• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Rhodamine-based Turn on Chemosensors with High Sensitivity, Selectivity,and Naked-Eye Detection for Hg2+

    2017-05-18 09:31:24YanZhouLiqiangYanZhinengKongWenqiDuBaoyingWuZhengjianQi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年2期

    Yan Zhou,Li-qiang Yan,Zhi-neng Kong,Wen-qi Du,Bao-ying Wu,Zheng-jian Qi

    College of Chemistry and Chemical Engineering,Southeast University,Nanjing 211189,China

    Two Rhodamine-based Turn on Chemosensors with High Sensitivity, Selectivity,and Naked-Eye Detection for Hg2+

    Yan Zhou,Li-qiang Yan,Zhi-neng Kong,Wen-qi Du,Bao-ying Wu,Zheng-jian Qi?

    College of Chemistry and Chemical Engineering,Southeast University,Nanjing 211189,China

    (Dated:Received on August 5,2016;Accepted on September 13,2016)

    Two novel rhodamine-based fluorescence enhanced molecular probes(RA1and RA2)were synthesized,which were both designed as comparative fluoroionophore and chromophore for the optical detection of Hg2+.The recognizing behaviors were investigated both experimentally and computationally.They exhibited high selectivity and sensitivity for Hg2+over other commonly coexistent metal ions in CH3CN/H2O(1:1,V/V)solution.Test shows that hydroxy benzene of rich electron was beneficial to the chelate of Hg2+with sensors.The detection limit was measured to be at least 0.14μmol/L.After addition of Hg2+,the color changed from colourless to pink,which was easily detected by the naked eye in both solution and hydrogel sensor.

    Fluorescent sensor,Rhodamine,Mercury

    I.INTRODUCTION

    The development of sensors based on the ion-induced changes in fluorescence is particularly attractive[1]. Due to the unique properties,rhodamine is a promising scaffold for the design of reversible and selective probes[2].Heavy and transition metal ions are toxic ions known as lacking any vital or beneficial effects in biological system and damaging the ecological environment[3],among which Hg2+is an extremely toxic rare element in the earth’s crust and its toxicity has made public[4],considerable attention has been paid to the development of new fluorescent chemosensors[5,6]for the detection of mercury and mercuric salts with sufficient selectivity[7,8].At present,detection of Hg2+mainly uses spectral method,including atomic(absorption,emission,and fluorescence)spectrum,spectrophotometric and electrochemical method[9,10],etc.Compared with traditional detection methods, fluorescence approach based on molecular chemosensors is particularly signi ficant owing to its high sensitivity,selectivity, low cost,non-destructive analysis,operational simplicity,and their potential applications in analytical chemistry and biomedical sciences[11,12].Hg2+can couple with spin orbit of fluorescent molecules leading to fluorescence quenching[13].Therefore,a lot of mercury fluorescent probe is based on fluorescence quenching mechanism,and this sensitivity of the turn-offprobe is below the turn-on probe.Besides,some rhodamine B derivatives have also been used as fluorescent chemosensors,but the structure changes of water-soluble“o ff-on”fluorescent probe were con firmed merely by NMR,IR, and ESI mass data[14,15]without calculation.

    Herein,according to rhodamine-based probes for mercury ion detection reported[16,17],two different rhodamine derivatives were synthesized(RA1and RA2) towards Hg2+based on the equilibrium between spirolactam(nonfluorescent)and ring-open amide forms (highly fluorescent)induced by specific chemical species at room temperature[18-21].They are used as a fluorescent signal transducer due to their tremendous photophysical properties such as extended absorption and emission wavelengths,high fluorescence quantum yield and large molar absorption coefficient[22-25].The signal mechanism follows a straightforward protocol,after binding of the analyte(metal ion)to spirolactum ring in which the rhodamine core breaks with an excellent enhancement in the fluorescence intensity and develops a strong colour and naked eye detection[26,27]. Chemosensor RA2displayed a high selective and sensitive colorimetric change and fluorescence enhancement response to Hg2+.

    II.EXPERIMENTS

    The structure of intermediate RBH,title compounds RA1and RA2were characterized by1H NMR(Fig.S1, S2,and S3),13C NMR(Fig.S2 and S3)and EIMS(Fig.S1,S2,and S3)in supplementary materials. The results were in good agreement with the structure shown in Scheme S1,S2,and S3(in supplementary materials).Fluorescence and UV-Vis studies were performed using a 10μmol/L solution of RA1and RA2in a CH3CN/H2O(1:1,V/V)solution with appropriate amounts of metal ions.

    III.RESULTS AND DISCUSSION

    A.Steady-state optical properties

    Compared with ion mixture RA1-Hg2+,RA2-Hg2+had higher fluorescence quantum yield(Table S1 in supplementary materials).RA2exhibited twenty times enhancement of fluorescence intensity at peak wavelength λmax=580 nm in the presence of 10 equiv.Hg2+as shown in Fig.1.It was discovered that hydroxy benzene of rich electron was beneficial to the chelate of Hg2+with sensors through various tests.Owing to more stable structure,RA2showed better sensing property,so we selected RA2as a representation example to expatiate in the following discussion.

    The effect of the reaction media for the binding of RA with Hg2+was studied,and the results are shown in Fig.S4(in supplementary materials).It was found that solvent has great effect on the coordination reaction.In pure water,the interaction between Hg2+and probe is not obvious,fluorescence intensity of the system is very weak compared with other solvent system add acetonitrile.When the volume ratio between 1:9 and 9:1,probe can identify Hg2+well.When the coordination reaction was performed in acetonitrile-water solution of 1:1 (V/V),the highest fluorescence intensity F values were obtained,indicating that volume ratio of acetonitrile to water=1:1 is favorable for fluorescent measurement [28].With the increase of acetonitrile,fluorescence intensity hardly changes.However,the increasing dosage of organic reagents are adverse to biological environment.Therefore,volume ratio of acetonitrile-water was selected as 1:1 for fluorescent assay and the colorimetric assay,respectively.

    B.UV-Vis and stoichiometry complexation

    As shown in Fig.2,UV-Vis spectrum of compound RA2(10μmol/L)exhibited only very weak bands over 400 nm.Addition of 10 equiv.Hg2+into solution immediately resulted in a significant enhancement of absorbance at about 556 nm simultaneously the color changed into purple[29].Under the identical condition, no obvious response could be observed upon the addition of other ions including Zn2+,Mg2+,Ca2+,Cd2+, Cu2+,Pb2+,Cr3+,Ba2+,Ni2+,Fe3+,Mn2+,K+,Li+, Ag+,Co2+,Na+,Cu2+,and Al3+,which caused a mild effect compared to Hg2+.This phenomenon demonstrated that compound RA could serve as a selective“naked-eye”chemosensor for Hg2+.(Fig.2 and Fig.S5 in supplementary materials).

    The Hg2+binding stoichiometry of RA can be determined from titration and the Job plot[30].A plot of[Hg2+]/([Hg2+]+[RA1])versus the molar fraction of Hg2+was provided in Fig.S6(supplementary materials).The absorbance reached a maximum when the ratio was 0.5,indicating a 1:1 stoichiometry of the Hg2+to RA in the complex.

    C.Selectivity

    FIG.2 Absorbance spectra of RA2(10μmol/L)in CH3CN/H2O(1:1,V/V)solution with the presence of 10 equiv.of various species.

    FIG.3 Fluorescent emission spectra of RA2(10μmol/L)in CH3CN/H2O(volume ratio of 1:1)upon addition of various metal ions(100μmol/L).Inset:the photos of RA2with different metal ions in CH3CN/H2O(1:1,V/V)solution.

    As shown in Fig.3,RA2exhibited a very weak fluorescence in the absence of metal ions.When 10 equiv.Hg2+was added to a 10μmol/L solution of RA2in CH3CN/H2O(1:1,V/V),a remarkably enhancement of fluorescence spectrum was observed.The fluorescence enhancement of Hg2+to compound RA2was as high as 20 times.Under the same condition,a mild fluorescence enhancement factor was also detected for Cu2+and Al3+,but other ions showed no obvious changes on fluorescence intensity and color.Moreover,we also con firmed the competitive experiments that the background metal ions showed very low interference with the detection of Hg2+water solution(Fig.4)[31].

    FIG.4 Fluorescence intensity(at 580 nm)of RA2upon the addition of 100μmol/L Hg2+in the presence of 100μmol/L background metal ions in CH3CN/H2O(1:1,V/V),λex=510 nm.

    FIG.5(a)Fluorescent spectra of RA2(10μmol/L)in CH3CN/H2O(1:1,V/V)upon addition of different amounts of Hg2+ions.(b)The fluorescence intensity(at 580 nm)of RA2(20μmol/L)as a function of the Hg2+concentrations in CH3CN/H2O(1:1,V/V)solution(λex=510 nm,slit=5 nm),(c)Benesi-Hildebrand plot(λex=510 nm)of RA2,assuming 1:1 stoichiometry for association between RA2and Hg2+in CH3CN/H2O(1:1,V/V).

    D.Sensitivity

    To further investigate the interaction of Hg2+and RA,an fluorescence titration experiment was carried out(Fig.5(a),Fig.S7(a)in supplementary materials). Add 20μL Hg2+into 2 mL solution in turn and measure fluorescence intensity.Seen from Fig.5, fluorescence was weak without Hg2+, fluorescence intensity of RA2increased signi ficantly with the increase of Hg2+ion concentration,the maximum emission wavelength redshift from 575 nm to 581 nm,proving that RA2changed from spirolactam to ring-open amide(large fluorescent conjugated system).The solution changed from colorless to pink.Whether the solution contains Hg2+could be identified with naked eyes[32].Generally,the detection limit of metal ions is needed for fluorescence sensor.Fluorescence enhancement efficiency is closely associated with the Stern-Volmer constant(KSV)[33]. The equations of the enhancement effect were fitted, and the related parameters are listed in Table I.A signal-to-noise ratio S/N=3 is generally considered to be the limit of detection[34](LOD=3σ/KSV).Under optical conditions,RA2showed larger red-shift value of 10 nm,the linear fluorescence intensity response of compound RA2was between 20 and 100μmol/L(Fig.5(b)), and the LOD for Hg2+was measured to be 0.21 and 0.14μmol/L of RA1and RA2respectively,which illustrated the high sensitivity of probes.K,the association constant value of the RA2-Hg2+complex was calculated to be 1.74×104(mol/L)-1,which was greater than K of RA1-Hg2+complex 3.46×103(mol/L)-1,both two showed a fine linear relationship(Fig.5(c),Fig.S7(c) in supplementary materials)by the Benesi-Hildebrand plot[35].

    E.Mechanism

    To investigate the Hg2+enhancement mechanism,IR spectra of RA and RA+Hg2+were taken in KBr disks (Fig.S8,S9 in supplementary materials).The peak at1680 cm-1,which corresponds to the C=N absorption disappeared upon the addition of Hg2+.This supported the notion that the C=N group of RA is involved in the coordination of metal ions[36].

    The adaptability has been determined using the lifetime of RA and Hg2+via a time resolved fluorescence spectrofluorometer.The fluorescence lifetime was measured by single photon counting at an excitation 460 nm of the NanoLED source.The decays of RA and RA+Hg2+were found to be two exponentials and monoexponential which were on behalf of two and one luminescent mechanism respectively.The lifetime decays in the absence and presence of Hg2+,which are shown in Fig.6 and Fig.S10(supplementary materials). The lifetime was 1.63 and 4.18 ns(X S Q=1.27)for RA2lonely and 1.82 ns(X S Q=1.78)with Hg2+,indicating that structure of RA2changed after chelation of Hg2+. When molecules were in excited state,lone pair electrons of two electron donor(ethylenediamine)moved to the acceptor(central carbon atom with a positive charge).Meanwhile alkyl rotated around C-N bond leading to orthogonal state with aromatic ring plane, the original conjugated system was damaged(as red circle marked).So RA2owned two fluorescence lifetimes. After adding Hg2+,the central carbon atom was broken and the whole molecule formed a large conjugated system,which resulted in only a fluorescent lifetime[37].

    In addition,the Hg2+-adding experiments were conducted to examine the reversibility of this reaction and the result was shown in Fig.S11 in supplementary materials.When ethylenediaminetetraacetic acid (EDTA),3 equiv.of Hg2+)was added to the RA+Hg2+of CH3CN/H2O solution,the fluorescence intensity at 580 nm was decreased and further addition of 10 equiv. Hg2+could almost recover the fluorescence.

    The HR-MS of RA2+Hg2+in CH3CN/H2O was also conducted(Fig.S3 in supplementary materials).An unique peak at m/z=559.29 corresponding to[R6+H]+was clearly observed when 1 equiv.of Hg2+was added to RA2,whereas RA2without Hg2+exhibited peaks only at m/z=561.28,which corresponded to[RA2+H]+(Fig.S5 in supplementary materials).

    Both UV-Vis and fluorescence data lead to a signif icant OFF-ON signal.From the molecular structure and spectral results of RA,an reversible fluorescent chemodosimeter for Hg2+was constructed as shown in Fig.7 and Fig.S12 in supplementary materials.Firstly,the addition of the Hg2+ion induced a ring opening of the spirolactam of rhodamine took place.Then,RA-Hg was hydrolyzed into carboxylation.And the first reversible reaction was certified by theoretical calculation,while next hydrolysis reaction was confirmed by mass spectrometry(Fig.S2 and S3 in supplementary materials).

    To interpret basic sensing mechanism,calculations based on time-dependent density functional theory (TD-DFT)were performed on this system(Gaussian 03 program).The structures of RA2and R5were optimized and the calculated results demonstrate that the free energies of R5is lower than those of RA2and Hg2+(?G=-279 kcal/mol),indicating that this open loop step is an exothermic process.

    For compound RA2,the highest occupied molecular orbital(HOMO)is mainly located on the xanthene ring and the lowest unoccupied molecular orbital(LUMO)is on the upper portion of hydrazine,in addition,the lowest energy transitions of RA2and R5come from HOMO to LUMO.The HOMO and LUMO energies of R5are lower than those of RA2and the energy difference between HOMO and LUMO of R5(?E=0.3972 eV)is smaller than that of RA2(?E=3.168 eV)(Fig.9).Addition of Hg2+,the energy gap between the HOMO and LUMO is greatly decreased[38].In addition,DFT calculations were carried out for the geometry optimizations of the probe.From the optimized structure(Fig.8) and the bond lengths of RA2(C1-N1,1.39?A;N1-N2, 1.37?A;N2-C3,1.30?A)and R5(C1′-N1′,1.38?A; N1′-N2,1.33?A;N2′-C2′,1.32?A),we can conclude that hydroxybenzaldehyde was conjugated to the fluorophore.As a result,ring opening of the spirolactam can alter the push-pull effect of the fluorophore greatly.

    FIG.6 Fluorescence decay curves of RA2and RA2+Hg2+in CH3CN/H2O(1:1,V/V)obtained at λex=510 nm.

    TABLE I The fitted equations and correlations of quenching effect of RA1-Hg2+and RA2-Hg2+respectively.C is the concentration of Hg2+.

    F.Application

    Many fluorescent sensors for Hg2+detection could only be performed in solution,which would limit their applications under special circumstances.To demonstrate the practical application of our sensor,we prepared the test strips of sensor RA2.It was easily prepared by immersing a filter paper into the CH2Cl2solution of RA2(1 mmol/L)and then drying in air. Next,to different Hg2+concentration solutions(0, 1.0×10-4,1.0×10-3,1.0×10-2mol/L),these strips were immersed for 5 s and taken out of the solution.As depicted in Fig.10,the color of the test strips changed from colorless to purple and deepened gradually with the increasing of Hg2+concentration.Thus,these strips could be conveniently handled at any moment for the detection of Hg2+ions.

    Hydrogels have been used for environmental applications:absorption and separation in many studies [39].Hg2+ion selective and naked-eye colorimetric copolymeric sensor hydrogels were synthesized using N-isopropyl acrylamide(NIPAM)and acrylamide(AAm) as the primary monomer by crosslinking and curing for 10 min.Here we designed colorimetric chemosensors for visual detection of Hg2+ion based on rhodamine hydrogel.Used as naked-eye sensors for Hg2+ion in aqueous media,it was observed that color change of the hydrogels in 10μmol/L Hg2+solution began in a few seconds. As seen in Fig.11,gel acts as a naked-eye and fluorescent light responsive sensor for Hg2+ion under visible light and light at 365 nm.The simple and convenient test paper and hydrogel may provide an easy way to detect Hg2+in our daily life.

    FIG.7 Possible sensing mechanism of RA2with Hg2+.

    FIG.8 Calculated energy-minimized structure of RA2and R3(gray:C atoms;blue:N atoms;red:O atoms;brown: Hg2+).

    FIG.9 Theoretical molding of the absorption of RA2without and with Hg2+at the TD-DFT level.

    FIG.10 Photographs of the test strips with RA2for detecting Hg2+in(CH3CN/H2O=1:1,V/V)solution with different concentrations.1:0,2:1.0×10-4mol/L, 3:1.0×10-3mol/L,4:1.0×10-2mol/L.

    FIG.11 Hydrogel act as a naked-eye and fluorescent light responsive sensor for Hg2+ion under(a,b)visible light and (c,d)light at 365 nm.

    IV.CONCLUSION

    We synthesized two fluorescent chemodosimeters RA1and RA2based on rhodamine schif f-base conjugate. High sensitivity and selectivity for Hg2+recognition in CH3CN/H2O(1:1,V/V)solutions and hydroxy benzene of rich electron was beneficial to the chelate of Hg2+with sensors were demonstrated.The colorimetric and fluorescent response to Hg2+can be conveniently detected even by the naked eye,which provides a facile method for visual detection of Hg2+.In the absence of the cations,these probes adopt a spirocyclic form, which was colourless and nonfluorescent,whereas,after addition of metal ions,the spirocyclic ring open via a 1:1 stoichiometric coordination or reversible chemical reaction in short time.Meanwhile,the unapparent changes of fluorescence lifetime decay suggested that turn-on process of probe combined with Hg2+appeared to be a static mechanism.Hydrogel acts as colorimetric chemosensors through naked-eye and fluorescent light response for Hg2+ion under visible light and light at 365 nm.

    Supplementary materials:Synthesis and characterization of compound RBH,RA1,RA2,and additional spectra of RA1are shown in Fig.S1-S3,S12.Synthesis and characterization of compound RBH,RA1,RA2(Fig.S1-S3,S8,S9),effect of solvent ratio,pH,reaction time on fluorescence intensity(Fig.S4,S6),UV absorption and fluorescence emission upon addition of different metal ions(Fig.S5,S7,S11),lifetime decays and theoretical model(Fig.S10,S12)are also shown.

    V.ACKNOWLEDGMENTS

    This work was supported by the Fundamental Research Funds for the Central Universities (KYLX15 0125)and National Major Scienti fic Instruments and Equipment Development Pro jects (2014YQ060773).

    [1]O.Tavakoli and H.Yoshida,Environ.Sci.Technol.39, 2357(2005).

    [2]F.Yan,T.Zheng,S.Guo,D.Shi,Z.Han,S.Zhou,and L.Chen,Spectrochim.Acta A 151,881(2015).

    [3]G.B.Cai,G.X.Zhao,X.K.Wang,and S.H.Yu,J. Phys.Chem.C 114,12948(2010).

    [4]P.B.Tchounwou,W.K.Ayensu,N.Ninashvili,and D. Sutton,Environ.Toxicol.18,149(2003).

    [5]J.S.Wu,I.C.Hwang,K.S.Kim,and J.S.Kim,Org. Lett.9,907(2007).

    [6]S.H.Kim,J.S.Kim,S.M.Park,and S.K.Chang, Org.Lett.8,371(2006).

    [7]M.Wennberg,T.Lundh,I.A.Bergdahl,G.Hallmans, J.H.Jansson,B.Stegmayr,H.M.Custodio,and S. Skerfving,Environ.Res.100,330(2006).

    [8]J.W.Lee,H.S.Jung,P.S.Kwon,J.W.Kim,R.A. Bartsch,Y.Kim,S.J.Kim,and J.S.Kim,Org.lett. 10,3801(2008).

    [9]W.H.Hsu,S.J.Jiang,and A.C.Sahayam,Talanta 117,268(2013).

    [10]A.Q.Shah,T.G.Kazi,J.A.Baig,H.I.Afridi,and M.B.Arain,Food Chem.134,2345(2012).

    [11]J.F.Callan,A.P.de Silva,and D.C.Magri,Tetrahedron 61,8551(2005).

    [12]R.W.Ramette and E.B.Sandell,J.Am.Chem.Soc. 78,4872(1956).

    [13]D.S.Mcclure,J.Chem.Phys.20,682(1952).

    [14]M.M.Pires and J.Chmielewski,Org.Lett.10,837 (2008).

    [15]J.F.Zhang,Y.Zhou,J.Yoon,Y.Kim,S.J.Kim,and J.S.Kim,Org.Lett.12,3852(2010).

    [16]B.Bag and A.Pal,Org.Biomol.Chem.9,915(2011).

    [17]F.Y.Yan,D.L.Cao,M.Wang,N.Yang,Q.H.Yu,L. F.Dai,and L.Chen,J.Fluoresc.22,1249(2012).

    [18]H.L.Li,J.L.Fan,F.L.Song,H.Zhu,J.J.Du,S.G. Sun,and X.J.Peng,Chem.Eur.J.16,12349(2010).

    [19]L.X.Wu,Y.R.Dai,and G.Marriott,Org.Lett.13, 2018(2011).

    [20]H.N.Kim,M.H.Lee,H.J.Kim,J.S.Kim,and J. Yoon,Chem.Soc.Rev.37,1465(2008).

    [21]M.Beija,C.A.M.Afonso,and J.M.G.Martinho, Chem.Soc.Rev.38,2410(2009).

    [22]B.Sen,M.Mukherjee,S.Pal,K.Dhara,S.K.Mandal, A.R.Khuda-Bukhsh,and P.Chattopadhyay,Rsc.Adv. 4,14919(2014).

    [23]N.Wanichacheva,O.Hanmeng,S.Kraithong,and K. Sukrat,J.Photoch.Photobio.A 278,75(2014).

    [24]B.Biswal and B.Bag,Org.Biomol.Chem.11,4975 (2013).

    [25]X.Zhang,Y.Shiraishi,and T.Hirai,Org.Lett.9,5039 (2007).

    [26]L.K.Kumawat,N.Mergu,A.K.Singh,and V.K. Gupta,Sensor Actuat B 212,389(2015).

    [27]S.Chemate and N.Sekar,Sensor Actuat B 220,1196 (2015).

    [28]H.Zheng,Z.H.Qian,L.Xu,F.F.Yuan,L.D.Lan, and J.G.Xu,Org Lett.8,859(2006).

    [29]X.Cheng,Q.Li,J.Qin,and Z.Li,ACS Appl.Mater. Inter.2,1066(2010).

    [30]C.Y.Huang,Method Enzymol.87,509(1982).

    [31]J.L.Zhang,Y.M.Zhou,W.P.Hu,L.Zhang,Q. Huang,and T.S.Ma,Sensor Actuat.B 183,290 (2013).

    [32]J.Ding,H.Li,C.Wang,J.Yang,Y.Xie,Q.Peng,Q. Li,and Z.Li,ACS Appl.Mater.Inter.7,11369(2015).

    [33]A.Papadopoulou,R.J.Green,and R.A.Frazier,J. Agr.Food Chem.53,158(2005).

    [34]E.S.Lander and N.J.Schork,Science 266,353(1994).

    [35]Y.J.Liu,H.Chao,J.H.Yao,H.Li,Y.X.Yuan,and L.N.Ji,Helv.Chim.Acta 87,3119(2004).

    [36]Y.Tian,Y.Wang,Y.Xu,Y.Liu,D.Li,and C.Fan, Sci.China Chem.58,514(2015).

    [37]Y.Wang,Y.Cui,R.Liu,F.Gao,L.Gao,and X.Gao, Sci.China Chem.58,819(2015).

    [38]X.J.Liu,M.Zhang,M.P.Yang,B.Li,Z.Cheng,and B.Q.Yang,Tetrahedron 71,8194(2015).

    [39]H.Ozay and O.Ozay,Chem.Eng.J.232,364(2013)

    ?Author to whom correspondence should be addressed.E-mail: qizhengjian@seu.edu.cn

    久久久久精品人妻al黑| 欧美人与性动交α欧美精品济南到| 日韩中文字幕视频在线看片| 亚洲精品av麻豆狂野| av免费在线观看网站| 国产精品电影一区二区三区 | 女人被躁到高潮嗷嗷叫费观| 夜夜骑夜夜射夜夜干| 欧美日韩国产mv在线观看视频| 91老司机精品| 久久国产精品人妻蜜桃| 国产在线精品亚洲第一网站| 国产片内射在线| 久久久久久久久免费视频了| 精品一区二区三区av网在线观看 | 欧美日韩亚洲高清精品| 19禁男女啪啪无遮挡网站| 桃红色精品国产亚洲av| 精品国内亚洲2022精品成人 | 在线观看www视频免费| 天天影视国产精品| 国产成人精品无人区| 亚洲精品乱久久久久久| 亚洲一区中文字幕在线| 久久精品国产亚洲av香蕉五月 | 美女扒开内裤让男人捅视频| 黄色成人免费大全| 午夜福利,免费看| 亚洲av国产av综合av卡| 中文字幕最新亚洲高清| 国产日韩一区二区三区精品不卡| 久久人人爽av亚洲精品天堂| 黑人欧美特级aaaaaa片| 在线播放国产精品三级| 最新美女视频免费是黄的| 青青草视频在线视频观看| 久久热在线av| 窝窝影院91人妻| 国产高清国产精品国产三级| 一级毛片精品| 国产老妇伦熟女老妇高清| 成年人午夜在线观看视频| 欧美日韩亚洲高清精品| 黑丝袜美女国产一区| 国产成人av教育| 一级毛片精品| videos熟女内射| 一个人免费在线观看的高清视频| 久久久精品国产亚洲av高清涩受| 一本综合久久免费| 在线观看免费视频网站a站| 欧美日韩亚洲综合一区二区三区_| 他把我摸到了高潮在线观看 | a级毛片黄视频| 老熟妇乱子伦视频在线观看| 亚洲一区中文字幕在线| 天堂俺去俺来也www色官网| 午夜精品国产一区二区电影| 一个人免费看片子| av在线播放免费不卡| 欧美老熟妇乱子伦牲交| 成年人免费黄色播放视频| videosex国产| 国产有黄有色有爽视频| 电影成人av| bbb黄色大片| 国产精品久久电影中文字幕 | 亚洲欧美激情在线| 女性生殖器流出的白浆| 一区二区av电影网| 免费在线观看视频国产中文字幕亚洲| 亚洲精品久久成人aⅴ小说| 久久久久久久久久久久大奶| 久久热在线av| 丝瓜视频免费看黄片| 90打野战视频偷拍视频| 欧美一级毛片孕妇| 日韩一区二区三区影片| 亚洲成人国产一区在线观看| av福利片在线| 无限看片的www在线观看| 亚洲精品在线观看二区| 国产一区二区三区视频了| 美女主播在线视频| 一进一出抽搐动态| 精品国产一区二区久久| 久久香蕉激情| 免费不卡黄色视频| 精品欧美一区二区三区在线| 搡老乐熟女国产| 日日爽夜夜爽网站| 亚洲午夜精品一区,二区,三区| 国产精品98久久久久久宅男小说| 黄色 视频免费看| 丁香欧美五月| 亚洲第一青青草原| 久久人妻熟女aⅴ| 无人区码免费观看不卡 | 亚洲全国av大片| 国产一区二区激情短视频| 一区二区av电影网| 欧美精品亚洲一区二区| 亚洲精品美女久久av网站| 电影成人av| 精品国产一区二区久久| 色婷婷久久久亚洲欧美| av天堂在线播放| 视频区欧美日本亚洲| 99久久精品国产亚洲精品| 久久精品亚洲精品国产色婷小说| 两个人免费观看高清视频| 18在线观看网站| 人人澡人人妻人| 12—13女人毛片做爰片一| 欧美日韩中文字幕国产精品一区二区三区 | 成人手机av| 看免费av毛片| 在线观看一区二区三区激情| 最新的欧美精品一区二区| 制服人妻中文乱码| 成人国产一区最新在线观看| 啪啪无遮挡十八禁网站| 窝窝影院91人妻| 极品少妇高潮喷水抽搐| 一边摸一边抽搐一进一小说 | 午夜视频精品福利| 性高湖久久久久久久久免费观看| 亚洲精品乱久久久久久| 动漫黄色视频在线观看| 少妇裸体淫交视频免费看高清 | 嫁个100分男人电影在线观看| 人人澡人人妻人| 一二三四在线观看免费中文在| 久久人人爽av亚洲精品天堂| 如日韩欧美国产精品一区二区三区| 亚洲精品中文字幕一二三四区 | 中文字幕色久视频| 久久久久国产一级毛片高清牌| 欧美国产精品一级二级三级| 亚洲avbb在线观看| 亚洲中文日韩欧美视频| 成年版毛片免费区| 在线观看人妻少妇| 久久久精品免费免费高清| 国产精品自产拍在线观看55亚洲 | 国产麻豆69| 咕卡用的链子| 女人被躁到高潮嗷嗷叫费观| 亚洲中文字幕日韩| 国产男靠女视频免费网站| av视频免费观看在线观看| 十八禁人妻一区二区| 成人三级做爰电影| www日本在线高清视频| 免费日韩欧美在线观看| 精品少妇一区二区三区视频日本电影| 国产av一区二区精品久久| 99精国产麻豆久久婷婷| 大香蕉久久成人网| 久久久久精品国产欧美久久久| 激情视频va一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 好男人电影高清在线观看| 久久av网站| 老鸭窝网址在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲免费av在线视频| 久久久久久久久免费视频了| 精品少妇一区二区三区视频日本电影| 精品人妻在线不人妻| 天天添夜夜摸| 18禁黄网站禁片午夜丰满| 国精品久久久久久国模美| 免费日韩欧美在线观看| av欧美777| 亚洲国产精品一区二区三区在线| 亚洲欧洲日产国产| 丰满少妇做爰视频| 亚洲 国产 在线| 99re在线观看精品视频| 亚洲成av片中文字幕在线观看| 亚洲天堂av无毛| 黄色毛片三级朝国网站| 在线观看66精品国产| 纯流量卡能插随身wifi吗| 岛国毛片在线播放| 精品国产乱码久久久久久男人| 大型av网站在线播放| 美女主播在线视频| 可以免费在线观看a视频的电影网站| 男男h啪啪无遮挡| 在线观看人妻少妇| 国产亚洲精品久久久久5区| 国产国语露脸激情在线看| 窝窝影院91人妻| 精品少妇一区二区三区视频日本电影| 国产在线一区二区三区精| 日韩三级视频一区二区三区| 精品一区二区三区四区五区乱码| 99国产精品一区二区三区| 99re在线观看精品视频| 1024视频免费在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 老司机福利观看| 色视频在线一区二区三区| 欧美人与性动交α欧美软件| 老熟女久久久| 欧美激情 高清一区二区三区| 日本a在线网址| 国产欧美日韩一区二区精品| 青青草视频在线视频观看| 国产精品免费视频内射| 搡老岳熟女国产| 久久中文字幕一级| 在线观看一区二区三区激情| 欧美激情高清一区二区三区| 一级毛片女人18水好多| 欧美黑人精品巨大| 日韩一卡2卡3卡4卡2021年| 国产亚洲av高清不卡| 国产一区二区三区在线臀色熟女 | 99热国产这里只有精品6| 激情在线观看视频在线高清 | 黄色片一级片一级黄色片| 亚洲午夜精品一区,二区,三区| 日韩三级视频一区二区三区| 成人18禁高潮啪啪吃奶动态图| 丁香六月天网| 国产欧美日韩综合在线一区二区| 国产精品98久久久久久宅男小说| 男女之事视频高清在线观看| 亚洲成人手机| 久久久水蜜桃国产精品网| 欧美另类亚洲清纯唯美| 男女午夜视频在线观看| 国产极品粉嫩免费观看在线| 动漫黄色视频在线观看| 亚洲精品自拍成人| 亚洲午夜精品一区,二区,三区| 女人久久www免费人成看片| 国产精品 欧美亚洲| 亚洲全国av大片| 国产黄色免费在线视频| 国产精品久久久久久精品电影小说| 亚洲精品国产精品久久久不卡| 欧美另类亚洲清纯唯美| tube8黄色片| 中文字幕人妻熟女乱码| 热re99久久精品国产66热6| 亚洲av第一区精品v没综合| 久久青草综合色| 午夜福利乱码中文字幕| 日韩中文字幕视频在线看片| 女人高潮潮喷娇喘18禁视频| 黄色片一级片一级黄色片| 亚洲五月色婷婷综合| 91av网站免费观看| 欧美日韩国产mv在线观看视频| 99精品欧美一区二区三区四区| 婷婷丁香在线五月| 精品亚洲成国产av| 免费观看a级毛片全部| 亚洲精品一卡2卡三卡4卡5卡| 俄罗斯特黄特色一大片| 亚洲国产欧美网| 深夜精品福利| 免费久久久久久久精品成人欧美视频| 久久久国产欧美日韩av| 精品熟女少妇八av免费久了| 久久久久久免费高清国产稀缺| 亚洲av日韩在线播放| 一区二区三区国产精品乱码| 十八禁网站免费在线| 免费av中文字幕在线| 久久久国产欧美日韩av| 久9热在线精品视频| 亚洲精品av麻豆狂野| 国产精品1区2区在线观看. | 国产99久久九九免费精品| 在线观看免费视频日本深夜| 丝袜喷水一区| 亚洲九九香蕉| 日韩大片免费观看网站| 热99国产精品久久久久久7| 丁香欧美五月| 亚洲欧美一区二区三区黑人| 国产亚洲欧美精品永久| 国产老妇伦熟女老妇高清| 亚洲国产看品久久| 天天操日日干夜夜撸| √禁漫天堂资源中文www| 黄色视频在线播放观看不卡| 久久中文看片网| 国产欧美日韩一区二区精品| 久久精品亚洲精品国产色婷小说| av视频免费观看在线观看| 亚洲成国产人片在线观看| 三上悠亚av全集在线观看| 大香蕉久久成人网| 亚洲三区欧美一区| 嫁个100分男人电影在线观看| 下体分泌物呈黄色| 国产精品久久久久久人妻精品电影 | 国产免费av片在线观看野外av| av又黄又爽大尺度在线免费看| 黑人巨大精品欧美一区二区蜜桃| 女警被强在线播放| 亚洲全国av大片| 亚洲天堂av无毛| 亚洲三区欧美一区| 一区二区三区精品91| 水蜜桃什么品种好| cao死你这个sao货| 色老头精品视频在线观看| 欧美日韩亚洲综合一区二区三区_| 啦啦啦视频在线资源免费观看| 久久av网站| 亚洲欧洲精品一区二区精品久久久| 国产又色又爽无遮挡免费看| 熟女少妇亚洲综合色aaa.| 天天躁狠狠躁夜夜躁狠狠躁| 国产区一区二久久| 丁香六月天网| 国产成人欧美在线观看 | 99国产综合亚洲精品| 一区二区三区国产精品乱码| 90打野战视频偷拍视频| 9191精品国产免费久久| 国产av精品麻豆| 精品少妇内射三级| 大陆偷拍与自拍| 色综合婷婷激情| 成年人免费黄色播放视频| 天堂8中文在线网| 亚洲精品一二三| 男女高潮啪啪啪动态图| 成人亚洲精品一区在线观看| 亚洲av成人一区二区三| 俄罗斯特黄特色一大片| 又黄又粗又硬又大视频| 18禁美女被吸乳视频| 91九色精品人成在线观看| 视频区欧美日本亚洲| 久久 成人 亚洲| 国产一区二区三区综合在线观看| 人人澡人人妻人| 黄片小视频在线播放| 黄色丝袜av网址大全| 日韩欧美一区视频在线观看| 男女高潮啪啪啪动态图| 久久中文看片网| av天堂久久9| 欧美午夜高清在线| 国产精品一区二区免费欧美| 老汉色av国产亚洲站长工具| 久久 成人 亚洲| 欧美激情极品国产一区二区三区| 日日摸夜夜添夜夜添小说| 捣出白浆h1v1| 精品少妇久久久久久888优播| 一本一本久久a久久精品综合妖精| 国产精品一区二区在线不卡| 午夜福利,免费看| 久久国产精品人妻蜜桃| 亚洲精品美女久久久久99蜜臀| 人人妻人人添人人爽欧美一区卜| 一二三四社区在线视频社区8| 久久人妻av系列| 宅男免费午夜| 精品一区二区三区av网在线观看 | 多毛熟女@视频| 日韩欧美一区视频在线观看| 欧美大码av| 亚洲精品一二三| 日韩成人在线观看一区二区三区| 一本—道久久a久久精品蜜桃钙片| 久久久国产欧美日韩av| 成人三级做爰电影| 少妇被粗大的猛进出69影院| 最近最新中文字幕大全电影3 | 欧美日韩中文字幕国产精品一区二区三区 | 国产成人欧美在线观看 | 俄罗斯特黄特色一大片| 国产精品熟女久久久久浪| 男女免费视频国产| 色老头精品视频在线观看| 人成视频在线观看免费观看| 麻豆成人av在线观看| 麻豆av在线久日| 中文亚洲av片在线观看爽 | 黄色怎么调成土黄色| 久久久久精品人妻al黑| 色综合婷婷激情| 极品教师在线免费播放| 色婷婷久久久亚洲欧美| 亚洲精品自拍成人| 亚洲精品国产区一区二| 无人区码免费观看不卡 | 男女高潮啪啪啪动态图| 美女高潮喷水抽搐中文字幕| 窝窝影院91人妻| videosex国产| 欧美人与性动交α欧美软件| av网站免费在线观看视频| 亚洲欧美精品综合一区二区三区| 久久午夜亚洲精品久久| 日韩欧美国产一区二区入口| 性欧美人与动物交配| 18禁黄网站禁片免费观看直播| 特大巨黑吊av在线直播| 久久天堂一区二区三区四区| 亚洲av成人精品一区久久| 亚洲精品美女久久av网站| 看片在线看免费视频| 舔av片在线| 国产精品99久久久久久久久| 欧美黑人巨大hd| 国产亚洲精品久久久久久毛片| 亚洲成av人片免费观看| 好男人电影高清在线观看| 97超级碰碰碰精品色视频在线观看| 久久国产乱子伦精品免费另类| 精品午夜福利视频在线观看一区| 男女做爰动态图高潮gif福利片| 90打野战视频偷拍视频| 小蜜桃在线观看免费完整版高清| 日本免费a在线| 亚洲午夜精品一区,二区,三区| 久久精品91无色码中文字幕| 色哟哟哟哟哟哟| 亚洲人与动物交配视频| 美女大奶头视频| 美女扒开内裤让男人捅视频| 亚洲av美国av| 久久久久久久久中文| 日本免费a在线| h日本视频在线播放| 桃红色精品国产亚洲av| 大型黄色视频在线免费观看| 欧美丝袜亚洲另类 | 精品久久久久久久久久免费视频| 美女午夜性视频免费| 久久精品国产99精品国产亚洲性色| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| 此物有八面人人有两片| 99精品久久久久人妻精品| 国产一级毛片七仙女欲春2| 青草久久国产| 动漫黄色视频在线观看| 亚洲五月天丁香| 欧美绝顶高潮抽搐喷水| 琪琪午夜伦伦电影理论片6080| 天堂网av新在线| 色吧在线观看| 久久人妻av系列| 美女高潮喷水抽搐中文字幕| 国产成人av激情在线播放| 波多野结衣高清作品| 怎么达到女性高潮| 天堂√8在线中文| 精品国产乱子伦一区二区三区| 美女高潮喷水抽搐中文字幕| 最新美女视频免费是黄的| 最新中文字幕久久久久 | 亚洲va日本ⅴa欧美va伊人久久| 在线观看美女被高潮喷水网站 | 久久亚洲精品不卡| 久久精品国产99精品国产亚洲性色| 国产av在哪里看| 欧美日韩福利视频一区二区| 亚洲人成网站在线播放欧美日韩| 日本a在线网址| 一本综合久久免费| 久久香蕉国产精品| 黑人欧美特级aaaaaa片| 日韩欧美一区二区三区在线观看| 首页视频小说图片口味搜索| 伊人久久大香线蕉亚洲五| 给我免费播放毛片高清在线观看| 国产视频一区二区在线看| 午夜免费激情av| 亚洲国产高清在线一区二区三| 国产精品久久视频播放| 99视频精品全部免费 在线 | 12—13女人毛片做爰片一| 欧美日韩一级在线毛片| 国产一区二区三区视频了| 成人av在线播放网站| 99国产极品粉嫩在线观看| 亚洲人成伊人成综合网2020| 人人妻人人澡欧美一区二区| 精品久久蜜臀av无| 国产一区二区在线观看日韩 | 亚洲色图 男人天堂 中文字幕| 免费在线观看影片大全网站| 亚洲欧美日韩高清专用| 国产一区二区三区视频了| 欧美成狂野欧美在线观看| 黄色 视频免费看| 最近在线观看免费完整版| 国产一级毛片七仙女欲春2| 午夜福利视频1000在线观看| 中文亚洲av片在线观看爽| a在线观看视频网站| 老汉色∧v一级毛片| 国产真实乱freesex| 亚洲一区二区三区色噜噜| 一本一本综合久久| 全区人妻精品视频| 欧美xxxx黑人xx丫x性爽| 国产成+人综合+亚洲专区| 久久久久久大精品| 久久久精品大字幕| 国产伦精品一区二区三区视频9 | 亚洲熟妇中文字幕五十中出| 级片在线观看| 免费av毛片视频| 亚洲国产精品久久男人天堂| 男女下面进入的视频免费午夜| 成人三级做爰电影| 午夜福利欧美成人| 成人亚洲精品av一区二区| 男人舔女人下体高潮全视频| 一卡2卡三卡四卡精品乱码亚洲| 巨乳人妻的诱惑在线观看| 美女高潮的动态| 2021天堂中文幕一二区在线观| 老司机午夜十八禁免费视频| 老熟妇仑乱视频hdxx| 国产真实乱freesex| 一区二区三区高清视频在线| 午夜精品久久久久久毛片777| 亚洲一区二区三区色噜噜| 国产蜜桃级精品一区二区三区| www.熟女人妻精品国产| 亚洲,欧美精品.| 啦啦啦观看免费观看视频高清| 国产三级黄色录像| 欧美乱色亚洲激情| 亚洲黑人精品在线| 国产精品98久久久久久宅男小说| 桃红色精品国产亚洲av| 一进一出抽搐gif免费好疼| 97超级碰碰碰精品色视频在线观看| 一级a爱片免费观看的视频| 亚洲国产精品久久男人天堂| 日韩欧美三级三区| 高潮久久久久久久久久久不卡| 九九热线精品视视频播放| 又黄又粗又硬又大视频| 啪啪无遮挡十八禁网站| 国产精品久久久久久久电影 | 国产成人一区二区三区免费视频网站| 免费在线观看影片大全网站| 别揉我奶头~嗯~啊~动态视频| 亚洲专区中文字幕在线| 操出白浆在线播放| 老汉色∧v一级毛片| 久9热在线精品视频| 黄色 视频免费看| 午夜精品久久久久久毛片777| 又粗又爽又猛毛片免费看| 最新在线观看一区二区三区| 精华霜和精华液先用哪个| 午夜激情福利司机影院| 亚洲乱码一区二区免费版| 法律面前人人平等表现在哪些方面| 国产精品免费一区二区三区在线| 99精品在免费线老司机午夜| 极品教师在线免费播放| 亚洲av五月六月丁香网| 给我免费播放毛片高清在线观看| www.自偷自拍.com| 欧美一级毛片孕妇| 免费电影在线观看免费观看| 窝窝影院91人妻| a级毛片a级免费在线| 国产精品99久久久久久久久| 亚洲黑人精品在线| 日韩中文字幕欧美一区二区| 免费观看的影片在线观看| 亚洲成人久久性| 国产日本99.免费观看| 啦啦啦免费观看视频1| 国产av一区在线观看免费| 亚洲熟妇中文字幕五十中出| 亚洲av片天天在线观看| 最近最新中文字幕大全免费视频| 一二三四在线观看免费中文在| 毛片女人毛片| 男人舔奶头视频| 精品午夜福利视频在线观看一区| 1024香蕉在线观看| 国产av麻豆久久久久久久| 一个人免费在线观看电影 | 最近最新中文字幕大全免费视频| 女同久久另类99精品国产91| 国产真实乱freesex| 久久久国产欧美日韩av| 国内久久婷婷六月综合欲色啪| 国产精品一区二区三区四区久久| 色综合婷婷激情| 亚洲欧美日韩卡通动漫| 国产精品久久久久久久电影 | 久久午夜综合久久蜜桃| 狠狠狠狠99中文字幕| 男人舔奶头视频| 亚洲在线观看片| 一夜夜www| 嫩草影视91久久| 淫妇啪啪啪对白视频| 日本 欧美在线| 成人三级黄色视频| 免费一级毛片在线播放高清视频|