内久久婷婷六月综合欲色啪| 国产精品香港三级国产av潘金莲| 欧美中文日本在线观看视频| 女人高潮潮喷娇喘18禁视频| 免费在线观看亚洲国产| 久久久久久人人人人人| 麻豆国产av国片精品| 动漫黄色视频在线观看| 久久天躁狠狠躁夜夜2o2o| 9热在线视频观看99| 一个人观看的视频www高清免费观看 | 色综合站精品国产| 国产片内射在线| 男女做爰动态图高潮gif福利片 | 激情在线观看视频在线高清| 国产黄a三级三级三级人| 亚洲色图综合在线观看| 日韩三级视频一区二区三区| 久久青草综合色| 免费高清视频大片| 精品国内亚洲2022精品成人| 亚洲久久久国产精品| 我的亚洲天堂| 午夜福利,免费看| 我的亚洲天堂| 亚洲精品美女久久av网站| 国产精品电影一区二区三区| 亚洲精品美女久久av网站| 丁香六月欧美| АⅤ资源中文在线天堂| 国产精品久久电影中文字幕| 国产精品香港三级国产av潘金莲| 国产激情久久老熟女| 亚洲国产看品久久| svipshipincom国产片| 亚洲国产看品久久| 日本三级黄在线观看| 久久天堂一区二区三区四区| 国产精品 欧美亚洲| 少妇被粗大的猛进出69影院| 亚洲男人的天堂狠狠| 精品国产美女av久久久久小说| 亚洲第一电影网av| 久久精品国产亚洲av香蕉五月| 午夜成年电影在线免费观看| 精品一品国产午夜福利视频| 人妻久久中文字幕网| 日韩精品免费视频一区二区三区| 成熟少妇高潮喷水视频| 久热这里只有精品99| 高清在线国产一区| 精品乱码久久久久久99久播| 亚洲在线自拍视频| 亚洲av成人av| 看免费av毛片| 啦啦啦 在线观看视频| 窝窝影院91人妻| 亚洲熟妇熟女久久| 在线国产一区二区在线| 国产av精品麻豆| 亚洲av五月六月丁香网| 久久久久国内视频| 国产亚洲精品久久久久久毛片| 禁无遮挡网站| 亚洲精品国产区一区二| 精品熟女少妇八av免费久了| 午夜精品国产一区二区电影| 亚洲人成伊人成综合网2020| av中文乱码字幕在线| www国产在线视频色| 99re在线观看精品视频| 丰满人妻熟妇乱又伦精品不卡| 国产免费av片在线观看野外av| 国产人伦9x9x在线观看| 国产av一区二区精品久久| 精品第一国产精品| 国产一区二区三区综合在线观看| 波多野结衣巨乳人妻| 国产精品av久久久久免费| 久久精品亚洲精品国产色婷小说| 亚洲七黄色美女视频| 国产乱人伦免费视频| 成人手机av| 精品电影一区二区在线| 操美女的视频在线观看| 巨乳人妻的诱惑在线观看| 伦理电影免费视频| 岛国视频午夜一区免费看| 日日爽夜夜爽网站| 制服丝袜大香蕉在线| 欧美不卡视频在线免费观看 | 激情视频va一区二区三区| 日本一区二区免费在线视频| 亚洲美女黄片视频| 久久伊人香网站| 久久精品影院6| 成人永久免费在线观看视频|