• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of Renewable Superhydrophobic Surfaces via Thermally Induced Phase Separation and Mechanical Peeling

    2017-05-18 09:31:23QiZhuYunYuQingYunWuLinGu
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年2期

    Qi Zhu,Yun Yu,Qing-Yun Wu?,Lin Gu

    a.Faculty of Materials Science and Chemical Engineering,Ningb o University,Ningb o 315211,China

    b.Key Laboratory of Marine Materials and Related Technologies,Ningb o Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningb o 315201,China

    Construction of Renewable Superhydrophobic Surfaces via Thermally Induced Phase Separation and Mechanical Peeling

    Qi Zhua,Yuan Yua,Qing-Yun Wua?,Lin Gub?

    a.Faculty of Materials Science and Chemical Engineering,Ningb o University,Ningb o 315211,China

    b.Key Laboratory of Marine Materials and Related Technologies,Ningb o Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningb o 315201,China

    (Dated:Received on December 29,2016;Accepted on March 16,2017)

    We report a simple preparation method of a renewable superhydrophobic surface by thermally induced phase separation(TIPS)and mechanical peeling.Porous polyvinylidene fluoride(PVDF)membranes with hierarchical structures were prepared by a TIPS process under different cooling conditions,which were confirmed by scanning electron microscopy and mercury intrusion porosimetry.After peeling offthe top layer,rough structures with hundreds of nanometers to several microns were obtained.A digital microscopy determines that the surface roughness of peeled PVDF membranes is much higher than that of the original PVDF membrane,which is important to obtain the superhydrophobicity.Water contact angle and sliding angle measurements demonstrate that the peeled membrane surfaces display superhydrophobicity with a high contact angle(152°)and a low sliding angle(7.2°).Moreover, the superhydrophobicity can be easily recovered for many times by a simple mechanical peeling,identical to the original superhydrophobicity.This simple preparation method is low cost,and suitable for large-scale industrialization,which may offer more opportunities for practical applications.

    Superhydrophobicity,Polyvinylidene fluoride,Peeling,Regeneration,Thermally induced phase separation

    I.INTRODUCTION

    Superhydrophobic surfaces with water contact angles larger than 150°and sliding angles less than 10°have drawn a great deal of attention due to their potential applications in self-cleaning[1,2],anti-icing[3],oil-water separation[4],corrosion resistant surfaces[5,6],marine antifouling[7],etc.It is known that an appropriate surface roughness and a low surface energy material are two key factors for superhydrophobicity[8].In recent decades,many technologies such as template[5],etching[9],chemical vapor deposition[10],electrospinning [11],sol-gel process[12],layer-by-layer deposition[13] have been reported to prepare superhydrophobic surfaces[14].However,the fine-scale rough structures constructed by the above-mentioned technologies are easily destroyed by the mechanical force such as finger contact,abrasive,and washing,resulting in dramatically reducing contact angles[15].Moreover,regeneration of superhydrophobic surfaces is difficult to achieve[16]. Therefore,a simple method to prepare a renewable superhydrophobic surface is highly desirable.

    Thermally induced phase separation(TIPS)is one of the most useful methods to fabricate porous polymer membranes,which is suitable for large-scale industrialization[17].It has several advantages such as easiness of control,low tendency for defects formation, and diverse microstructures that are desirable for engineering applications[18].Moreover,the isotropic and anisotropic structures can be generated,and the pore size can be effectively controlled[19].TIPS process has been adopted to prepare porous polyvinylidene fluoride (PVDF)membranes[20].PVDF is usually used to construct superhydrophobic surfaces due to its low surface energy[21].However,until now,a superhydrophobic surface of PVDF has never been reported to be prepared via TIPS process.

    In this work,a renewable superhydrophobic surface was constructed via TIPS and mechanical peeling.A series of porous PVDF membranes with hierarchical structures were prepared by TIPS process using dimethyl sulfone and polyethylene glycol as a crystallizable diluent and additive,respectively.The pore morphology and size of the PVDF membranes can be controlled by polymer concentration and cooling condition. After peeling offthe top layer,rough structures with hundreds of nanometers to several microns were obtained.The peeled membrane surfaces displayed superhydrophobicity with a high water contact angle(CA= 152°)and a low sliding angle(SA=7.2°).Moreover,thesuperhydrophobicity can be easily recovered for many times by a simple mechanical peeling.This simple method for fabricating a renewable superhydrobic surface is low cost,and suitable for large-scale industrialization,which may offer more opportunities for practical applications.

    TABLE I Preparation condition,average pore size and porosity of PVDF membranes.

    II.EXPERIMENTS

    A.Materials

    Polyvinylidene fluoride(PVDF,Mw=11,000)was purchased from Solvay and dried at 50°C under vacuum for 24 h before use.Dimethyl sulfone(DMSO2, 99%purity)was provided by Dakang Chemicals Co., China.Polyethylene glycol(PEG400,Mw=380-430), ethanol and hexane were analytically pure and obtained from Sinopharm Chemical Reagent Co.Ltd.DI water was used as the extraction agent.

    B.Preparation of PVDF membranes

    PVDF,DMSO2 and PEG400 were weighed in a certain mass ratio according to Table I,and mixed in a glass vessel.The mixture was heated at 160°C with vigorous stirring to form a homogenous solution.When the air bubbles were all degassed,the solution was quickly transferred onto a stainless steel mold(thickness~200μm)preheated in an oven at 160°C.Then, the mold was quenched into a cooling bath(water bath at 30°C,or air bath at 30°C)to induce a phase separation and form a solidified nascent membrane.Subsequently,the obtained nascent membrane was immersed in DI water to completely extract the diluent,and then a wet membrane can be obtained.To avoid the collapse of pores in drying,wet membrane was washed with an ethanol-hexane sequence,and dried in vacuum for 12 h at 30°C.

    C.Peeling of fthe top layer of PVDF membranes

    Rough,microstructured surfaces were prepared by peeling offthe top layers of PVDF membranes,as shown in FIG.1.A piece of PVDF membrane with a size of 1 cm×3 cm was first fixed on a slide glass by using double adhesive tapes.Then,the single-sided adhesive tape was adhered firmly to the membrane surface under certain pressure.Subsequently,the tape with the adhering top layer was removed quickly from the membrane surface,resulting in the superhydrophobic peeled surfaces.

    FIG.1 Schematic illustration for the formation of superhydrophobic surface of PVDF membrane.

    D.Characterization

    The morphologies of the PVDF membranes were observed by scanning electron microscopy(SEM,TM3000, Hitachi,Japan)with an accelerating voltage of 15 kV. The cross-section and surfaces of samples were sputtered with gold before test.Mercury intrusion porosimetry(Auto Pore IV9500,Micromeritics,USA) was used to determine the average pore size,porosity and the pore size distribution of PVDF membranes. The surface roughness of PVDF membranes before or after peeling the surface layer was determined by a digital microscopy(KH-8700,HIROX,Japan).Static contact angles and sliding angles of water droplets on the membrane surface were determined from optical contactangle measurement system(Kruss DSA100,Germany). At least five replicated measurements were carried out in order to get the average value.

    FIG.2 SEM images of surface morphologies of PVDF membranes prepared by TIPS method.Series 1 and 2 mean the upper surface and the bottom surface,respectively.(a1,a2)10wt%WC,(b1,b2)15wt%WC,(c1,c2)20wt%WC,(d1,d2) 25wt%WC,(e1,e2)15wt%AC,(f1,f2)20wt%AC.

    III.RESULTS AND DISCUSSION

    A.Morphology of PVDF membranes

    A series of porous PVDF membranes were prepared via TIPS process using DMSO2 and PEG400 as the crystallizable diluent and additive,respectively.FIG.2 shows the surface morphologies of the obtained PVDF membranes.It is clear that upper and down surface morphologies of PVDF membranes have a great difference under water cooling conditions,while are almost the same when air was used as the cooling medium. The upper surfaces of PVDF membranes obtained in water bath exhibit spongy structure,and the down surfaces have many dense and uniform pores,as shown in FIG.2(a)-(c).In comparison,the pore distribution on membrane surfaces obtained in air is more uniform (FIG.2(e)-(f)),due to the similar cooling rate of upper and down surface and slow crystallization rate of PVDF and DMSO2.Moreover,the PVDF membranes become denser as the polymer concentration increases.The dense surface offers better mechanical strength,while the loose surface is more easily peeled of f.

    FIG.3(a1)-(f1)demonstrates cross-section morphologies of the obtained PVDF membranes,while FIG.3(a2)-(f2)and(a3)-(f3)shows the pore structures near the upper surfaces and down surfaces,respectively.It is clear that the pores near both surfaces are smaller than those inside the cross-section.The membranes obtained in water cooling possess spherical crystals morphologies through the cross-section(FIG.3 (a)-(d)).Large spherulites arrang loosely near the upper surface,and the spherulites become small and dense downward from the upper surface,which can be called“Ooo”distribution of spherulites.Under air cooling, the obtained membranes also display spherulitic structure(FIG.3(e)-(f)),but large spherulites arranged in the middle region of membranes,showing“oOo”distribution in the cross-section.Furthermore,all the membranes have multilayer structures,and the density of each layer is different,which provides a basis for constructing superhydrophobic surfaces by peeling offthe top layer.

    Furthermore,mercury intrusion porosimetry was used to determine the average pore size,porosity and the pore size distribution of PVDF membranes.As list in Table I,the average pore size and porosity of PVDF membranes decrease with the increasing of PVDF concentration no matter prepared in water bath or air bath. On the other hand,with the same PVDF concentration,PVDF membranes prepared in air bath have larger pores and higher porosity than those prepared in water bath.This result is consistent with those shown in SEM images.FIG.4 compares the pore size distribution of PVDF membranes prepared from different conditions.It is clear that PVDF membranes show relatively narrow pore size distribution except for the sample of 10wt%WC,which has large amount of macropores with diameters ranging from 0.1μm to 10μm.

    B.Surface morphologies of peeled PVDF membranes

    FIG.5 shows the surface morphologies of peeled PVDF membranes.The surfaces of peeled 10wt%WCand 15wt%WC membranes display spherulitic structure,and the spherulite diameter is 2-3 microns for 10wt%WC membrane and 1-2 microns for 15wt%WC membrane.When the polymer concentration increases to 20wt%and 25wt%,the membranes show finger-like pore structure(FIG.5(c)and(d)).The 15wt%AC and 20wt%AC membranes also exhibit finger-like pore structure(FIG.5(e)and(f)).What is more,it is clear that there are more bumps and depressions on the surface of the peeled membranes,forming more“v∧v”peak-valley structure,which is more rough than the island structure of the original surface.This indicates peeled PVDF membrane surface shows high roughness, which plays a key role in constructing a superhydrophobic surface.

    The surface roughness of PVDF membranes before and after peeling offthe top layer has been determined by a digital microscopy.The surface roughness of the original PVDF membranes cannot be measured by this method,due to their relatively smooth surfaces before peeling(Ra<0.1μm).In contrast,the peeled PVDF membranes present a high surface roughness,which is higher than 0.15μm(FIG.6).Moreover,the Ravalue of peeled PVDF membranes prepared in water bath increases with the PVDF concentration increases to 15wt%,and then drops as the PVDF concentration further increases.Additionally,the extremely high Ravalue of 15wt%AC may be due to its large pores(Table I)and uniform pore size distribution(FIG.4).It is clear that the peeling of the top layer exactly constructs rough surface on PVDF membranes,which is important to obtain the superhydrophobicity.

    FIG.3 SEM images of cross-section morphologies of PVDF membranes prepared by TIPS method:(a1,a2,a3)10wt% WC,(b1,b2,b3)15wt%WC,(c1,c2,c3)20wt%WC,(d1, d2,d3)25wt%WC,(e1,e2,e3)15wt%AC,(f1,f2,f3) 20wt%AC.The images on the second and third columns are the amplifying images of the cross-sections near the upper surfaces and the bottom surfaces on the first column, respectively.

    FIG.4 Pore size distribution of PVDF membranes.

    C.Superhydrophobicity of peeled PVDF membranes

    Surface wettability is usually assessed by water CA and SA measurements.A superhydrophobic surface is defined as having a CA larger than 150°and a SA less than 10°[22].CA values of different PVDF membranes before and after peeling offthe top layer are shown in FIG.7.The CAs on the original surface of the PVDF membranes are 115°-121°,indicating the PVDF membranes are hydrophobic.After peeling offthe top layer,the CAs increase dramatically and depend on pore size.Superhyophobic surface was obtained by mechanical peeling,with the maximum CA of 152.4°from 20wt%WC membrane.The superhydrophobic property is determined by surface roughness.As shown in FIG.5,with the increase of the PVDF concentration, the PVDF crystal arrangements became more closely, and crystal sizes became smaller,which is beneficial to the increase of roughness.However,when the PVDF content reaches 25wt%,excessive dense surface layer was difficult to remove to construct a superhydrophobic surface.

    In addition to CA,SA is commonly employed to characterize anti-wetting properties of a superhydrophobic surface[23].SAs on the peeled PVDF membrane surfaces are shown in FIG.8.All the SAs are lower than10°,indicating the peeled surfaces own the self-cleaning property[4].Among them,the peeled 10wt%WC surface has the minimum SA(7.2°).

    The above results demonstrate that a superhydrophobic surface of PVDF with a CA larger than 150°and a SA less than 10°was successfully constructed via TIPS method and mechnical peeling.

    FIG.5 SEM images of surface morphologies of peeled PVDF membranes:(a1,a2)10wt%WC;(b1,b2)15wt%WC;(c1, c2)20wt%WC;(d1,d2)25wt%WC;(e1,e2)15wt%AC;(f1,f2)20wt%AC.The rectangles in the images indicate the local sites of the amplifying images.

    FIG.6 Surface roughness of peeled PVDF membranes.

    FIG.7 Water contact angles of the PVDF membranes before and after peeling offthe top layer.

    FIG.8 Sliding angles on the peeled PVDF membrane surfaces.

    D.Regeneration of superhydrophobic surface

    Superhydrophobicity depends on the hierarchical micro-and nano-structures of surfaces[24].The micro-/nano-structures are easily destroyed by the mechanical force such as finger contact,abrasive,and washing, resulting in dramatically reducing CA[15].Moreover, regeneration of superhydrophobic surfaces was difficult to achieve[16].As shown in FIG.3 and FIG.4,it has been found that the PVDF membranes prepared by TIPS method exhibit hierarchical structure,in which pore morphology and pore size distribution are very similar in a certain thickness.Therefore,it can be rendered with rough microstructured surface once more bymechanical peeling,which indicates that the superhydrophobicity of the peeled PVDF membrane surfaces can be regenerated.FIG.9 displays the CAs of the 20wt%WC surface as a function of regeneration time. Once the rough surface is destroyed,the CA signif icantly decreased to 125°-130°,making the membrane surface lose superhydrophobicity.After repeating mechanical peeling,the damaged membrane surface is rendered with superhydrophobicity again,identical to the original superhydrophobicity.The CAs vary between 148°and 152°during 10 damage-regeneration cycles, indicated the regenerative surface also exhibited robust superhydrophobicity.

    FIG.9 Water contact angles of the 20wt%WC surface as a function of regeneration times(D:damage,R:regeneration).

    IV.CONCLUSION

    A renewable superhydrobic PVDF surface was fabricated via TIPS method and mechanical peeling.The PVDF membranes prepared from TIPS process exhibit multilayer structures,and the density of each layer is different,which provides a basis for constructing superhydrophobic surfaces by peeling offthe top layer. The peeled membrane surface shows higher roughness, which plays a key role in constructing a superhydrophobic surface.The peeled PVDF membrane surfaces display superhydrophobicity with a high CA(152°)and a low SA(7.2°).Importantly,the superhydrophobicity can be easily recovered for many times by a simple mechnical peeling,identical to the original superhydrophobicity.This simple method for fabricating a renewable superhydrobic surface is low cost,and suitable for large-scale industrialization,which may offer more opportunities for practical applications.

    V.ACKNOWLEDGMENTS

    This work is supported by the National Natural Science Foundation of China(No.51403107),the Natural Science Foundation of Ningbo(No.2015A610014),the Key Laboratory of Marine Materials and Related Technologies(No.2016K07),and K.C.Wong Magna Fund in Ningbo University.

    [1]R.F¨urstner,W.Barthlott,C.Neinhuis,and P.Walzel, Langmuir 21,956(2005).

    [2]Z.P.Wu,Q.F.Xu,J.N.Wang,and J.Ma,J.Mater. Sci.Technol.26,20(2010).

    [3]L.L.Cao,A.K.Jones,V.K.Sikka,J.Z.Wu,and D. Gao,Langmuir 25,12444(2009).

    [4]S.T.Wang,K.S.Liu,X.Yao,and L.Jiang,Chem. Rev.115,8230(2015).

    [5]K.C.Chang,H.I.Lu,C.W.Peng,M.C.Lai,S.C. Hsu,M.H.Hsu,Y.K.Tsai,C.H.Chang,W.I.Hung, Y.Wei,and J.M.Yeh,ACS Appl.Mater.Interfaces 5, 1460(2013).

    [6]F.Zhang,C.L.Zhang,L.Song,R.C.Zeng,S.Q.Li, and H.Z.Cui,J.Mater.Sci.Technol.31,1139(2015).

    [7]J.Genzer and K.Efimenko,Biofouling 22,339(2006).

    [8]Z.X.Zhang,T.Zhang,X.Zhang,Z.X.Xin,X.Deng, and K.Prakashan,RSC Adv.6,12530(2016).

    [9]S.M.Li,B.Li,J.H.Liu,and M.Yu,Chin.J.Inorg. Chem.28,1755(2012).

    [10]A.Borras,A.Barranco,and A.R.Gonz′alez-Elipe, Langmuir 24,8021(2008).

    [11]L.Jiang,Y.Zhao,and J.Zhai,Angew.Chem.116, 4438(2004).

    [12]Y.T.Peng,K.F.Lo,and Y.J.Juang,Langmuir 26, 5167(2010).

    [13]L.Zhai,F.C?.Cebeci,R.E.Cohen,and M.F.Rubner, Nano Lett.4,1349(2004).

    [14]E.Celia,T.Darmanin,E.T.de Givenchy,S.Amigoni, and F.Guittard,J.Coll.Interface Sci.402,1(2013).

    [15]X.T.Zhu,Z.Z.Zhang,J.Yang,X.H.Xu,X.H.Men, and X.Y.Zhou,J.Coll.Interface Sci.380,182(2012).

    [16]F.J.Wang,S.Lei,J.F.Ou,M.S.Xue,and W.Li, Appl.Surf.Sci.276,397(2013).

    [17]Y.Yu,Q.Y.Wu,H.Q.Liang,L.Gu,and Z.K.Xu,J. Appl.Polymer Sci.134,44454(2017).

    [18]Q.Y.Wu,B.T.Liu,M.Li,L.S.Wan,and Z.K.Xu, J.Membrane Sci.437,227(2013).

    [19]Q.Y.Wu,L.S.Wan,and Z.K.Xu,J.Membrane Sci. 409,355(2012).

    [20]Q.Y.Wu,H.Q.Liang,L.Gu,Y.Yu,Y.Q.Huang, and Z.K.Xu,Polymer 107,54(2016).

    [21]C.Y.Peng,S.L.Xing,Z.Q.Yuan,J.Y.Xiao,C.Q. Wang,and J.C.Zeng,Appl.Surf.Sci.259,764(2012).

    [22]T.L.Sun,L.Feng,X.F.Gao,and L.Jiang,Acc.Chem. Res.38,644(2005).

    [23]H.Teisala,M.Tuominen,and J.Kuusipalo,Adv. Mater.Interfaces 1,1300026(2014).

    [24]S.H.Li,H.B.Xie,S.B.Zhang,and X.H.Wang, Chem.Commun.4857(2007).

    ?Authors to whom correspondence should be addressed.E-mail: wuqingyun@nbu.edu.cn,gulin@nimte.ac.cn

    国产1区2区3区精品| 亚洲五月天丁香| 国产成+人综合+亚洲专区| 久9热在线精品视频| 桃红色精品国产亚洲av| 国产精品美女特级片免费视频播放器 | 久久人妻av系列| 日韩高清综合在线| 日韩精品免费视频一区二区三区| 亚洲av五月六月丁香网| 日日夜夜操网爽| 欧美黄色淫秽网站| 亚洲中文av在线| 久热爱精品视频在线9| 久久午夜亚洲精品久久| 深夜精品福利| 人人妻人人澡欧美一区二区| 欧美日韩精品网址| 伦理电影免费视频| 亚洲人成伊人成综合网2020| www.www免费av| 亚洲av电影在线进入| 日韩欧美一区二区三区在线观看| 亚洲av五月六月丁香网| 好看av亚洲va欧美ⅴa在| 黄色丝袜av网址大全| 成人国语在线视频| 成年免费大片在线观看| 热99re8久久精品国产| 国产单亲对白刺激| 国产人伦9x9x在线观看| 国产激情偷乱视频一区二区| 香蕉丝袜av| 久久 成人 亚洲| 一级毛片精品| 国内精品久久久久精免费| 在线国产一区二区在线| 午夜日韩欧美国产| 亚洲人成电影免费在线| 久久午夜亚洲精品久久| 亚洲欧美精品综合久久99| 久久久久国产一级毛片高清牌| 99热这里只有是精品50| 一级毛片精品| 又紧又爽又黄一区二区| ponron亚洲| 五月伊人婷婷丁香| 1024香蕉在线观看| 亚洲黑人精品在线| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久精品电影| 十八禁网站免费在线| 欧美日韩乱码在线| 亚洲av熟女| 亚洲色图 男人天堂 中文字幕| 午夜福利视频1000在线观看| 夜夜夜夜夜久久久久| 午夜福利成人在线免费观看| 国产激情欧美一区二区| 成人av一区二区三区在线看| 大型av网站在线播放| 亚洲18禁久久av| 色在线成人网| 特级一级黄色大片| 欧美绝顶高潮抽搐喷水| 床上黄色一级片| 丰满的人妻完整版| 欧美精品啪啪一区二区三区| 国产在线精品亚洲第一网站| 女人爽到高潮嗷嗷叫在线视频| 国产精品乱码一区二三区的特点| 国产精品99久久99久久久不卡| 又紧又爽又黄一区二区| 久久久久久免费高清国产稀缺| 国产av在哪里看| 国产av在哪里看| 精品久久久久久,| 国产久久久一区二区三区| 97碰自拍视频| 一a级毛片在线观看| 亚洲国产精品999在线| 亚洲电影在线观看av| 每晚都被弄得嗷嗷叫到高潮| 一区二区三区高清视频在线| 嫩草影视91久久| 亚洲全国av大片| 精品电影一区二区在线| 久久久久久九九精品二区国产 | 日韩中文字幕欧美一区二区| 成人国产综合亚洲| www日本在线高清视频| 欧美一区二区精品小视频在线| 久久久久亚洲av毛片大全| 久久天堂一区二区三区四区| 久久人妻福利社区极品人妻图片| 午夜福利在线观看吧| 日本 欧美在线| 18禁裸乳无遮挡免费网站照片| 哪里可以看免费的av片| 亚洲精品美女久久av网站| 俄罗斯特黄特色一大片| a在线观看视频网站| 亚洲激情在线av| 99国产综合亚洲精品| 国产成人精品无人区| 亚洲aⅴ乱码一区二区在线播放 | 日韩精品中文字幕看吧| 老熟妇仑乱视频hdxx| 免费av毛片视频| 男女之事视频高清在线观看| 国产日本99.免费观看| 淫妇啪啪啪对白视频| 午夜激情av网站| av天堂在线播放| 欧美性猛交黑人性爽| 这个男人来自地球电影免费观看| 又爽又黄无遮挡网站| 国产亚洲精品综合一区在线观看 | 一本久久中文字幕| 亚洲avbb在线观看| 正在播放国产对白刺激| 精品福利观看| 亚洲成人中文字幕在线播放| videosex国产| 精品欧美国产一区二区三| 天堂影院成人在线观看| 757午夜福利合集在线观看| 男人舔奶头视频| 天堂动漫精品| 日韩高清综合在线| 久久久久性生活片| 黑人欧美特级aaaaaa片| 日日爽夜夜爽网站| 老熟妇乱子伦视频在线观看| 男人舔奶头视频| 日韩欧美一区二区三区在线观看| 黄色视频不卡| av在线播放免费不卡| 一本大道久久a久久精品| 午夜两性在线视频| 国内揄拍国产精品人妻在线| 日韩三级视频一区二区三区| 午夜亚洲福利在线播放| 国产成人一区二区三区免费视频网站| 国产av麻豆久久久久久久| av免费在线观看网站| 亚洲欧美日韩无卡精品| 日本精品一区二区三区蜜桃| 国产黄色小视频在线观看| 国产真实乱freesex| 成人国语在线视频| 国产激情偷乱视频一区二区| 免费在线观看视频国产中文字幕亚洲| 白带黄色成豆腐渣| 色哟哟哟哟哟哟| 国产三级在线视频| 久久天堂一区二区三区四区| 亚洲欧美一区二区三区黑人| 国产成人一区二区三区免费视频网站| 99精品在免费线老司机午夜| 亚洲熟女毛片儿| 欧美在线黄色| 午夜影院日韩av| 午夜福利欧美成人| 十八禁网站免费在线| 一个人观看的视频www高清免费观看 | 成熟少妇高潮喷水视频| 日本熟妇午夜| 国产在线观看jvid| 99国产综合亚洲精品| 别揉我奶头~嗯~啊~动态视频| 国内久久婷婷六月综合欲色啪| 精品不卡国产一区二区三区| 宅男免费午夜| 亚洲欧美一区二区三区黑人| 99久久精品国产亚洲精品| 亚洲在线自拍视频| 国产成人av激情在线播放| 男人舔女人的私密视频| 久久婷婷成人综合色麻豆| 神马国产精品三级电影在线观看 | 免费观看人在逋| 国产精品久久久久久人妻精品电影| 1024香蕉在线观看| 午夜精品一区二区三区免费看| 欧美高清成人免费视频www| 又黄又爽又免费观看的视频| 此物有八面人人有两片| 日本免费一区二区三区高清不卡| 村上凉子中文字幕在线| 国产精品香港三级国产av潘金莲| 91av网站免费观看| 可以免费在线观看a视频的电影网站| 中文字幕久久专区| 国产一区二区三区视频了| 一二三四社区在线视频社区8| 色精品久久人妻99蜜桃| 国产v大片淫在线免费观看| 国产伦一二天堂av在线观看| 又粗又爽又猛毛片免费看| 19禁男女啪啪无遮挡网站| 一边摸一边抽搐一进一小说| 九色国产91popny在线| 日韩精品中文字幕看吧| 一进一出抽搐gif免费好疼| 亚洲乱码一区二区免费版| 麻豆一二三区av精品| 人妻夜夜爽99麻豆av| 久久精品影院6| 最近在线观看免费完整版| 看免费av毛片| 我的老师免费观看完整版| 国产精品香港三级国产av潘金莲| 叶爱在线成人免费视频播放| 国产v大片淫在线免费观看| 又黄又粗又硬又大视频| 久久人人精品亚洲av| 90打野战视频偷拍视频| 国产成人av教育| 午夜日韩欧美国产| 中文字幕人成人乱码亚洲影| 少妇裸体淫交视频免费看高清 | 色综合欧美亚洲国产小说| 真人做人爱边吃奶动态| 两个人的视频大全免费| 欧美黑人精品巨大| 免费观看人在逋| 一本久久中文字幕| 两个人视频免费观看高清| 黄色 视频免费看| 久久久久久免费高清国产稀缺| 少妇被粗大的猛进出69影院| 狠狠狠狠99中文字幕| 午夜精品久久久久久毛片777| 成人18禁在线播放| 窝窝影院91人妻| 高潮久久久久久久久久久不卡| 亚洲欧美日韩高清在线视频| 欧美乱色亚洲激情| 悠悠久久av| 深夜精品福利| 制服诱惑二区| 久久久久久久精品吃奶| 日韩免费av在线播放| 草草在线视频免费看| 国产av不卡久久| 久久久久九九精品影院| 久久久国产成人精品二区| 欧美乱码精品一区二区三区| 久久国产精品影院| 啦啦啦免费观看视频1| 天堂动漫精品| 99riav亚洲国产免费| 国产成人欧美在线观看| 精品第一国产精品| 777久久人妻少妇嫩草av网站| 三级国产精品欧美在线观看 | 我的老师免费观看完整版| 久久久国产欧美日韩av| 一级片免费观看大全| 老司机午夜十八禁免费视频| 午夜精品一区二区三区免费看| 欧美成人午夜精品| 999久久久国产精品视频| 久久 成人 亚洲| 成人精品一区二区免费| 欧美日韩黄片免| 一a级毛片在线观看| 精品国内亚洲2022精品成人| 成人特级黄色片久久久久久久| 亚洲国产欧美人成| 在线观看日韩欧美| 国产熟女xx| 国产av在哪里看| 人成视频在线观看免费观看| 精品久久蜜臀av无| 真人做人爱边吃奶动态| 日本五十路高清| 久久久国产精品麻豆| 欧洲精品卡2卡3卡4卡5卡区| 99国产精品一区二区三区| 在线观看www视频免费| 男女下面进入的视频免费午夜| 欧美成人午夜精品| 午夜福利成人在线免费观看| 操出白浆在线播放| 中文在线观看免费www的网站 | 神马国产精品三级电影在线观看 | 最新在线观看一区二区三区| 99精品在免费线老司机午夜| 黄片大片在线免费观看| 午夜免费观看网址| 淫秽高清视频在线观看| a在线观看视频网站| 国产成人av教育| 国内久久婷婷六月综合欲色啪| 91九色精品人成在线观看| 每晚都被弄得嗷嗷叫到高潮| 色老头精品视频在线观看| 一区二区三区高清视频在线| 亚洲 国产 在线| 色综合亚洲欧美另类图片| 女生性感内裤真人,穿戴方法视频| 亚洲欧美激情综合另类| 久久久久久久久中文| avwww免费| 99精品久久久久人妻精品| 欧美乱码精品一区二区三区| 日本精品一区二区三区蜜桃| 中文在线观看免费www的网站 | 别揉我奶头~嗯~啊~动态视频| 天天一区二区日本电影三级| 亚洲无线在线观看| 观看免费一级毛片| 久久亚洲精品不卡| 亚洲免费av在线视频| 日韩欧美 国产精品| 在线观看午夜福利视频| 亚洲一区二区三区不卡视频| 亚洲人成77777在线视频| 成人18禁在线播放| 亚洲免费av在线视频| 色老头精品视频在线观看| 久久精品综合一区二区三区| 精品久久久久久久人妻蜜臀av| 美女大奶头视频| 一进一出抽搐动态| 日本成人三级电影网站| 99国产精品一区二区蜜桃av| 不卡av一区二区三区| 男女做爰动态图高潮gif福利片| 亚洲成a人片在线一区二区| 麻豆成人av在线观看| 一夜夜www| 怎么达到女性高潮| 久久精品夜夜夜夜夜久久蜜豆 | 女人被狂操c到高潮| 成人高潮视频无遮挡免费网站| 身体一侧抽搐| 欧美性猛交╳xxx乱大交人| 99热6这里只有精品| 特级一级黄色大片| 国产精品影院久久| 成人永久免费在线观看视频| 欧美绝顶高潮抽搐喷水| 在线永久观看黄色视频| 桃红色精品国产亚洲av| 亚洲一区高清亚洲精品| 国产亚洲精品av在线| 午夜福利在线在线| 午夜精品在线福利| 亚洲av成人一区二区三| 亚洲,欧美精品.| 欧美成狂野欧美在线观看| 国产免费男女视频| 久久99热这里只有精品18| 俺也久久电影网| 亚洲 欧美一区二区三区| 亚洲 国产 在线| 香蕉丝袜av| 99久久综合精品五月天人人| 女同久久另类99精品国产91| 亚洲美女视频黄频| 日韩av在线大香蕉| 中文字幕久久专区| 午夜影院日韩av| 99精品久久久久人妻精品| 亚洲av片天天在线观看| 国产男靠女视频免费网站| 欧美性猛交╳xxx乱大交人| 国产久久久一区二区三区| 岛国在线观看网站| 国产亚洲欧美98| 欧美一级毛片孕妇| 国产精品一区二区精品视频观看| 五月玫瑰六月丁香| 18美女黄网站色大片免费观看| 亚洲免费av在线视频| 动漫黄色视频在线观看| 一个人观看的视频www高清免费观看 | 亚洲成人中文字幕在线播放| 麻豆国产av国片精品| 亚洲av五月六月丁香网| 国产一区二区在线av高清观看| 久久草成人影院| 国产亚洲精品久久久久久毛片| 国产高清视频在线观看网站| 国产精品亚洲av一区麻豆| 婷婷亚洲欧美| 久久99热这里只有精品18| 免费在线观看黄色视频的| 国产午夜精品论理片| 在线免费观看的www视频| 亚洲人与动物交配视频| 国产精品野战在线观看| 久久久久久免费高清国产稀缺| 国产高清视频在线观看网站| а√天堂www在线а√下载| 高清在线国产一区| 一区二区三区高清视频在线| 国产亚洲欧美在线一区二区| 免费在线观看成人毛片| 熟女少妇亚洲综合色aaa.| netflix在线观看网站| 一级a爱片免费观看的视频| 香蕉丝袜av| 国产1区2区3区精品| 国产伦在线观看视频一区| 国产欧美日韩一区二区三| 桃红色精品国产亚洲av| 50天的宝宝边吃奶边哭怎么回事| 悠悠久久av| a级毛片a级免费在线| 啦啦啦观看免费观看视频高清| 精品久久久久久,| 午夜老司机福利片| 精品人妻1区二区| 精品久久久久久久毛片微露脸| 国产成人av教育| 国产免费男女视频| 国产99久久九九免费精品| 97碰自拍视频| 国内毛片毛片毛片毛片毛片| 国产av一区在线观看免费| 亚洲中文字幕日韩| 黄片小视频在线播放| 在线观看免费午夜福利视频| 国产成+人综合+亚洲专区| 国产不卡一卡二| 丰满的人妻完整版| 亚洲中文字幕一区二区三区有码在线看 | 50天的宝宝边吃奶边哭怎么回事| 国产蜜桃级精品一区二区三区| 久久久久九九精品影院| 制服人妻中文乱码| 大型黄色视频在线免费观看| 欧美成人性av电影在线观看| 窝窝影院91人妻| 国产真人三级小视频在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲一级av第二区| 久久香蕉国产精品| 久久热在线av| 人人妻人人澡欧美一区二区| 日本一区二区免费在线视频| 在线十欧美十亚洲十日本专区| 亚洲无线在线观看| 国产片内射在线| 中文字幕人成人乱码亚洲影| 女人被狂操c到高潮| 亚洲欧美日韩东京热| 久久 成人 亚洲| 国产又色又爽无遮挡免费看| cao死你这个sao货| 国产成+人综合+亚洲专区| 日韩三级视频一区二区三区| 91九色精品人成在线观看| 国产成人精品久久二区二区91| 无限看片的www在线观看| 一级片免费观看大全| 亚洲一区中文字幕在线| 久久亚洲真实| 一二三四在线观看免费中文在| 亚洲av日韩精品久久久久久密| 亚洲自偷自拍图片 自拍| 精品国产乱码久久久久久男人| 欧美日韩瑟瑟在线播放| 大型av网站在线播放| 国产精品一区二区三区四区免费观看 | 最新在线观看一区二区三区| 男女做爰动态图高潮gif福利片| 淫妇啪啪啪对白视频| 欧美黄色片欧美黄色片| 9191精品国产免费久久| 中文字幕熟女人妻在线| www日本在线高清视频| 精品久久久久久久末码| 99国产精品一区二区三区| 久久精品91无色码中文字幕| 韩国av一区二区三区四区| 人成视频在线观看免费观看| 婷婷精品国产亚洲av| 欧美色视频一区免费| 欧美又色又爽又黄视频| 欧美丝袜亚洲另类 | 99re在线观看精品视频| 国产在线精品亚洲第一网站| 男女床上黄色一级片免费看| 亚洲国产日韩欧美精品在线观看 | 国产精品免费一区二区三区在线| 波多野结衣巨乳人妻| 九色成人免费人妻av| 国产亚洲精品一区二区www| 99久久无色码亚洲精品果冻| 国产精品免费视频内射| 亚洲成人久久爱视频| 国产野战对白在线观看| 久久精品国产99精品国产亚洲性色| 黄色女人牲交| 精品午夜福利视频在线观看一区| 一区福利在线观看| 丁香六月欧美| 69av精品久久久久久| 午夜日韩欧美国产| 欧美在线一区亚洲| 精品国产亚洲在线| 国产成人aa在线观看| 一级a爱片免费观看的视频| 两个人看的免费小视频| 国产欧美日韩精品亚洲av| 久久精品亚洲精品国产色婷小说| 舔av片在线| 两性午夜刺激爽爽歪歪视频在线观看 | 好看av亚洲va欧美ⅴa在| 久久久久久九九精品二区国产 | 男插女下体视频免费在线播放| 日本在线视频免费播放| 久久久久久九九精品二区国产 | 国产精品电影一区二区三区| 日韩欧美三级三区| 成人国语在线视频| 亚洲一区二区三区不卡视频| 免费av毛片视频| 亚洲国产中文字幕在线视频| 一区二区三区高清视频在线| 琪琪午夜伦伦电影理论片6080| 91老司机精品| 少妇的丰满在线观看| 免费无遮挡裸体视频| videosex国产| 国产精品一区二区三区四区久久| 亚洲五月天丁香| 黄色片一级片一级黄色片| ponron亚洲| 国产成人影院久久av| 午夜日韩欧美国产| 国产精品九九99| 亚洲色图 男人天堂 中文字幕| 啦啦啦观看免费观看视频高清| 亚洲精品色激情综合| 日本精品一区二区三区蜜桃| 欧美大码av| 999久久久精品免费观看国产| 啦啦啦免费观看视频1| 这个男人来自地球电影免费观看| 久久精品国产综合久久久| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久精品电影| 久久香蕉精品热| 亚洲人成77777在线视频| 啦啦啦观看免费观看视频高清| 国产高清视频在线观看网站| 色尼玛亚洲综合影院| 欧美又色又爽又黄视频| 18禁黄网站禁片免费观看直播| 亚洲国产欧洲综合997久久,| 成人亚洲精品av一区二区| 亚洲电影在线观看av| 国产一区二区在线av高清观看| 一本精品99久久精品77| 一级黄色大片毛片| 国产三级黄色录像| 青草久久国产| 窝窝影院91人妻| 免费在线观看影片大全网站| 欧美成狂野欧美在线观看| 天堂影院成人在线观看| 啦啦啦韩国在线观看视频| 日本三级黄在线观看| 国产99久久九九免费精品| 欧美日本亚洲视频在线播放| 两性夫妻黄色片| 日日爽夜夜爽网站| 亚洲全国av大片| 激情在线观看视频在线高清| а√天堂www在线а√下载| x7x7x7水蜜桃| 午夜两性在线视频| 亚洲人成电影免费在线| 黄色成人免费大全| 极品教师在线免费播放| 欧美最黄视频在线播放免费| 激情在线观看视频在线高清| 黄片小视频在线播放| 午夜亚洲福利在线播放| 中文字幕av在线有码专区| 亚洲激情在线av| 国产日本99.免费观看| 色在线成人网| 18美女黄网站色大片免费观看| 亚洲专区国产一区二区| 国产黄a三级三级三级人| 久久久久久久久中文| 日本精品一区二区三区蜜桃| 日韩欧美在线二视频| 男人舔奶头视频| 久久午夜亚洲精品久久| 欧美日韩黄片免| 俺也久久电影网| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久毛片微露脸| 国产99久久九九免费精品| 久久中文看片网| 国产视频内射| 一进一出抽搐gif免费好疼| 国产熟女午夜一区二区三区| 在线国产一区二区在线| videosex国产| 日韩大码丰满熟妇| 一二三四在线观看免费中文在| 久久九九热精品免费| 精品不卡国产一区二区三区| 国产亚洲av嫩草精品影院| 午夜激情av网站| 制服诱惑二区|