• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    γ-Ray-Radiation-Scissioned Chitosan as a Gene Carrier and Its Improved in vitro Gene Transfection Performance

    2017-05-18 09:31:25FuxingLinKunZengWenxiuYngMozhenWngJielinRongJunXieYuZhoXuewuGe
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年2期

    Fu-xing Lin,Kun Zeng,Wen-xiu Yng,Mo-zhen Wng?,Jie-lin Rong,Jun Xie,Yu Zho?, Xue-wu Ge

    a.CAS Key Lab oratory of Soft Matter Chemistry,Department of Polymer Science and Engineering, University of Science and Technology of China,Hefei 230026,China

    b.Department of Plastic Surgery,First Affiliated Hospital of Anhui Medical University,Hefei 230032, China

    γ-Ray-Radiation-Scissioned Chitosan as a Gene Carrier and Its Improved in vitro Gene Transfection Performance

    Fu-xing Lina,Kun Zenga,Wen-xiu Yanga,Mo-zhen Wanga?,Jie-lin Rongb,Juan Xieb,Yu Zhaob?, Xue-wu Gea

    a.CAS Key Lab oratory of Soft Matter Chemistry,Department of Polymer Science and Engineering, University of Science and Technology of China,Hefei 230026,China

    b.Department of Plastic Surgery,First Affiliated Hospital of Anhui Medical University,Hefei 230032, China

    (Dated:Received on September 23,2016;Accepted on October 17,2016)

    Chitosan(CS)is expected to be an ideal gene carrier for its high biosafety.In this work, CS with low molecular weight were prepared through the γ-ray radiation on the acetic acid solution of CS.The CS chains were scissioned under the γ-ray radiation,and the molecular weight(MW)of CS decreased with the absorbed dose.When the absorbed dose was above 30 kGy,the molecular weight of CS decreased about an order of magnitude.The γ-ray-radiation-scissioned CS can effectively bind with plasmid(pEGFP)through complex coacervation method,forming pEGFP/γ-ray-radiation-scissioned CS complex particles with a size of 200-300 nm.The complex particles have good stability and little cytotoxicity. The in v itro gene transfection efficiencies of the pEGFP/γ-ray-radiation-scissioned CS complex particles were investigated by fluorescence microscope and flow cytometry.The results showed that the gene vectors using γ-ray-radiation-scissioned CS as the carrier will possess better gene transfection efficiency than those using natural high-MW CS as the carrier.The higher the absorbed dose,the smaller the MW of CS and the better transfection efficiency of the corresponding gene vector.This work provides a green and simple method on the preparation of CS-based gene vectors with high efficiency and biosafety.

    Chitosan,Biocompatibility,Radiation scission,Gene transfection

    I.INTRODUCTION

    Nowadays,gene therapy can be considered as an efficient and minimally invasive medical treatment method,especially for diseases caused by genetic defects[1-9].Since it was presented in 1967,various techniques have been extensively studied to introduce foreign DNA into mammalian cells[10-15].The gene delivery by using a viral or non-viral gene carrier currently seems to be one of the best methods for gene transportation[16,17],although there are many challenges during the gene transfer process,such as serum aggregation,unspecific cellular uptake,and degradation by endogenous enzymes[18,19].Compared with viral carriers,non-viral carriers are more hopeful due to the biosafety reason[20,21].Cationic lipsome and polyethylenimine(PEI)have been tried to replace the viral carriers[22].However,their cytotoxicity and poor biocompatibility still produce a risk to throw patients into a new danger[23,24].

    Chitosan(CS),which is obtained by the deacetylation of the naturally-existing chitin,has been reported to be non-toxic and biocompatible both in animals and humans,and biodegradable in vivo[25-28].CS can be positively charged in acidic condition,and apt to coacervate with negatively charged plasmid.The formed CS/plasmid complex particles can availably penetrate the cell membrance[29],which means CS can carry plasmid easily and safely to the cytoplasm,and be degraded naturally after the gene therapy[30].However, scientists have long been struggling to solve the problem that the gene transfection efficiency of CS-based vectors is rather low compared to other vectors with relatively high toxicity[31-38].The molecular weight (MW)of CS is one of the important factors affecting the gene transfection efficiency of CS/plasmid complex. The CS produced from chitin generally has a MW of several 106kDa.The high MW makes CS hard to be dissolved in water at neutral pH and brings much chain entanglemant,resulting in the dissociation problems,slow degradation in vivo,and finally,the risk of accumulation in the tissues over long period of administration[39-41].K¨oping-H¨ogg?ard et al.reported that CS oligomer(MW<5 kDa)has higher transfection efficiency than CS with high MW owing to the better ability to release plasmid DNA from the complex particles[42].Buschmann et al.also reported the degradation of chitosan through nitrous acid method[40].Based on the investigations on the influence of pH,degree of deacetylation,serum,and other factors on the transfection efficiency of the degraded CS,they declared the better performance of CS with low MW in gene transfection[43,44].However,the chemical degradation process of CS involves complex chemical agents and conditions[45,46]so that the obtained low-MW CS needs to be separated and purifed to ensure its biosafety.γ-Ray can be used to scission CS molecular chains to get high-purity low-MW CS,which is easy to operate and has little influence on the structure of CS[47,48]. The γ-ray-radiation-scissioned CS has been extensively studied to develop antioxidants,antimicrobials,and absorbents[49-51],but few report on the application as gene vectors.On the other hand,high-MW CS can provide better extracellular DNA protection effect than low-MW CS[32].Thus,an optimum MW should be achieved for CS in order to obtain high levels of gene transfection.

    In this work,the commercial CS was firstly irradiated by γ-ray in an acetic acid solution.Then pEGFP was directly added into the irradiated solution,and coacervated with the γ-ray-radiation-scissioned CS to form pEGFP/CS complex particles.The MW and cell toxicity of CS irradiated at different absorbed dose were investigated.The in vitro gene transfection efficiency of the pEGFP/γ-ray-radiation-scissioned CS complex particles was also investigated by fluorescence microscope and flow cytometry.

    II.MATERIALS AND METHODS

    A.Reagents and Materials

    Analytical reagents including acetic acid,ethanol, NaOH,and sodium sulfate were obtained from Sinopharm Chemical Reagent Co.,Ltd.Chitosan (Mw≈3.0×105,91%deacetylation,biological reagent) and ethylene diamine tetraacetic acid(EDTA)were provided by Aladdin Chemistry Co.,Ltd.3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT,>98%)was supplied by Beyotime Institute of Biotechnology.Agarose,ethidium bromide(EB),and polyethylenimine(PEI,branched,~104Da)were purchased from Sigma-Aldrich Co.,LLC.Deionized water was used in all the experiments.

    Enhanced green fluorescent protein plasmid (pEGFP)and human cervix epithelial(Hela)cells were provided by the Laboratory of Immunology, Anhui Medical University,Hefei,China.Hela cells were cultured in complete Dulbecco’s Modified Eagle’s Medium(DMEM,Hyclone),which contained 10% fetal bovine serum(FBS)(Invitrogen,USA)and 1% penicillin-streptomycin inside(Invitrogen,USA),at 37°C under an air atmosphere containing 5%CO2.

    B.Preparation ofγ-ray-radiation-scissioned chitosan

    First,10 mg of CS powder was dissolved in 10 mL of 0.1 mol/L acetic acid aqueous solution.After being purged with nitrogen for 10 min,the system was then irradiated by60Co γ-ray(2×1014Bq,located in University of Science and Technology of China)at a dose rate of 83 Gy/min and different total absorbed dose. The irradiated CS sample was denoted as CS-X,X is the value of the total absorbed dose with a unit of kGy.

    C.Preparation of pEGFP/CS-Xcomplex particles

    pEGFP/CS-X complex particles were prepared using complex coacervation method[29,37].Firstly,the pH of the irradiated acetic acid solution of CS-X at a concentration of 1 mg/mL was adjusted to 5.5 with the NaOH solution(0.25 mol/L).pEGFP was dissolved in sodium sulfate solution(50 mmol/L)at a concentration of 76μg/mL.Then,the irradiated CS-X solution and pEGFP solution were vortex mixed at a certain volume ratio for 30 s.After that,the total volume of the mixture was diluted to 100μL with DMEM,and stood for 30 min.The N/P ratio(the mole ratio of the amine groups in CS-based materials to those of the phosphate ones in pEGFP)in the mixture was set as 20 according to the following equation:

    where c and V stand for the concentration and the volume of the CS solution respectively.DD is the deacetylation degree of CS.The number of 205 and 163 are the molecular weights of the structure unit of chitin and deacetylated chitin respectively.mpEGFPis the weight of pEGFP.The number of 660 is the average MW of a base pair of double-stranded DNA[52].

    D.Characterizations

    FT-IR spectra of irradiated CS were measured on a Bruker VECTOR-22 IR spectrometer using KBr pellets in the range from 4000 cm-1to 400 cm-1.

    The element analysis of the irradiated CS was conducted on a Thermo ESCALAB 250.

    The MW of the irradiated CS was measured by viscometric method using Ubbelohde viscometer at 25±0.1°C[43].The viscosity-average molecular weight of irradiated CS is calculated by the following equation:

    where,[η]is the intrinsic viscosity,obtained by the extrapolation mapping of ηsp/c to c and lnηr/c to c.ηspis the specific viscosity,ηris the relative viscosity,c is the concentration of the solution.K=1.8×10-3cm3/g and α=0.93,for CS[53].

    The sizes and zeta potentials of pEGFP/CS-X complex particles were measured on Zetasizer Nano(NANO ZS90,Malvern Inst.Ltd.Malvern,UK).

    E.Cell toxicity assay

    The samples’cytotoxicity against Hela cells were evaluated by MTT assay.Hela cells were cultured in a 96-well plate with 5×103cells per well,and grew about 15 h.Then,the cells were incubated in 100μL of complete DMEM containing samples with different concentrations at 37°C in a 5%CO2atmosphere for 48 h.Fresh pure complete DMEM was used as the control.After 20μL of 5 mg/mL MTT solution was added in,the cells were continued to be incubated for 4 h.Finally,the medium in each well was then replaced with 150μL of dimethyl sulfoxide.The plates were shaken for 10 min to ensure formazan crystals to be dissolved completely.The absorbance at a wavelength of 490 nm was recorded in a microplate reader (BioTek Instruments,Inc.,Winooski,VT,USA).The cell viability is calculated based on Eq.(3):

    Here,Asampleand Acontrolrepresent the absorbance of the sample solution and the control solution,respectively.

    F.Nuclease protection assay

    The stability of pEGFP/CS complex particles was evaluated by agarose gel electrophoresis.pEGFP/CS complex particles containing 2μg of pEGFP were firstly incubated in DNase I(130 U/mL,0.65 U/μg DNA)at 37°C for 10 min.2μL of EDTA solution(0.5 mol/L) was added to stop the digestion effect of DNase I.EB (10μg/mL)was dissolved in the hot agarose solution (1%,w/v).The system was cooled to room temperature to form an agarose gel.The agarose gel was put into a TAE buffer.The samples were injected in the gel for the electrophoresis analysis at 100 V for 30 min.Finally, the gel was observed under UV light.

    G.I n vitrogene transfection of pEGFP/CS-Xcomplex particles

    Hela cells were seeded onto 96-well culture plates with 5×103cells per well.Cells were incubated in complete DMEM medium(200μL/well)at 37°C for 20 h in a humidified 5%CO2incubator(Dan Ding Shanghai International Trade Co.,Ltd.,Shanghai,China).The medium was then replaced by 100μL/well of serumfree medium containing pEGFP/CS-X or pEGFP/PEI complex particles.After that,cells were continued to be incubated for 4 h at 37°C.The mediums were all replaced with complete DMEM(200μL/well)for further transfection.100μL of fresh serum-free DMEM was used as the blank control.After 72 h’s incubation, the complete medium in each well was replaced by PBS solution(10%,100μL/well).Then pEGFP expression was qualitatively evaluated by fluorescence microscope (Olympus,Tokyo,Japan),and quantitatively measured by flow cytometer(BD FACSVerse,BD,Franklin Lakes, NJ,USA).

    FIG.1 The chemical structure of CS and the digital photos of the acetate acid solution of CS before(CS-0)and after γray radiation at an absorbed dose of 10 kGy(CS-10),30 kGy (CS-30),and 50 kGy(CS-50).

    III.RESULTS AND DISCUSSION

    A.Theγ-ray radiation effect on CS in acetate acid solution

    Figure 1 shows the change in the appearance of the acetate acid solution of CS after γ-ray radiation at different absorbed dose.It is clearly seen that the colors of the CS solutions change from colorless to yellow after γ-ray radiation,and darken with the increase of the absorbed dose.The result indicates that there are some changes on the chain structure of CS after γ-ray radiation.It is well known that CS is a copolymer consisting of glucosamine and N-acetylglucosamine units linked by β(1-4)glycosidic bonds.When CS was subjected to γ-ray radiation,chain scissions may occur through the breakage of β(1-4)glycosidic bonds.The change in the colour of CS solution during the irradiation process has also been reported in previous literatures[46, 47],which was attributed to the carbonyl and carboxylgroups produced by some oxidations happening during the irradiation process.

    The FT-IR spectra of CS-X are displayed in Fig.2, which are similar to the spectrum of CS-0.But the enhancement on the characteristic absorbance for the stretching vibration of C=O at 1720 cm-1indicates the generation of carbonyl and/or carboxyl groups after γray radiation.

    The element analysis for all CS-X samples listed in Table I can also confirm the breakage of C-N bonds. The molar ratio of N/C of CS has a slight fall after CS was irradiated by γ-ray,and has little dependence on the absorbed dose lower than 50 kGy.This means the content of N element in CS-X could be regarded as a constant,and has little influence on N/P ratio in the formation of pEGFP/CS-X complex particles.

    The change of the MW of CS radiated at different absorbed doses measured by Ubbelohde viscometry is exhibited in Fig.3.It is clearly seen that the MW of CS decreases dramatically with the increase of the absorbed dose,indicating the degradation of CS chains under the γ-ray radiation.When the absorbed dose is above 30 kGy,the MW will decrease about an order of magnitude,i.e.from the original 3.5×105g/mol to 9.0×104g/mol(30 kGy),and 5.0×104g/mol(50 kGy). The changes in MW of the CS-irradiated indicate that CS is a kind of polymer easy to be scissioned by high energy radiation[47,54].

    FIG.2 FT-IR spectra of CS before(CS-0)and after γ-ray radiation at an absorbed dose of 10 kGy(CS-10),30 kGy (CS-30),and 50 kGy(CS-50).

    TABLE I The element analysis and the corresponding molar ratio of N/C in CS-X samples.

    FIG.3 The dependence of the MW of CS on the absorbed dose.

    FIG.4 The cell toxicity of γ-ray-radiation-scissioned CS against Hela cells.

    B.Cell toxicity assays of theγ-ray-radiation-scissioned CS

    Biosafety is a basic requirement for gene transfection vectors.The MTT assays of the γ-ray-radiationscissioned CS have been investigated,and the results are shown in Fig.4.As a comparison,the cell toxicity of a commonly studied synthetic cationic vector, PEI,is also displayed in Fig.4.It is seen that the natural CS(CS-0)shows excellent biosafety since the cell viability in the presence of CS is nearly as high as 100%at a concentration up to 10μg/mL.At a relatively low concentration(0.5μg/mL),all of the γray-radiation-scissioned CS samples also exhibit low cell toxicity.The cell viabilities are 99.9%of CS-10,94.3% of CS-30,and 92.1%of CS-50,respectively,much higher than that of PEI(61.6%).The cell toxicity of the γ-rayradiation-scissioned CS samples increases slightly with their concentration,but the cell viability in the presence of 10μg/mL of each γ-ray-radiation-scissioned CS samples remains above 87.5%,which demonstrates that the γ-ray-radiation-scissioned CS has little hindranceon the growth of Hela cells.The slight increase of the cytotoxicity is probably caused by the carbonyl and carboxyl groups generated under γ-ray radiation of CS[47]. However,under the same conditions,the cell toxicity of PEI rises rapidly with its concentration.When the concentration increases to 1μg/mL,more than a half of the cells die(the cell viability is only 48.2%).When the concentration of PEI increases to 10μg/mL,only 11.9%of the cells survives.These results show the low-MW CS prepared by γ-ray-radiation-scission method still has much higher biosafety than the current promising synthetic PEI gene carrier.

    FIG.5 The size distribution of pEGFP/CS-X complex particles measured by DLS.

    C.Characterization of pEGFP/CS-Xcomplex particles

    The plasmid(pEGFP)and γ-ray-radiation-scissioned CS can form complex particles through the complex coacervation method since the unit structure of CS has little change under γ-ray-radiation.The particle size and size distribution of pEGFP/CS-X complex particles were measured by DLS,as shown in Fig.5 and Table II.It reveals that the size of the pEGFP/CS-X complex particles is about 200-300 nm,which is favorable for the in vivo transportation and endocytosis [54].At the same time,the size of pEGFP/CS-X complex particles reduces slightly with the MW of CS.

    Zeta potentials of pEGFP/CS-X complex particles can be also measured by DLS and listed in Table II.The Zeta potentials of pEGFP/CS-X complex particles are all positive,and a little slight decrease with the MW of CS.This may be related with the lower entanglement degree of low-MW CS chains.Since the complex of pEGFP and CS is driven by the electrostatic attraction, the lower chain entanglement makes less structure units on CS chains be attracted around pEGFP at the same N/P ratio so that the complex particles have a lower positive Zeta potential,as well as a smaller particle size.

    The protection effect of CS-X on the loaded pEGFP was investigated since the stability of the gene vectors during the in vivo circulation is one of the key issues for gene transfection.Figure 6 exhibits gel electrophoresis of pEGFP/CS-X complex particles before and after being digested by DNase I.Figure 6(a)proves that the pEGFP can be combined stably with either natural CS or γ-ray-radiation-scissioned CS since there is no outside bright bands for all pEGFP/CS-X complex particles but the naked pEGFP.After being treated with DNase I,all the naked pEGFP disappears by digestion and no light band of naked pEGFP can be observed (Fig.6(b)).At the same time,no changes happened for all of CS-X groups,indicating that all of the CS-X possess an effective protection effect on the loaded pEGFP.

    TABLE II The average size and Zeta potential of pEGFP/CS-X complex particles.

    FIG.6 Gel electrophoresis of pEGFP/CS-X complex particles before(a)and after(b)being treated with DNase I. 1:pEGFP/CS-0,2:pEGFP/CS-10,3:pEGFP/CS-30, 4:pEGFP/CS-50,5:naked pEGFP.

    D.I n v itr ogene transfection of pEGFP/CS-Xcomplex particles

    The transfection efficiencies of pEGFP/CS-X complex particles were investigated in DMEM with PEI as a positive control and a blank group as a negative control. The results are observed by fluorescence microscope,as shown in Fig.7.

    Under the fluorescence microscope,the blank group shows almost no fluorescence,i.e.there is no trans-fection of pEGFP as so to no expression of EGFP. While green fluorescence can be clearly observed for all pEGFP/CS-X groups,and the intensity of green fluorescence seems much stronger than that for pEGFP/CS-0 group,indicating that using the low-MW CS obtained by γ-ray-radiation-scission method as the gene carrier benefits to achieve higher transfection efficiency.Furthermore,the transfection efficiency will be improved when CS was irradiated at a larger absorbed dose.

    The PEI group shows the highest fluorescence intensity.However,from the white field,it is clearly seen that Hela cells in PEI group are totally different from the other groups.As proven in Fig.4,PEI has much higher cytotoxicity than all of CS-X samples.It will kill a part of cells,and at the same time,make those survivals unhealthy(contraction and distortion).On the other hand,the cells in other groups seem to be plump and healthy.

    The quantitative assay for in v itro gene transfection efficiency was evaluated by flow cytometry,as shown in Fig.8.Fluorescence activated cell sorting (FACS)results are in accord with the results of Fig.7, which demonstrates that the gene vectors using γ-rayradiation-scissioned CS as the carrier will possess better gene transfection efficiency than those using natural high-MW CS as the carrier.The higher the absorbed dose,the smaller the MW of CS and the better transfection efficiency of the corresponding gene vector.

    FIG.7 I n v itro gene transfection of pEGFP/CS-X and pEGFP/PEI complex particles after 48 h.

    IV.CONCLUSION

    In summary,low-MW CS can be prepared through the γ-ray radiation on the acetic solution of CS.The CS chains were scissioned under the γ-ray radiation, and the MW of CS decreased with the absorbed dose. When the absorbed dose was above 30 kGy,the MW decreased about an order of magnitude,i.e.from the original 3.5×105g/mol to 9.0×104g/mol(30 kGy)and 5.0×104g/mol(50 kGy).The cell toxicity of the γray-radiation-scissioned CS increased slightly compared with the original CS,but can still reach a cell viability as high as above 87.5%.The γ-ray-radiation-scissioned CS can be combined with plasmid(pEGFP)through complex coacervation method,forming pEGFP/CS-X complex particles with a size of 200-300 nm.The pEGFP/CS-X complex particles have a good stability and little cytotoxicity.The in v itro gene transfection efficiency of the pEGFP/CS-X complex particles were investigated by fluorescence microscope and flow cytometry.The results showed that the gene vectors using γ-ray-radiation-scissioned CS as the carrier will possess better gene transfection efficiency than those using natural high-MW CS as the carrier.The higher the absorbed dose,the smaller the MW of CS,and the better transfection efficiency of the corresponding gene vector.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.81171829,No.51473152, and No.51573175)and the Fundamental Research Funds for the Central Universities(WK2060200012, WK3450000001).We also thank Prof.Li-hua Yang and Prof.Ye-zi You at the University of Science and Technology of China(USTC)for their kind help in providing experimental reagents and instruments.

    FIG.8 Fluorescence activated cell sorting results of gene transfection of pEGFP/CS-X and pEGFP/PEI complex particles against Hela cells.Blank:without any materials.

    [1]T.Feldman,E.Foster,D.D.Glower,S.Kar,M.J. Rinaldi,P.S.Fail,R.W.Smalling,R.Siegel,G.A. Rose,E.Engeron,C.Loghin,A.Trento,E.R.Skipper, T.Fudge,G.V.Letsou,J.M.Massaro,and L.Mauri, New Engl.J.Med.364,1395(2011).

    [2]S.Gurunathan,D.M.Klinman,and R.A.Seder,Annu. Rev.Immunol.18,927(2000).

    [3]D.W.Hutmacher,Biomaterials 21,2529(2000).

    [4]R.C.Mulligan,Science 260,926(1993).

    [5]S.L.Ginn,I.E.Alexander,M.L.Edelstein,M.R. Abedi,and J.Wixon,J.Gene Med.15,65(2013).

    [6]R.Cheng,F.Feng,F.H.Meng,C.Deng,J.Feijen,and Z.Y.Zhong,J.Controll.Release 152,2(2011).

    [7]J.M.Leiden,Science 285,1215(1999).

    [8]L.Jin,X.Zeng,M.Liu,Y.Deng,and N.Y.He,Theranostics 4,240(2014).

    [9]W.F.Anderson,J.Med.Philos.10,275(1985)

    [10]D.Luo and W.M.Saltzman,Nature Biotechnol.18, 33(2000).

    [11]F.J.Feuerbach and R.G.Crystal,Kidney Int.49,1791 (1996).

    [12]G.S.Pari and Y.Y.Xu,Methods Mol.Biol.245,25 (2004).

    [13]C.Chen and H.Okayama,Mol.Cell.Biol.7,2745 (1987).

    [14]F.L.Graham and A.J.van der Eb,Virology 52,456 (1973).

    [15]H.Luthman and G.Magnusson,Nucleic Acids Res.11, 1295(1983).

    [16]V.P.Torchilin,Nature Rev.4,145(2005).

    [17]T.G.Park,J.H.Jeong,and S.W.Kim,Adv.Drug Deliver.Rev.58,467(2006).

    [18]M.Giacca and S.Zacchigna,J.Controll.Release 161, 377(2012).

    [19]J.D.Hood,M.Bednarski,R.Frausto,S.Guccione,R. A.Reisfeld,R.Xiang,and D.A.Cheresh,Science 296, 2404(2002).

    [20]N.Miller and R.Vile,FASEB J.9,190(1995).

    [21]T.Niidome and L.Huang,Gene Therapy 9,1647 (2002).

    [22]W.T.Godbey,K.K.Wu,and A.G.Mikos,J.Controll. Release 60,149(1999).

    [23]Y.Barenholz,Curr.Opin.Colloid Interface Sci.6,66 (2001).

    [24]M.C.Pedroso de Lima,S.Sim?oes,P.Pires,H.Faneca, and N.D¨uzg¨une?s,Adv.Drug Deliver.Rev.47,277 (2001).

    [25]J.M.Dang and K.W.Leong,Adv.Drug Deliver.Rev. 58,487(2006).

    [26]J.Panyam and V.Labhasetwar,Adv.Drug Deliver. Rev.55,329(2003).

    [27]M.Rinaudo,Prog.Polym.Sci.31,603(2006).

    [28]K.Tomihata and Y.Ikada,Biomaterials 18,567(1997).

    [29]I.A.Khalil,K.Kogure,H.Akita,and H.Harashima, Pharmacol.Rev.58,32(2006)

    [30]N.Poth,V.Seiffart,G.Gross,H.Menzel,and W.Dempwolf,Biomolecules 5,3(2015).

    [31]H.Q.Mao,K.Roy,V.L.Troung-Le,K.A.Janes,K. Y.Lin,Y.Wang,J.T.August,and K.W.Leong,J. Controll.Release 70,399(2001).

    [32]S.Mao,W.Sun,and T.Kissel,Adv.Drug Deliver.Rev. 62,12(2010).

    [33]T.H.Kim,H.L,Jiang,D.Jere,I.K.Park,M.H. Cho,J.W.Nah,Y.J.Choi,T.Akaike,and C.S.Cho, Progress Polym.Sci.32,726(2007).

    [34]A.B.Sieval,M.Thanou,A.F.Kotz′e,J.C.Verhoef, J.Brussee,and H.E.Junginger,Carbohydrate Polym. 36,157(1998).

    [35]T.Kean,S.Roth,and M.Thanou,J.Controll.Release, 103,643(2005).

    [36]Y.Wang,F.X.Lin,Y.Zhao,M.Z.Wang,X.W.Ge, Z.X.Gong,D.D.Bao,and Y.F.Gu,Int.J.Nanomed. 9,4965(2014).

    [37]F.X.Lin,J.L.Rong,M.Z.Wang,D.D.Bao,Y.Wang, Z.X.Gong,Y.F.Gu,Y.Zhao,and X.W.Ge,J.Mater. Chem.B 4,893(2016).

    [38]H.L.Jiang,Y.K.Kim,R.Arote,J.W.Nah,M.H. Cho,Y.J.Choi,T.Akaike,and C.S.Cho,J.Controll. Release 117,273(2007).

    [39]S.Nimesh,M.M.Thibault,M.Lavertu,M.D. Buschmann,Mol.Biotechnol.46,182(2010).

    [40]M.Lavertu,S.M′ethot,N.Tran-Khanh,and M.D. Buschmann,Biomaterials 27,4815(2006).

    [41]M.Dash,F.Chiellini,E.M.Ottenbrite,and E. Chiellini,Prog.Polym.Sci.36,981(2011).

    [42]M.K¨oping-H¨ogg?ard,K.M.V?arum,M.Issa,D. Danielsen,B.E.Christensen,B.T.Stokke,and P.Artursson,Gene Ther.11,1441(2004).

    [43]S.C.Hsu,T.M.Don,and W.Y.Chiu,Polym.Degrad. Stabil.75,73(2002).

    [44]D.de Britto and S.P.Campana-Filho,Polym.Degrad. Stabil.84,353(2004).

    [45]E.N.Fedoseeva,Y.D.Semchikov,and L.A.Smirnova, Polym.Sci.Ser.B 48,295(2006).

    [46]J.C.Cabrera and P.V.Cutsem,Biochem.Eng.J.25, 165(2005).

    [47]B.Kang,Y.D.Dai,H.Q.Zhang,and D.Chen,Polym. Deg.Stab.92,359(2007).

    [48]J.M.Wasikiewic,F.Yoshii,N.Nagasawa,R.A.Wach, and H.Mitomo,Radiat.Phys.Chem.73,287(2005).

    [49]H.A.Abd El-Rehim,D.A.Zahran,N.M.El-Sawy, E.A.Hegazy,and A.M.Elbarbary,Biosci.Biotechnol. Biochem.79,997(2015).

    [50]A.Khan,S.Mehmood,M.Shafiq,T.Yasin,Z.Akhter, and S.Ahmad,Radiat.Phys.Chem.91,138(2013).

    [51]F.I.Abou El Fadl,J.Radioanal.Nuclear Chem.301, 529(2014).

    [52]G.K.McMaster and G.G.Carmichael,Proc.Natl. Acad.Sci.USA 74,4835(1977).

    [53]G.G.Maghami and G.A.Roberts,Macromol.Chem. Phys.189,195(1988).

    [54]X.D.Liu,K.A.Howard,M.D.Dong,M.Andersen, U.L.Rahbek,M.G.Johnsen,O.C.Hansen,F.Besenbacher,and J.Kjems,Biomaterials 28,1280(2007).

    ?Authors to whom correspondence should be addressed.E-mail: pstwmz@ustc.edu.cn,zhaoyuzj@aliyun.com

    一个人观看的视频www高清免费观看| 久久久久九九精品影院| 99精国产麻豆久久婷婷| 毛片女人毛片| 亚洲av.av天堂| 人体艺术视频欧美日本| 午夜精品一区二区三区免费看| 亚洲综合精品二区| 男女那种视频在线观看| 日韩成人av中文字幕在线观看| 亚洲欧美日韩无卡精品| 亚洲av二区三区四区| 日本三级黄在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲av福利一区| 中文天堂在线官网| 久久鲁丝午夜福利片| 亚洲精品第二区| 青青草视频在线视频观看| 亚洲国产av新网站| 成人毛片a级毛片在线播放| 黄色一级大片看看| 久久精品国产亚洲av天美| 国内精品宾馆在线| 精品久久久久久久久亚洲| 黄色一级大片看看| 又爽又黄a免费视频| 亚洲av不卡在线观看| 如何舔出高潮| 国产精品伦人一区二区| 久久精品夜色国产| 日韩免费高清中文字幕av| 午夜免费鲁丝| 精品久久久久久久久av| 亚洲欧美精品专区久久| 久久久久久久久久人人人人人人| 亚洲性久久影院| 国产精品蜜桃在线观看| 毛片女人毛片| av在线播放精品| 国国产精品蜜臀av免费| 久久久久久伊人网av| 国产女主播在线喷水免费视频网站| 精品酒店卫生间| kizo精华| 一级毛片aaaaaa免费看小| 亚洲天堂国产精品一区在线| 少妇熟女欧美另类| 国产一级毛片在线| 亚洲欧美中文字幕日韩二区| 亚洲色图综合在线观看| 国产成人精品婷婷| 又大又黄又爽视频免费| 你懂的网址亚洲精品在线观看| 99re6热这里在线精品视频| 久久久a久久爽久久v久久| 精品人妻熟女av久视频| 一区二区三区乱码不卡18| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲自偷自拍三级| 日本色播在线视频| 日日啪夜夜撸| 日韩人妻高清精品专区| 国产成人精品一,二区| 国产久久久一区二区三区| 国产精品蜜桃在线观看| 亚洲人成网站在线播| 极品教师在线视频| 99热6这里只有精品| 天天躁日日操中文字幕| 男女国产视频网站| 精品久久久久久电影网| 日韩av不卡免费在线播放| 亚洲av中文av极速乱| 亚洲精品乱码久久久久久按摩| 欧美xxⅹ黑人| 免费av观看视频| av黄色大香蕉| 建设人人有责人人尽责人人享有的 | 日本免费在线观看一区| 成人综合一区亚洲| 成人二区视频| 国产美女午夜福利| 99热全是精品| 一区二区三区四区激情视频| 亚洲色图综合在线观看| 久久久久九九精品影院| 嫩草影院新地址| 精品少妇久久久久久888优播| 久久综合国产亚洲精品| 欧美一区二区亚洲| 久久精品综合一区二区三区| 免费观看无遮挡的男女| 嫩草影院新地址| 国产综合精华液| 日韩欧美精品免费久久| 精品久久久久久电影网| 国产一区二区在线观看日韩| 精品人妻视频免费看| 中文天堂在线官网| 亚洲av日韩在线播放| 国产成人精品福利久久| 女人久久www免费人成看片| 成人一区二区视频在线观看| 亚洲成人一二三区av| 少妇猛男粗大的猛烈进出视频 | 免费黄色在线免费观看| videossex国产| 卡戴珊不雅视频在线播放| 午夜亚洲福利在线播放| 久久久久久久午夜电影| 精品午夜福利在线看| 日本午夜av视频| 日日啪夜夜撸| 国产老妇女一区| kizo精华| 男人添女人高潮全过程视频| 乱码一卡2卡4卡精品| 国产精品久久久久久久久免| 好男人在线观看高清免费视频| 王馨瑶露胸无遮挡在线观看| 久久久精品欧美日韩精品| 欧美日韩精品成人综合77777| 成人毛片a级毛片在线播放| 欧美日韩一区二区视频在线观看视频在线 | 简卡轻食公司| 黄色怎么调成土黄色| 国产亚洲午夜精品一区二区久久 | 97热精品久久久久久| 国产视频首页在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产色片| 最后的刺客免费高清国语| 在线观看免费高清a一片| 亚洲精品久久午夜乱码| 久久6这里有精品| 亚洲欧洲日产国产| 五月玫瑰六月丁香| 成人美女网站在线观看视频| 嘟嘟电影网在线观看| 内地一区二区视频在线| 伊人久久国产一区二区| av线在线观看网站| 亚洲精品国产av蜜桃| 免费看av在线观看网站| 丝袜脚勾引网站| 下体分泌物呈黄色| 亚洲最大成人手机在线| 国产精品久久久久久精品电影小说 | 国产成人freesex在线| 熟女av电影| 另类亚洲欧美激情| 成人鲁丝片一二三区免费| 大香蕉97超碰在线| 在现免费观看毛片| 高清av免费在线| 国产精品秋霞免费鲁丝片| 国产av码专区亚洲av| 国产av码专区亚洲av| 日本-黄色视频高清免费观看| 黄色日韩在线| 看十八女毛片水多多多| 欧美激情国产日韩精品一区| 欧美潮喷喷水| 在线观看一区二区三区激情| tube8黄色片| 联通29元200g的流量卡| 欧美一级a爱片免费观看看| 亚洲丝袜综合中文字幕| 欧美三级亚洲精品| 国产精品久久久久久久电影| 国产在线一区二区三区精| 免费看日本二区| 极品少妇高潮喷水抽搐| 亚洲不卡免费看| 国产爽快片一区二区三区| 久久精品国产鲁丝片午夜精品| 国产乱人偷精品视频| 少妇的逼好多水| 在线观看三级黄色| 国产成人精品婷婷| 亚洲av一区综合| 久久97久久精品| 卡戴珊不雅视频在线播放| 日本av手机在线免费观看| 久久精品久久精品一区二区三区| 最后的刺客免费高清国语| 亚洲精品国产色婷婷电影| 有码 亚洲区| 免费观看性生交大片5| 久久97久久精品| 久久久色成人| 女人被狂操c到高潮| av在线老鸭窝| 欧美激情国产日韩精品一区| av天堂中文字幕网| 大话2 男鬼变身卡| 精华霜和精华液先用哪个| 美女国产视频在线观看| 各种免费的搞黄视频| 国产精品精品国产色婷婷| 亚洲精品影视一区二区三区av| 一级毛片我不卡| 精品人妻熟女av久视频| 国产精品麻豆人妻色哟哟久久| 国产探花在线观看一区二区| 亚洲人成网站在线观看播放| 2018国产大陆天天弄谢| 亚洲欧美一区二区三区黑人 | 欧美潮喷喷水| 亚洲成色77777| 国产成人精品久久久久久| 在线观看av片永久免费下载| 亚洲成人中文字幕在线播放| 九九久久精品国产亚洲av麻豆| 欧美性感艳星| 美女内射精品一级片tv| 高清欧美精品videossex| 99久国产av精品国产电影| 午夜激情福利司机影院| 亚洲欧美日韩另类电影网站 | 99久久精品热视频| 国产成人福利小说| 国产精品精品国产色婷婷| 99久国产av精品国产电影| 男人爽女人下面视频在线观看| 国产精品一二三区在线看| 亚洲不卡免费看| 美女被艹到高潮喷水动态| 国产在线男女| av.在线天堂| 街头女战士在线观看网站| 七月丁香在线播放| 深爱激情五月婷婷| 麻豆成人午夜福利视频| 超碰97精品在线观看| 黄色欧美视频在线观看| 国产精品一区二区三区四区免费观看| 肉色欧美久久久久久久蜜桃 | 久久精品国产亚洲网站| 蜜桃久久精品国产亚洲av| 日本黄色片子视频| 日本一本二区三区精品| 国产毛片在线视频| 国产精品一区二区在线观看99| 国产高潮美女av| 国产成人免费观看mmmm| 亚洲综合精品二区| 乱码一卡2卡4卡精品| 久久久久久久久久人人人人人人| 亚洲成人中文字幕在线播放| 国产成年人精品一区二区| av在线播放精品| 久久人人爽人人片av| 夜夜爽夜夜爽视频| 免费大片黄手机在线观看| 欧美精品人与动牲交sv欧美| 我的女老师完整版在线观看| 日韩成人av中文字幕在线观看| 热99国产精品久久久久久7| 性色av一级| 国产免费又黄又爽又色| 国产精品.久久久| freevideosex欧美| av又黄又爽大尺度在线免费看| 我要看日韩黄色一级片| 在线 av 中文字幕| 在线观看人妻少妇| 亚洲av日韩在线播放| 国产一区二区在线观看日韩| 国产一区二区亚洲精品在线观看| 乱系列少妇在线播放| 晚上一个人看的免费电影| 联通29元200g的流量卡| 女人久久www免费人成看片| 欧美亚洲 丝袜 人妻 在线| 又粗又硬又长又爽又黄的视频| 欧美激情在线99| 婷婷色av中文字幕| 一级爰片在线观看| 色网站视频免费| 观看美女的网站| 亚洲精品久久午夜乱码| 日韩免费高清中文字幕av| 新久久久久国产一级毛片| 麻豆成人av视频| 六月丁香七月| 亚洲色图综合在线观看| 日本黄色片子视频| 人人妻人人看人人澡| 日韩av在线免费看完整版不卡| 777米奇影视久久| 日韩 亚洲 欧美在线| 欧美一级a爱片免费观看看| 大陆偷拍与自拍| av播播在线观看一区| 亚洲内射少妇av| 久久6这里有精品| 日韩 亚洲 欧美在线| 成人亚洲精品av一区二区| 国产探花在线观看一区二区| 成人免费观看视频高清| 国产精品偷伦视频观看了| 91久久精品国产一区二区成人| 欧美日韩亚洲高清精品| 国产男女超爽视频在线观看| 亚洲国产精品专区欧美| 一个人观看的视频www高清免费观看| 高清毛片免费看| 人人妻人人澡人人爽人人夜夜| 亚洲怡红院男人天堂| 六月丁香七月| 久久久久久久亚洲中文字幕| 看十八女毛片水多多多| 国产黄色免费在线视频| 亚洲欧洲日产国产| 最近手机中文字幕大全| 亚洲不卡免费看| 黄色配什么色好看| av播播在线观看一区| 激情 狠狠 欧美| 好男人在线观看高清免费视频| 久久久a久久爽久久v久久| 欧美人与善性xxx| 精品人妻偷拍中文字幕| 日韩av免费高清视频| 简卡轻食公司| 看黄色毛片网站| 蜜臀久久99精品久久宅男| 97在线视频观看| 午夜爱爱视频在线播放| 久久精品国产亚洲av天美| 国产精品一区二区三区四区免费观看| 亚洲激情五月婷婷啪啪| 舔av片在线| 蜜桃久久精品国产亚洲av| 久久久亚洲精品成人影院| 欧美zozozo另类| 日韩视频在线欧美| 久久久久久九九精品二区国产| a级毛片免费高清观看在线播放| 99热6这里只有精品| 波多野结衣巨乳人妻| 国产精品国产三级专区第一集| 久久韩国三级中文字幕| av线在线观看网站| 看免费成人av毛片| 又粗又硬又长又爽又黄的视频| 美女视频免费永久观看网站| 亚洲欧美日韩东京热| 亚洲伊人久久精品综合| 国产精品99久久99久久久不卡 | 在线精品无人区一区二区三 | 波野结衣二区三区在线| 国产精品秋霞免费鲁丝片| 欧美成人a在线观看| 直男gayav资源| 国产成人午夜福利电影在线观看| 全区人妻精品视频| 免费av毛片视频| 毛片一级片免费看久久久久| 如何舔出高潮| 搞女人的毛片| 免费观看在线日韩| 一级毛片 在线播放| 大片免费播放器 马上看| 日韩三级伦理在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品一区二区在线观看99| 成人毛片a级毛片在线播放| 国产亚洲5aaaaa淫片| 日韩强制内射视频| 国产v大片淫在线免费观看| 大香蕉久久网| 我的女老师完整版在线观看| 亚洲国产色片| 欧美潮喷喷水| 亚洲真实伦在线观看| 日韩成人av中文字幕在线观看| 成人二区视频| 少妇高潮的动态图| 中国三级夫妇交换| 亚洲国产色片| 尾随美女入室| 欧美bdsm另类| 午夜老司机福利剧场| 黄色欧美视频在线观看| 美女脱内裤让男人舔精品视频| 26uuu在线亚洲综合色| 在线观看免费高清a一片| 老师上课跳d突然被开到最大视频| 成人毛片60女人毛片免费| 亚洲最大成人av| 嘟嘟电影网在线观看| 看免费成人av毛片| 久久99热这里只有精品18| 国产亚洲av嫩草精品影院| 欧美变态另类bdsm刘玥| 亚洲精品视频女| 亚洲av一区综合| 国产爽快片一区二区三区| 成年版毛片免费区| 一本色道久久久久久精品综合| 18禁裸乳无遮挡免费网站照片| tube8黄色片| 欧美xxⅹ黑人| 国产精品人妻久久久影院| 水蜜桃什么品种好| 午夜视频国产福利| 欧美日韩在线观看h| 大片免费播放器 马上看| 午夜精品一区二区三区免费看| 亚洲精品久久久久久婷婷小说| 亚洲精品国产成人久久av| 九九爱精品视频在线观看| 国产老妇女一区| av又黄又爽大尺度在线免费看| 日韩免费高清中文字幕av| 久热久热在线精品观看| 日韩国内少妇激情av| 免费电影在线观看免费观看| 在线免费观看不下载黄p国产| 成人高潮视频无遮挡免费网站| av国产免费在线观看| 亚洲婷婷狠狠爱综合网| 国产色爽女视频免费观看| 久久99蜜桃精品久久| 18禁裸乳无遮挡免费网站照片| 午夜免费观看性视频| 亚洲熟女精品中文字幕| 久久韩国三级中文字幕| 国产免费又黄又爽又色| 精华霜和精华液先用哪个| av女优亚洲男人天堂| 波多野结衣巨乳人妻| 只有这里有精品99| 亚洲,一卡二卡三卡| 国产大屁股一区二区在线视频| 在线观看av片永久免费下载| 精品久久国产蜜桃| 成年免费大片在线观看| 久久精品国产亚洲av涩爱| 国产精品国产三级国产av玫瑰| 91精品国产九色| 国产免费一级a男人的天堂| 亚洲精品久久午夜乱码| 久久久久久久亚洲中文字幕| 日韩伦理黄色片| 久久久久性生活片| 国产白丝娇喘喷水9色精品| 丰满乱子伦码专区| 中文字幕免费在线视频6| 在线看a的网站| 亚洲色图综合在线观看| 秋霞伦理黄片| 99久久精品热视频| 国产精品久久久久久精品古装| 亚洲第一区二区三区不卡| 日韩中字成人| 日本爱情动作片www.在线观看| 久久久欧美国产精品| 草草在线视频免费看| 色视频www国产| 亚洲国产高清在线一区二区三| 深爱激情五月婷婷| tube8黄色片| 黄片wwwwww| 少妇 在线观看| 你懂的网址亚洲精品在线观看| 91久久精品国产一区二区成人| 欧美+日韩+精品| 国产亚洲最大av| 高清毛片免费看| 久久精品人妻少妇| 国产在视频线精品| 亚洲怡红院男人天堂| 人妻制服诱惑在线中文字幕| 国产成人91sexporn| 亚洲人与动物交配视频| 黄色配什么色好看| 有码 亚洲区| 九九爱精品视频在线观看| 午夜日本视频在线| videossex国产| 久久亚洲国产成人精品v| 免费av毛片视频| 成年免费大片在线观看| 成年女人看的毛片在线观看| 亚洲aⅴ乱码一区二区在线播放| 日韩电影二区| 26uuu在线亚洲综合色| 国产成人aa在线观看| av天堂中文字幕网| 99九九线精品视频在线观看视频| 观看免费一级毛片| 免费观看a级毛片全部| 男人爽女人下面视频在线观看| 伦理电影大哥的女人| av一本久久久久| 最近最新中文字幕大全电影3| 亚洲精品久久久久久婷婷小说| 最近手机中文字幕大全| 成人高潮视频无遮挡免费网站| 久久久久久国产a免费观看| 久久精品国产a三级三级三级| 久久99精品国语久久久| 2021少妇久久久久久久久久久| 九草在线视频观看| 国产视频首页在线观看| 又黄又爽又刺激的免费视频.| 欧美日韩精品成人综合77777| 最近2019中文字幕mv第一页| 亚洲av二区三区四区| 欧美性感艳星| 成人一区二区视频在线观看| 日韩不卡一区二区三区视频在线| 日韩一区二区三区影片| 制服丝袜香蕉在线| 亚洲精品影视一区二区三区av| 尾随美女入室| 少妇的逼好多水| 久久久久久久久久久丰满| 国产午夜精品久久久久久一区二区三区| 亚洲四区av| h日本视频在线播放| 舔av片在线| 大又大粗又爽又黄少妇毛片口| 一区二区av电影网| 女人被狂操c到高潮| 欧美精品人与动牲交sv欧美| 最后的刺客免费高清国语| 亚洲国产日韩一区二区| 国产亚洲最大av| 欧美97在线视频| 国产精品一及| 免费黄网站久久成人精品| 国产精品福利在线免费观看| 水蜜桃什么品种好| 日本-黄色视频高清免费观看| 91久久精品国产一区二区成人| 中文资源天堂在线| 少妇的逼好多水| 国产一区有黄有色的免费视频| 成年女人看的毛片在线观看| 久久国内精品自在自线图片| 免费观看在线日韩| 亚洲va在线va天堂va国产| 色网站视频免费| 美女内射精品一级片tv| 精品少妇黑人巨大在线播放| 午夜亚洲福利在线播放| 人人妻人人看人人澡| 国产亚洲最大av| 波多野结衣巨乳人妻| a级毛片免费高清观看在线播放| 午夜精品一区二区三区免费看| 一级片'在线观看视频| 成年av动漫网址| 免费播放大片免费观看视频在线观看| 久久久久久久国产电影| 日本色播在线视频| 国产一级毛片在线| 欧美日韩精品成人综合77777| 如何舔出高潮| 少妇丰满av| 国产欧美日韩一区二区三区在线 | av福利片在线观看| 少妇猛男粗大的猛烈进出视频 | av免费在线看不卡| 99热这里只有精品一区| 在线观看一区二区三区| 成人二区视频| 亚洲熟女精品中文字幕| 91精品国产九色| 99热国产这里只有精品6| 国产91av在线免费观看| 久久久久精品久久久久真实原创| 国产久久久一区二区三区| 久久99热这里只有精品18| 中文在线观看免费www的网站| 亚洲综合色惰| 老师上课跳d突然被开到最大视频| 亚洲av.av天堂| 久久久久久久亚洲中文字幕| 亚洲一级一片aⅴ在线观看| 在线观看一区二区三区激情| 一边亲一边摸免费视频| 美女被艹到高潮喷水动态| 成人特级av手机在线观看| 欧美变态另类bdsm刘玥| 成人特级av手机在线观看| 国产在线男女| 国产亚洲最大av| 中国美白少妇内射xxxbb| 深爱激情五月婷婷| 国产一区二区三区综合在线观看 | 免费看不卡的av| 激情 狠狠 欧美| 欧美激情国产日韩精品一区| 日本爱情动作片www.在线观看| 国产成人freesex在线| 国产高清有码在线观看视频| 亚洲色图av天堂| 亚洲综合精品二区| 国产免费福利视频在线观看| 简卡轻食公司| 日本与韩国留学比较| 欧美日韩亚洲高清精品| 欧美日韩精品成人综合77777| 日本黄色片子视频| 欧美日韩视频精品一区| 亚洲精品国产av蜜桃| 免费播放大片免费观看视频在线观看| 高清在线视频一区二区三区| 高清日韩中文字幕在线|