• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TiO2/BiVO4,a Heterojuncted Microfiber with Enhanced Photocatalytic Performance for Methylene Blue under Visible Light Irradiation

    2017-05-18 09:31:13ZhanyingMaXiaoboLiCaihuaZhouLingjuanDengGuangFan
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年2期

    Zhan-ying Ma,Xiao-bo Li,Cai-hua Zhou,Ling-juan Deng,Guang Fan

    College of Chemistry and Chemical Engineering,Xianyang Normal University,Xianyang 712000,China

    TiO2/BiVO4,a Heterojuncted Microfiber with Enhanced Photocatalytic Performance for Methylene Blue under Visible Light Irradiation

    Zhan-ying Ma?,Xiao-bo Li,Cai-hua Zhou,Ling-juan Deng,Guang Fan

    College of Chemistry and Chemical Engineering,Xianyang Normal University,Xianyang 712000,China

    (Dated:Received on September 6,2016;Accepted on November 17,2016)

    Novel TiO2/BiVO4microfiber heterojunctions were constructed using cotton as biomorphic templates.The as-synthesized samples were characterized by scanning electron microscope, X-ray diffraction,X-ray photoelectron spectroscopy,UV-Vis diffuse reflectance spectra and photocatalytic experiment.The morphology of the as-synthesized TiO2/BiVO4composites was consisted of a large quantity of microfiber structures with diameter from 2.5μm to 5μm, and the surface of samples became more coarse and compact with the increase of weight ratio of TiO2.The TiO2/BiVO4samples with proper content(10.00wt%)showed the highest photocatalytic degradation activity for methylene blue(MB)degradation among all the samples under visible light,and 88.58%MB could be degraded within 150 min.The enhancement of photocatalytic activity was mainly attributed to the formation of n-n heterojunction at the contact interface of TiO2and BiVO4,which not only narrowed the band gap of BiVO4for extending the absorption range of visible light,but also promoted the transfer of charge carriers across interface.A possible photodegradation mechanism of MB in the presence of TiO2/BiVO4microfibrous photocatalyst was proposed.

    TiO2/BiVO4,Microfiber,Visible-light-response,Photocatalysis

    I.INTRODUCTION

    Numerous efforts had been made to develop highly effective photocatalysts for the photodecomposition of environmental contaminants like pesticides,dyes and heavy metal in water[1].Monoclinic scheelite-type BiVO4,one kind of visible light photocatalyst with the energy band gap of 2.4 eV,also attracted a great deal of attention or pollutant elimination under visible light irradiation[2,3].However,unavoidably,the photocatalytic activity of pure BiVO4need to be further improved owing to the rapid recombination rate of photogenerated carriers[4].Therefore,it was necessary to develop effective solution to improve the charge separation efficiency and enhance visible-light photoactivity. Forming a heterojunction between BiVO4and another semiconductor such as V2O5[5],Bi2O3[6],Cu2O[7,8], and InVO4[9],was an effective way to address the above two issues[10,11].

    As is known,TiO2,as a wide band-gap semiconductor,has been applied widely because of its high stability,low cost,nontoxity and efficient photocatalytic activities under UV light irradiation[12].Although it could not be excited under visible light,it had suitable energy band that could effectively transfer the photo-generated charges from BiVO4[13,14].Hu et al.[15]reported that heterojunctions exhibited higher photocatalytic activity than the individual components, which confirmed that the combination of BiVO4and TiO2was an effective way to enhance the photocatalytic activity of BiVO4under visible light irradiation.Zhang et al.[14]prepared TiO2/BiVO4spherical composite photocatalysts by the one-step microwave hydrothermal method.They investigated the photocatalytic degradation of RhB under UV light and Xe lamp irradiation,results indicated that the degradation efficiency can reach over 94%after 330 min UV irradiation,but only about 83%after 360 min Xe lamp irradiation.Considering the fact that the morphological diversity of inorganic materials had a significant impact on functional diversification and potential applications[16,17],it was expected that the TiO2/BiVO4composite with a special morphological diversity would have a good photocatalytic activity under visible light irradiation.

    Microfibers possessed high specific surface area and small thickness.These characteristics assured microfibers potential to be exposed to more light and contact with more dye molecules;meanwhile,its separation and migration efficiency of photogenerated electronhole pairs was effectively improved.In addition,the micro-pores could serve as transport paths for small molecules,benefiting the reactant molecules to get to the reactive sites on the framework walls of photocatalysts[18],which further accelerate the chemical reactions and result in the excellent photocatalytic activity.Therefore,instead of the corresponding nanoparticles, microfibers being an important subclass of microstructural materials are deemed as potential good candidates for practical applications[19].

    Template procedures were an ideal way to control material structure including the outer morphology and size and the inner pore size and distribution[20].In recent years,biomorphic mineralization has been noteworthy as a new fabrication technique for functional materials, which is a technique that produces materials with morphologies and structures resembling those of nature living things[21].Biomorphic mineralization was of lowcost,environmentally benign,and easily removed with heating procedures.Natural cotton had been selected as templates to produce various advanced biomorphic materials,such as MgO[22],NiO[23]and In2O3[24].

    In the present work,we synthesized pure BiVO4and a series of biomorphic TiO2/BiVO4microfibers by using cotton fibers as biomorphic templates,and demonstrated their physical properties.The photocatalytic properties of the as-synthesized TiO2/BiVO4heterojunctions were tested by the photodegradation of methylene blue(MB)aqueous solution under visible light irradiation.The mechanism of enhanced photocatalytic activity of TiO2/BiVO4heterojunction photocatalysts was also discussed.

    II.EXPERIMENTS

    A.Materials and Reagents

    Bi(NO3)3·5H2O,NH4VO3,citric acid,nitric acid, ammonia,n-tetrabutyltitanate(C16H36O4Ti),methylene blue(MB),and other chemicals were obtained from Shanghai Chemical Reagents Company(China).All chemicals were of analytical reagent grade and used as received without further purification.Ultrapure deionized water was used throughout the experiments.

    B.Preparation of TiO2/BiVO4heterojunction microfibers

    In a typical procedure,0.485 g of Bi(NO3)3·5H2O and the same molar of citric acid were dissolved in 30 mL of 2 mol/L nitric acid aqueous solution,adjusting the pH value to 7.0 by dropwisely titration of 1 mol/L ammonia solution under stirring,and transparent solution A was formed.Meanwhile,0.117 g of NH4VO3was dissolved in deionized water at 70°C and the same molar of citric acid was added to obtain dark green solution B.After mixing of solution A and B, uniform dark green solution C was obtained.Different dosage of n-tetrabutyltitanate(C16H36O4Ti)was dissolved in ethanol at room temperature,thus paleyellow solution D was formed.The dried and loose cotton fibers were immersed into the mixture of solution C and D.After immersing for 24 h,the cotton fibers were taken out,dried at 50°C for 12 h,which were then placed in an alundum crucible and calcined in air at 500°C for 1 h.Finally,pale-yellow TiO2/BiVO4hetero junction were obtained.The weight ratio of C16H36O4Ti/(C16H36O4Ti+Bi(NO3)3·5H2O)was controlled from 12%to 48%,and the final TiO2/BiVO4were labelled as 4.58%,10.00%,16.54%and 24.53%, respectively.

    For reference,pure BiVO4microfibers were synthesized under the same conditions without adding n-C16H36O4Ti.

    C.Characterization

    The phase identification of the as-prepared powders were obtained on a Riggaku D/max-3C X-ray powder X-ray diffractometry using Cu Kα radiation (λ=1.5405 nm,40 kV,40 mA).Scanning electron microscopy(SEM)images were observed by Hitachi S-4800 scanning electron microscopy.UV-visible diffuse reflectance spectra(UV-Vis DRS)of the samples were recorded on Lambd 950 spectrophotometer using BaSO4as reference.

    D.Measurement of photocatalytic activity

    The photocatalytic activity of TiO2/BiVO4heterojunctions was evaluated by measuring the degradation of MB under visible light at room temperature.In a typical process,100 mg of TiO2/BiVO4samples were added to 100 mL of 10 mg/L MB solution and then stirred in the dark for 30 min,which allowed it to reach adsorption equilibrium and uniform dispersity.The solution was then exposed to visible light irradiation from a 500 W Xe lamp at room temperature.UV radiation was cut offby using a 400-nm filter,prior to irradiation of the sample.During the irradiation,5 mL of the suspension was sequentially taken from the reactor every 30 min,and filtered immediately through 0.22μm membrane filters for UV-Vis analysis.The decolorization efficiency was monitored by determining the absorbance around 664 nm in the UV-Vis spectra.

    III.RESULTS AND DISCUSSION

    A.SEM analysis

    Figure 1 shows SEM images of pure BiVO4and TiO2/BiVO4hetero junctions via cotton biomorphic template.From Fig.1,it is clearly shown that all these samples are consisted of a large quantity of microfibers with diameter from 2.5μm to 5μm,indicating the formation of biomorphic TiO2/BiVO4via cotton template.These microfibers may present as straight or twisted shapes,which are well consistent with thestraight or twisted shapes of cotton template.Compared with pure BiVO4microfibers(Fig.1(a)),the surfaces of TiO2/BiVO4heterojunctions(Fig.1(b),(c), (d),and(e))are coarse and have many microstructures on them.In addition,the framework of TiO2/BiVO4becomes more compact with the increase of weight ratio of TiO2.Therefore,the amount of n-tetrabutyltitanate in the impregnation step has an important influence on the microstructure of TiO2/BiVO4surface.

    FIG.1 SEM images of(a)pure BiVO4,(b)4.58%TiO2/BiVO4,(c)10.00%TiO2/BiVO4,(d)16.54%TiO2/BiVO4,and (e)24.53%TiO2/BiVO4.

    FIG.2 XRD patterns of pure BiVO4and TiO2/BiVO4heterojunctions.

    B.XRD analysis

    The phases and crystallinity of the as-prepared pure BiVO4and TiO2/BiVO4heterojunctions were characterized by XRD,as shown in Fig.2.From Fig.2(a),the crystal form of the BiVO4can be identified to the monoclinic scheelite type with characteristic 2θ values of 18.85°(110),28.85°(011),30.54°(121),34.38°(040), 35.19°(200),39.91°(002),42.40°(141),46.00°(211), 46.82°(150),47.25°(132),50.00°(240),50.26°(222), 53.21°(161),58.28°(123)and 59.38°(321)respectively (JCPDS card No.14-0688).The main characteristic peaks appearing in the TiO2/BiVO4composites were similar to those of pure BiVO4.However,a careful comparison shows a small peak at 2θ=25.4°in XRD patterns of TiO2/BiVO4hetero junctions,but not in XRD patterns of pure BiVO4sample.This small peak was ascribed to the characteristic peak(101)of anatase TiO2(JCPDS card No.21-1272),indicating the existence of TiO2.With increasing the contents of TiO2in the composites,the peak intensities of the anatase TiO2increased.No extra peaks except for BiVO4and TiO2crystal phase were detected in TiO2/BiVO4heterojunctions.It was also found that after the introduction of TiO2into BiVO4,the intensities of the diffraction peaks (011)increased,in XRD patterns of 4.58%TiO2/BiVO4and 10.00%TiO2/BiVO4samples,indicating that theydisplayed higher crystallinity than others.Furthermore, from the(011)peak,there was a slight shift to high diffraction angel in 10.00%TiO2/BiVO4XRD pattern, compared with pure BiVO4(Fig.2(b)),indicating that the appropriate introduction of TiO2into BiVO4alter the crystalline structure of BiVO4.All these results confirmed that the heterojunction structure was formed between TiO2and BiVO4.

    FIG.3 XPS survey spectra(A)and high-resolution XPS spectra of Bi4f(C),V2p(D),O1s(E)and C1s(F)for the surface of pure BiVO4(a)and 10.00%TiO2/BiVO4heterojunctions(b),(B)high-resolution XPS spectra of Ti2p in 10.00%TiO2/BiVO4heterojunctions.

    C.XPS analysis

    To contrast the electronic environment and surface composition of 10.00%TiO2/BiVO4heterojunctions with that of pure BiVO4,survey XPS and high-resolution XPS analysis of both pure BiVO4and 10.00%TiO2/BiVO4were performed and the results are shown in Fig.3.From Fig.3(A),Bi,V,O and C(the carbon contamination is often ubiquitous in the XPS measurements[25])were observed in the samples of both pure BiVO4and 10.00%TiO2/BiVO4where they were expected to be.In the 10.00%TiO2/BiVO4sample, two peaks with binding energies of 464.1 and 458.2 eV, corresponding to Ti2p1/2and Ti2p3/2were detected (Fig.3(B)),which was in excellent agreement with the literature data for TiO2[26]in 10.00%TiO2/BiVO4composites.From the high-resolution XPS spectra of the Bi4f region in Fig.3(C),it could be seen that the peaks of Bi4f7/2and Bi4f5/2in pure BiVO4were observed at 158.7 and 164.1 eV,respectively,which was in agreement with the literature data[27].While the peaks of Bi4f7/2and Bi4f5/2for 10.00%TiO2/BiVO4shifted to 159.0 and 164.3 eV,respectively.From Fig.3(D),V2p peaks in the XPS spectra located at 524.0 and 516.5 eV for pure BiVO4shifted to 524.4 and 516.9 eV for 10.00%TiO2/BiVO4.A similar shift was also found in the XPS spectra of O1s(529.5 eV for pure BiVO4shifted to 529.8 eV)(Fig.3(E)).Such inner shift of the Bi4f,V2p,and V1s orbits originated from the interaction of BiVO4and TiO2.The analysis distinctly revealed that the interaction between BiVO4and TiO2was chemical bonding rather than a simple physical mixing.

    D.UV-Vis DRS analysis

    The energy band structure feature of a semiconductor was a key factor in determining its photocatalytic activity.Figure 4(a)presented UV-Vis diffuse reflectance analysis of the pure BiVO4,pure TiO2and 10.00%TiO2/BiVO4samples.It was shown that pure TiO2displayed no absorption of visible-light and the spectrum of pure BiVO4showed absorption from UV light to 600 nm,while the 10.00%TiO2/BiVO4showed drastic and stronger photoabsorption in the 400-600 nm wavelength range due to the band gap transition.For a crystalline semiconductor,the opti-cal absorption near the band edge follows Eq.(1)[28]:

    FIG.4(a)UV-Vis diffuse reflectance spectra of pure BiVO4,pure TiO2and 10.00%TiO2/BiVO4heterojunctions.(b)Plots of(αhν)2versus the band gap energies(Eg).

    where α,ν,Eg,and A are the absorption coefficient, the light frequency,the band gap,and a constant,respectively.Therefore,plot(αhν)2versus hν,and the band gap energies(Eg)can be estimated by extrapolating the linear region straight line to the hν axis intercept as shown in Fig.4(b).In this work,the band gaps(Eg)were estimated to be 2.80,3.20,and 2.16 eV from the absorption edge,corresponding to the pure BiVO4,pure TiO2and 10.00%TiO2/BiVO4.Thus, 10.00%TiO2/BiVO4has a wider photoabsorption range and more suitable band gap for photocatalytic applications.

    Therefore,based on these characterization results, it can be deduced that the photoabsorption performance of BiVO4was greatly improved by coupling the appropriate amount of TiO2,and 10.00%TiO2/BiVO4composite will be a potential candidate as visible-light driven photocatalyst.

    E.Photocatalytic properties

    The photocatalytic activity of the TiO2/BiVO4heterojunctions was evaluated for degradation of dye MB in aqueous solution under visible light,and compared with pure BiVO4under the same condition. Figure 5 shows the photodegradation efficiency of MB under visible light in the presence of pure BiVO4and TiO2/BiVO4heterojunctions.It was observed that the pure BiVO4degraded about 33.22%of MB in 150 min while 4.58%TiO2/BiVO4,10.00%TiO2/BiVO4, 16.54%TiO2/BiVO4,and 24.53%TiO2/BiVO4degraded about 64%,88.58%,71.07%,and 74.28%,respectively.It was clear that the coupling of TiO2with BiVO4increased the photodegradation efficiency of MB under the visible light.It also showed that the photocatalytic activity of TiO2/BiVO4was strongly dependent on the coupling amount of TiO2.Optimum TiO2coupling amount in this study was 10.00%.This was possibly due to the enhanced light absorption intensity of the TiO2/BiVO4heterojunction as emphasized by UV-Vis DRS spectra in Fig.4.An excess of TiO2amount(16.54%and 24.53%)might block the incident visible light irradiation on BiVO4,due to the fact that TiO2displays no absorption of visible-light.

    Regular 10.00%TiO2/BiVO4particles(10.00%TiO2/ BiVO4-R)were synthesized by a similar procedure to that of 10.00%TiO2/BiVO4microfiber,except that no cotton template was used.Figure 6 shows the photocatalytic performance of 10.00%TiO2/BiVO4-R and 10.00%TiO2/BiVO4for the degradation of MB.The inset described SEM images of 10.00%TiO2/BiVO4-R and 10.00%TiO2/BiVO4. As shown,10.00%TiO2/BiVO4-R showed the lowest activity of 54.11%after 150 min irradiation,while microfiber 10.00%TiO2/BiVO4showed a significant activity as high as 88.58%.Such dramatic activity enhancement should be due to the large surface area [29].With a larger surface area,the number of active surface sites increases and so does the surface charge carrier transfer rate in photocatalysis,which can contribute to the higher photocatalytic activity[30]. Furthermore,the microfiber structure can facilitate mass transfer and increase the accessibility of active sites on 10.00%TiO2/BiVO4surface to methylene bluemolecules.The result was in agreement with the idea that photocatalytic activity is structure dependent [16,17].

    FIG.5 Photodecomposition of MB under visible light irradiation in the presence of pure BiVO4(a),and TiO2/BiVO4heterojunctions(b)4.58%TiO2/BiVO4, (c)10.00%TiO2/BiVO4,(d)16.54%TiO2/BiVO4,(e) 24.53%TiO2/BiVO4.

    Figure 7 shows the time-dependent UV-Vis absorption spectra of MB during photoirradiation with pure BiVO4and 10.00%TiO2/BiVO4heterojunction. As shown,the characteristic absorption band around 664 nm could be attributed to a chromophore containing a long conjugated π system,while the absorption peaks at 245 and 292 nm were related to aromatic rings[31].From Fig.7,it could be seen that the 10.00%TiO2/BiVO4(Fig.7(b))decolorized MB faster than pure BiVO4(Fig.7(a)),and the characteristic absorption peaks at 292 and 664 nm diminished gradually with no detection of any new peak.According to Fig.7(b),the decrease of the 664 nm absorption band suggested the conjugated π bond of the molecule structure of MB was broken[31].The decrease of the absorption bands around 245 and 292 nm in the UV region was due to the breaking of the aromatic rings in the MB molecules which confirms the destruction of degradation intermediates including aminobenzothiazole and aniline[31,32].These results indicated that the MB molecules were photocatalytically decomposed by 10.00%TiO2/BiVO4under visible light irradiation. The exact intermediate and the final products were currently unclear,and will be elucidated in future work.

    In order to investigate the mechanism of the enhanced photocatalytic activity of heterojunction,the band edge positions of conduction band(CB)and valence band (VB)of the two semiconductors at the point of zero charge should be confirmed according to the empirical equation[33,34]:

    FIG.6 Photodecomposition of MB under visible light irradiation in the presence of 10%TiO2/BiVO4-R and 10%TiO2/BiVO4microfiber hetero junctions.

    Where χ is the absolute electronegativity of the semiconductor,which is defined as the geometric mean of the absolute electronegativity of the constitute atoms. According to the equation above,the calculated CB and VB of TiO2are-0.2 and 3.00 eV,and of BiVO4are 0.11 and 2.27 eV,respectively.When the BiVO4and TiO2were closely contacted together and visible-light irradiation took place,BiVO4was excited and the electrons(e-)in the VB were excited to the CB,leaving the holes(h+)behind.Then the excited-state electrons could be easily injected from the CB of BiVO4into the CB of coupled TiO2due to the joint of the electric fields between two materials.The electrons and holes transfer between the semiconductors made the Fermi level of TiO2to move down,while that of BiVO4move up until pseudo-equilibrium was reached.Thus, TiO2/BiVO4n-n junction would be formed,which was favorable for the fast separation of electrons and holes due to the effect of inner electric field,analogous to BiOI/TiO2[35],Bi2O2CO3/BiOI[36],Bi2WO6/TiO2[37]and TiO2/Bi2O3[38]heterojunctions.Thus,based on the above results,a possible photocatalytic mechanism of TiO2/BiVO4heterostructure was proposed,as shown in Scheme 1.

    FIG.7 UV-Vis absorption spectra of MB during the photodegradation process in the presence of(a)pure BiVO4and (b)10.00%TiO2/BiVO4.

    The photoinduced holes in VB of BiVO4were powerful oxidative species,they were able to oxidize water (H2O)molecules and hydroxyl(OH-)groups to gener-ate highly reactive hydroxyl(·OH)radicals.Meanwhile, the electrons injected into the CB of TiO2would then be captured by O2to yield·O2-.Highly reactive·OH and ·O2-radicals had extremely strong oxidative capability to partially or completely mineralize MB molecules.In this way,the recombination of electron-hole pairs generated on BiVO4could be effectively reduced.The activity enhancement of BiVO4was ascertained owing to this high efficient separation mode for TiO2/BiVO4heterostrucutre.Furthermore,the weak photosensitization effect of dyes on TiO2/BiVO4could be also favorable for the dyes degradation[39].

    Scheme 1 The energy band diagram of TiO2/BiVO4heterostructure photocatalyst after the thermodynamic equlilibrium.

    IV.CONCLUSION

    In this study,TiO2/BiVO4hetero junctions with microfiber structures were synthesized by using cotton as biotemplates.It was demonstrated that coupling of TiO2with BiVO4can result in a high active photocatalyst for degradation of dye MB in aqueous solution under visible light irradiation.The introduction of TiO2led to the formation of n-n heterojunction at the contact interface of TiO2and BiVO4,which not only narrowed the band gap of BiVO4for extending the absorption range of visible light,but also promoted the transfer of charge carriers across interface for suppressing the recombination of photogenerated electron-hole pairs, and thus improved the photocatalytic performance of TiO2/BiVO4heterojunctions.The results indicated that the photocatalysts with proper coupling weight ratio of TiO2can efficiently catalyze the degradation of MB relative to pure BiVO4.10.00%TiO2/BiVO4photocatalyst showed the highest photocatalytic activity towards the degradation of MB,and 88.58%MB could be degraded within 150 min.This work provides a new insight for developing novel composite catalysts,as well as offering high efficient visible-light-driven photocatalysts for water purification and environmental remediation.

    V.ACKNOWLEDGMENTS

    This work was supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.2013JK0690),Fundamental Research Funds of Xianyang Normal University(No.14XSYK011, No.12XSYK025),Shaanxi Province Natural Science Foundation(No.2015JQ5188).

    [1]L.Dong,X.F.Zhang,X.L.Dong,X.X.Zhang,C. Ma,H.C.Ma,M.Xue,and F.Shi,J.Colloid.Inter. Sci.393,126(2013).

    [2]H.Q.Jiang,H.Endo,H.Natori,M.Nagai,and K. Kobayasha,J.Eur.Ceram.Soc.28,2955(2008).

    [3]G.Nagabhushana,P.G.Nagaraju,and G.T.Chandrappa,J.Mater.Chem.A 1,388(2013).

    [4]Y.F.Sun,B.Y.Qu,Q.Liu,S.Gao,Z.X.Yan,W.S. Yan,B.C.Pan,S.Q.Wei,and Y.Xie,Nanoscale 4, 3761(2012).

    [5]H.Q.Jiang,M.Nagai,and K.Kbbayashi,J.Alloy. Compd 479,821(2009).

    [6]L.Z.Li,B.Yan,J.Alloy.Compd 476,624(2009).

    [7]E.Aguilera-Ruiz,U.M.Garc′?a-P′erez,M.Garza-Galv′an,P.Zambrano-Robledo,and B.Berm′udez-Reys, J.Peral.Appl.Surf.Sci.328,361(2015).

    [8]Q.Yuan,L.Chen,M.Xiong,J.He,S.L.Luo,C.T. Au,and S.F.Yin,Chem.Eng.J.255,394(2014).

    [9]F.Guo,W.L.Shi,X.Lin,X.Yan,Y.Guo,and G.B. Che,Sep.Purif.Technol.141,246(2015).

    [10]X.J.Su,X.X.Zou,G.D.Li,X.Wei,C.Yan,Y.N. Wang,J.Zhao,L.J.Zhou,and J.S.Chen,J.Phys. Chem.C 115,8064(2011).

    [11]N.Wetchakun,S.Chaiwichain,B.Inceesungvorn,K. Pingmuang,S.Phanichphant,A.I.Minett,and J. Chen,ACS Appl.Mater.Inter.4,3718(2012).

    [12]A.Fujishima and K.Honda,Nature 238,37(1972).

    [13]J.Cao,C.C.Zhou,H.L.Lin,B.Y.Xu,and S.F. Chen,Appl.Surf.Sci.284,263(2013).

    [14]L.L.Zhang,G.Q.Tan,S.S.Wei,H.J.Ren,A.Xia, and Y.Y.Luo,Ceram.Int.39,8597(2013).

    [15]Y.Hu,D.Li,Y.Zheng,W.Chen,Y.H.He,Y.Shao,X. Z.Fu,and G.C.Xiao,Appl.Catal.B 104,30(2011).

    [16]L.Chen,R.Huang,M.Xiong,Q.Yuan,J.He,J.Jia, M.Y.Yao,S.L.Luo,C.T.Au,and S.F.Yin,Inorg. Chem.52,11118(2013).

    [17]L.Chen,R.Huang,S.F.Yin,S.L.Luo,and C.T.Au, Chem.Eng.J.193/194,123(2012).

    [18]D.R.Rolison,Science 299,1698(2003).

    [19]Z.Y.Liu,D.D.Sun,P.Guo,and J.O.Leckie,Nano. Lett.7,1081(2007).

    [20]S.Polarz and M.Antonietti,Chem.Commun.22,2593 (2002).

    [21]W.C.Li,A.H.Lu,C.Weidenthaler,and F.Schuth, Chem.Mater.16,5676(2004).

    [22]R.Q.Sun,L.B.Sun,Y.Chun,Q.H.Xu,and H.Wu, Micropor.Mesopor.Mat.111,314(2008).

    [23]L.J.Xie,W.Chu,Y.Y.Huang,and D.G.Tong,Mater. Lett.65,153(2011).

    [24]P.Song,Q.Wang,and Z.X.Yang,Sensor.Actuat.B 168,421(2012).

    [25]J.F.Moulder,W.F.Stickle,P.E.Sobol,and K. D.Bomben,in:J.Chastain Ed.Handbook of X-ray Photoelectron Spectroscopy,Eden Prairie:Perkin-Elmer Corp.,(1992).

    [26]X.Z.Liu,P.F.Fang,Y.Liu,Z.Liu,D.Z.Lu,Y.P. Gao,F.T.Chen,D.H.Wang,and Y.Q.Dai,J.Mater. Sci.49,8063(2014).

    [27]H.Y.Jiang,H.X.Dai,X.Meng,L.Zhang,J.G.Deng, Y.X.Liu,and C.T.Au,J.Environ.Sci.24,449(2012).

    [28]H.B.Fu,C.S.Pan,and W.Q.Yao,J.Phys.Chem.B 109,22432(2005).

    [29]L.J.Xie,W.Chu,Y.Y.Huang,and D.G.Tong,Mater. Lett.65,153(2011).

    [30]X.F.Song and L.Gao.J.Phys.Chem.C 112,15299 (2008).

    [31]B.H.Yao,C.Peng,W.Zhang,Q.K.Zhang,J.F.Niu, and J.Zhao,Appl.Catal.B 174/175,77(2015).

    [32]Q.Wang,S.L.Tian,J.Long,and P.Ning,Catal.Today,224,41(2014).

    [33]M.A.Butler and D.S.Ginley,J.Electrochem.Soc. 125,228(1978).

    [34]T.B.Li,G.Chen,C.Zhou,Z.Y.Shen,R.C.Jin,and J.X.Sun,Dalton.Transaction 40,6751(2011).

    [35]G.P.Dai,J.G.Yu,and G.Liu,J.Phys.Chem.C 115, 7339(2011).

    [36]L.Chen,S.F.Yin,S.L.Luo,R.Huang,Q.Zhang,T. Hong,and Peter C.T.Au,Ind.Eng.Chem.Res.51, 6760(2012).

    [37]Q.C.Xu,D.V.Wellia,Y.H.Ng,R.Amal,and T.T. Y.Tan,J.Phys.Chem.C 115,7419(2011).

    [38]Z.Y.Ma,L.J.Deng,X.B.Li,G.Fan,Chin.J.Chem. Phys.27,439(2014).

    [39]J.Cao,B.Y.Xu,H.L.Lin,B.D.Luo,and S.F.Chen, Catal.Commun.26,204(2012).

    ?Author to whom correspondence should be addressed.E-mail: mazhanying@163.com,Tel.:+86-29-33720704

    国产日韩欧美视频二区| 午夜激情久久久久久久| 9191精品国产免费久久| 中文字幕色久视频| 成人黄色视频免费在线看| 青草久久国产| 久久精品国产亚洲av高清一级| 99精国产麻豆久久婷婷| 香蕉丝袜av| 丝袜美腿诱惑在线| 精品国产乱码久久久久久男人| 国产一区二区三区在线臀色熟女 | 成人亚洲精品一区在线观看| 亚洲熟女精品中文字幕| 黄色a级毛片大全视频| 成年人午夜在线观看视频| 精品亚洲乱码少妇综合久久| 亚洲性夜色夜夜综合| 成人手机av| www.精华液| 国产成+人综合+亚洲专区| 老司机靠b影院| 国产91精品成人一区二区三区 | 精品国产一区二区久久| 99国产精品99久久久久| 999久久久国产精品视频| 午夜福利,免费看| 中亚洲国语对白在线视频| 免费观看a级毛片全部| 亚洲国产精品一区二区三区在线| 亚洲一码二码三码区别大吗| 久久久久视频综合| 在线 av 中文字幕| 日韩视频在线欧美| 99国产综合亚洲精品| 在线观看免费午夜福利视频| 一级毛片精品| 热re99久久精品国产66热6| 无限看片的www在线观看| 性色av乱码一区二区三区2| 亚洲精品久久成人aⅴ小说| 90打野战视频偷拍视频| 99热国产这里只有精品6| 久久午夜综合久久蜜桃| 性色av一级| 欧美变态另类bdsm刘玥| a在线观看视频网站| 国产精品免费大片| 侵犯人妻中文字幕一二三四区| 国产xxxxx性猛交| 久久人妻福利社区极品人妻图片| 亚洲av男天堂| 中文字幕高清在线视频| 一级毛片精品| 十八禁网站免费在线| 亚洲全国av大片| 伊人久久大香线蕉亚洲五| 午夜精品国产一区二区电影| 少妇 在线观看| 国产日韩欧美视频二区| 韩国精品一区二区三区| 秋霞在线观看毛片| 丝袜美足系列| 久久国产精品人妻蜜桃| 各种免费的搞黄视频| 中文精品一卡2卡3卡4更新| 法律面前人人平等表现在哪些方面 | 美女大奶头黄色视频| 精品欧美一区二区三区在线| 岛国在线观看网站| 午夜福利一区二区在线看| 伊人亚洲综合成人网| av网站在线播放免费| 国产精品久久久久成人av| 午夜免费成人在线视频| 香蕉丝袜av| 在线av久久热| a级毛片黄视频| 国产又爽黄色视频| 久久久久久久久久久久大奶| 搡老乐熟女国产| 亚洲专区国产一区二区| 亚洲久久久国产精品| 黄片大片在线免费观看| 精品国内亚洲2022精品成人 | 久久国产精品人妻蜜桃| 欧美亚洲日本最大视频资源| 90打野战视频偷拍视频| 亚洲精品乱久久久久久| 精品福利观看| 一本一本久久a久久精品综合妖精| 免费人妻精品一区二区三区视频| 亚洲 欧美一区二区三区| 国产成人欧美| 黑丝袜美女国产一区| 两人在一起打扑克的视频| netflix在线观看网站| 久久精品国产a三级三级三级| 高清视频免费观看一区二区| 老汉色av国产亚洲站长工具| 老熟女久久久| 国产在视频线精品| 国产在视频线精品| 一本—道久久a久久精品蜜桃钙片| 免费在线观看影片大全网站| 国产麻豆69| 永久免费av网站大全| 五月开心婷婷网| 天天躁狠狠躁夜夜躁狠狠躁| 9热在线视频观看99| 亚洲成人手机| 午夜免费鲁丝| 午夜久久久在线观看| 日韩有码中文字幕| 69精品国产乱码久久久| 欧美成狂野欧美在线观看| 久久人妻熟女aⅴ| 欧美日韩亚洲综合一区二区三区_| www.999成人在线观看| 欧美在线黄色| 少妇粗大呻吟视频| 欧美日韩av久久| 少妇 在线观看| 国产精品久久久久久精品古装| 亚洲 国产 在线| 久久国产精品男人的天堂亚洲| 精品人妻熟女毛片av久久网站| 国产精品自产拍在线观看55亚洲 | 黄色怎么调成土黄色| 久久久久久亚洲精品国产蜜桃av| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久av美女十八| 久久久久久免费高清国产稀缺| 丰满少妇做爰视频| 免费在线观看日本一区| 欧美少妇被猛烈插入视频| 国产国语露脸激情在线看| 中国美女看黄片| 一个人免费在线观看的高清视频 | 最近中文字幕2019免费版| 人人妻人人爽人人添夜夜欢视频| 日韩制服丝袜自拍偷拍| 国产精品熟女久久久久浪| 高潮久久久久久久久久久不卡| 色综合欧美亚洲国产小说| 欧美日韩一级在线毛片| 日韩大码丰满熟妇| 亚洲精品粉嫩美女一区| 国产一区有黄有色的免费视频| 日韩制服丝袜自拍偷拍| 国产高清视频在线播放一区 | 午夜福利在线免费观看网站| 欧美激情极品国产一区二区三区| 日韩欧美一区二区三区在线观看 | 精品一区二区三卡| 男人舔女人的私密视频| 精品亚洲乱码少妇综合久久| 乱人伦中国视频| 一级a爱视频在线免费观看| 午夜91福利影院| 国精品久久久久久国模美| 亚洲精品久久午夜乱码| 亚洲国产欧美在线一区| 狂野欧美激情性xxxx| 国产精品秋霞免费鲁丝片| 免费观看a级毛片全部| 麻豆av在线久日| 亚洲精品久久久久久婷婷小说| 国产亚洲精品久久久久5区| 色94色欧美一区二区| 90打野战视频偷拍视频| 99国产精品免费福利视频| 亚洲男人天堂网一区| 国产亚洲精品久久久久5区| 亚洲天堂av无毛| 成年人黄色毛片网站| 久热这里只有精品99| 亚洲精品美女久久av网站| 不卡一级毛片| 成年女人毛片免费观看观看9 | 欧美另类亚洲清纯唯美| 中文精品一卡2卡3卡4更新| 首页视频小说图片口味搜索| 免费久久久久久久精品成人欧美视频| 中国国产av一级| 成人18禁高潮啪啪吃奶动态图| 欧美久久黑人一区二区| 亚洲 欧美一区二区三区| 一区二区三区乱码不卡18| 下体分泌物呈黄色| 欧美成人午夜精品| 老熟妇仑乱视频hdxx| 日本五十路高清| 精品一品国产午夜福利视频| 久久天堂一区二区三区四区| 久久天堂一区二区三区四区| 国产欧美日韩精品亚洲av| 叶爱在线成人免费视频播放| 国产精品 国内视频| 国产精品成人在线| 国产区一区二久久| 国产一区二区 视频在线| 精品少妇内射三级| 午夜两性在线视频| 18禁观看日本| 日韩 欧美 亚洲 中文字幕| 亚洲,欧美精品.| 欧美激情极品国产一区二区三区| 国产有黄有色有爽视频| 午夜福利在线观看吧| 精品国产乱码久久久久久小说| 女人精品久久久久毛片| 国产亚洲午夜精品一区二区久久| 亚洲中文日韩欧美视频| 热99国产精品久久久久久7| 色播在线永久视频| 91精品国产国语对白视频| 欧美乱码精品一区二区三区| 超碰97精品在线观看| 啦啦啦免费观看视频1| 国产精品.久久久| 亚洲国产欧美一区二区综合| 日韩一卡2卡3卡4卡2021年| 成年女人毛片免费观看观看9 | 亚洲 欧美一区二区三区| 国产亚洲精品一区二区www | 亚洲人成77777在线视频| 久久精品国产亚洲av高清一级| 18在线观看网站| 爱豆传媒免费全集在线观看| 国产在视频线精品| 伊人久久大香线蕉亚洲五| 欧美黄色片欧美黄色片| 日韩欧美国产一区二区入口| 久久精品熟女亚洲av麻豆精品| 捣出白浆h1v1| 欧美亚洲 丝袜 人妻 在线| 国产亚洲欧美精品永久| av一本久久久久| 成年女人毛片免费观看观看9 | 久久精品人人爽人人爽视色| 成人黄色视频免费在线看| 两个人看的免费小视频| 一区二区三区激情视频| 国产成人系列免费观看| 国产成人精品久久二区二区91| 日本撒尿小便嘘嘘汇集6| 欧美日韩国产mv在线观看视频| 国产一区有黄有色的免费视频| 亚洲精品自拍成人| 久久久久久久精品精品| 国产精品影院久久| 免费观看人在逋| 最黄视频免费看| 黑人操中国人逼视频| 在线观看一区二区三区激情| 欧美激情高清一区二区三区| 最新在线观看一区二区三区| 欧美日韩国产mv在线观看视频| 老熟妇仑乱视频hdxx| 国产一区有黄有色的免费视频| 一本一本久久a久久精品综合妖精| 一级片免费观看大全| 熟女少妇亚洲综合色aaa.| 一边摸一边做爽爽视频免费| 国产在线视频一区二区| 日本vs欧美在线观看视频| 人人澡人人妻人| 麻豆乱淫一区二区| 国产淫语在线视频| 亚洲七黄色美女视频| 日本欧美视频一区| 天天躁狠狠躁夜夜躁狠狠躁| 十八禁网站网址无遮挡| 亚洲欧美一区二区三区黑人| 中文字幕人妻熟女乱码| 亚洲综合色网址| 国产在视频线精品| 精品亚洲成国产av| 黄色视频,在线免费观看| 亚洲一码二码三码区别大吗| 亚洲国产精品999| 老鸭窝网址在线观看| 一级片'在线观看视频| 久久久久网色| 欧美av亚洲av综合av国产av| 国产亚洲av片在线观看秒播厂| 一区二区日韩欧美中文字幕| 两性夫妻黄色片| 91精品国产国语对白视频| 精品亚洲成国产av| 日韩大码丰满熟妇| 最新在线观看一区二区三区| 啦啦啦在线免费观看视频4| 激情视频va一区二区三区| 精品人妻熟女毛片av久久网站| 别揉我奶头~嗯~啊~动态视频 | 日本欧美视频一区| 母亲3免费完整高清在线观看| 成人影院久久| 国产成人欧美| 国产三级黄色录像| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久精品电影小说| 国产欧美日韩一区二区三 | 国产成人免费无遮挡视频| 极品少妇高潮喷水抽搐| 69av精品久久久久久 | 黄色怎么调成土黄色| 18禁观看日本| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲欧美成人综合另类久久久| 亚洲欧美一区二区三区久久| 国产精品久久久av美女十八| 中国美女看黄片| 啦啦啦中文免费视频观看日本| 女人高潮潮喷娇喘18禁视频| 最近最新中文字幕大全免费视频| 欧美精品av麻豆av| 悠悠久久av| 亚洲九九香蕉| 法律面前人人平等表现在哪些方面 | 国产野战对白在线观看| 欧美精品人与动牲交sv欧美| 两人在一起打扑克的视频| 中亚洲国语对白在线视频| 法律面前人人平等表现在哪些方面 | 一区二区日韩欧美中文字幕| 人人妻人人爽人人添夜夜欢视频| 成人手机av| 天堂8中文在线网| 久久久久久久国产电影| 视频区欧美日本亚洲| 成人国语在线视频| 男人爽女人下面视频在线观看| 天堂俺去俺来也www色官网| 国产又色又爽无遮挡免| 久久九九热精品免费| 看免费av毛片| 丝瓜视频免费看黄片| 少妇裸体淫交视频免费看高清 | 丁香六月天网| 少妇裸体淫交视频免费看高清 | 老熟妇仑乱视频hdxx| 亚洲人成77777在线视频| 狂野欧美激情性xxxx| 黑人操中国人逼视频| 精品国产一区二区三区四区第35| 久久国产精品大桥未久av| 欧美日韩亚洲国产一区二区在线观看 | 99热全是精品| 一个人免费在线观看的高清视频 | 肉色欧美久久久久久久蜜桃| 亚洲综合色网址| 不卡一级毛片| 国产伦人伦偷精品视频| 国产男女内射视频| 欧美性长视频在线观看| 亚洲成av片中文字幕在线观看| 国产97色在线日韩免费| 黑人巨大精品欧美一区二区mp4| www.av在线官网国产| 国产精品偷伦视频观看了| 视频在线观看一区二区三区| 91大片在线观看| 自线自在国产av| 午夜福利视频在线观看免费| 美女脱内裤让男人舔精品视频| 国产男女内射视频| 建设人人有责人人尽责人人享有的| 国产精品国产av在线观看| 大陆偷拍与自拍| 成人国语在线视频| 久久午夜综合久久蜜桃| 在线 av 中文字幕| 精品一区二区三卡| 成人手机av| 欧美乱码精品一区二区三区| h视频一区二区三区| 欧美日韩一级在线毛片| 搡老熟女国产l中国老女人| 国产免费av片在线观看野外av| 久久久国产成人免费| 一本久久精品| 久久久欧美国产精品| 欧美日韩一级在线毛片| av电影中文网址| 少妇被粗大的猛进出69影院| 国产极品粉嫩免费观看在线| 国产在视频线精品| 巨乳人妻的诱惑在线观看| 国产一区二区三区av在线| 午夜91福利影院| 欧美黑人精品巨大| 欧美精品一区二区免费开放| 日韩免费高清中文字幕av| 亚洲,欧美精品.| 日韩大片免费观看网站| 韩国高清视频一区二区三区| 国产一区二区三区在线臀色熟女 | 免费av中文字幕在线| 美女视频免费永久观看网站| 日韩欧美免费精品| 制服人妻中文乱码| 丝袜喷水一区| 大香蕉久久成人网| 亚洲欧美一区二区三区久久| 宅男免费午夜| 操美女的视频在线观看| 亚洲精品第二区| 成人亚洲精品一区在线观看| 高清av免费在线| 老熟女久久久| 麻豆av在线久日| 美国免费a级毛片| 99精品欧美一区二区三区四区| 国产成人啪精品午夜网站| 精品人妻1区二区| 视频区图区小说| 亚洲熟女毛片儿| 久久人妻福利社区极品人妻图片| 黄色a级毛片大全视频| 极品少妇高潮喷水抽搐| 欧美精品一区二区免费开放| 99久久99久久久精品蜜桃| 国产淫语在线视频| 国产国语露脸激情在线看| 亚洲精品一卡2卡三卡4卡5卡 | 永久免费av网站大全| 免费在线观看日本一区| 巨乳人妻的诱惑在线观看| 99热国产这里只有精品6| 国产老妇伦熟女老妇高清| 亚洲中文av在线| 中文字幕最新亚洲高清| 国产亚洲av片在线观看秒播厂| 成人手机av| 下体分泌物呈黄色| 国产免费现黄频在线看| 国产人伦9x9x在线观看| 97在线人人人人妻| 成人手机av| 国产老妇伦熟女老妇高清| 国产在线视频一区二区| 亚洲国产中文字幕在线视频| 免费在线观看影片大全网站| 伊人亚洲综合成人网| 捣出白浆h1v1| 国产三级黄色录像| 国产亚洲欧美精品永久| 免费在线观看影片大全网站| 天天操日日干夜夜撸| 亚洲成人手机| 欧美黑人欧美精品刺激| 熟女少妇亚洲综合色aaa.| 久久人人97超碰香蕉20202| av网站免费在线观看视频| 男女国产视频网站| 少妇精品久久久久久久| 99精品久久久久人妻精品| 777久久人妻少妇嫩草av网站| 精品久久久久久久毛片微露脸 | 女人爽到高潮嗷嗷叫在线视频| 日韩欧美一区视频在线观看| 一进一出抽搐动态| 亚洲精品成人av观看孕妇| 美女脱内裤让男人舔精品视频| 一级毛片女人18水好多| 国产精品国产av在线观看| 久久久久国产一级毛片高清牌| 黑人巨大精品欧美一区二区蜜桃| 18在线观看网站| 免费在线观看视频国产中文字幕亚洲 | 最近最新中文字幕大全免费视频| 99国产精品99久久久久| 一本一本久久a久久精品综合妖精| 婷婷丁香在线五月| 丝瓜视频免费看黄片| 桃红色精品国产亚洲av| 国产精品1区2区在线观看. | 最新的欧美精品一区二区| 欧美性长视频在线观看| 久久久国产精品麻豆| 黄色怎么调成土黄色| 在线永久观看黄色视频| 亚洲成国产人片在线观看| av线在线观看网站| 91国产中文字幕| 亚洲精品第二区| 国产精品 国内视频| 精品福利观看| 国产亚洲精品久久久久5区| 国产免费视频播放在线视频| 免费在线观看完整版高清| 久久久精品94久久精品| 日韩 欧美 亚洲 中文字幕| 成人国产av品久久久| 一区二区三区乱码不卡18| 日韩熟女老妇一区二区性免费视频| 一级毛片女人18水好多| 热99久久久久精品小说推荐| 亚洲国产中文字幕在线视频| 成年动漫av网址| 各种免费的搞黄视频| 91成人精品电影| 三级毛片av免费| 亚洲专区中文字幕在线| tocl精华| 性色av一级| 亚洲美女黄色视频免费看| 秋霞在线观看毛片| 亚洲精品日韩在线中文字幕| 亚洲精品一卡2卡三卡4卡5卡 | 国产成人啪精品午夜网站| 美女午夜性视频免费| 国产成人欧美在线观看 | 欧美少妇被猛烈插入视频| av欧美777| 中文精品一卡2卡3卡4更新| 午夜免费成人在线视频| 国产欧美日韩一区二区精品| 欧美精品亚洲一区二区| 啪啪无遮挡十八禁网站| 欧美日韩av久久| 亚洲精华国产精华精| 久热爱精品视频在线9| 最近最新免费中文字幕在线| 一级a爱视频在线免费观看| 亚洲精华国产精华精| 777久久人妻少妇嫩草av网站| 日本a在线网址| 免费在线观看视频国产中文字幕亚洲 | 99精品久久久久人妻精品| 亚洲国产欧美日韩在线播放| 中文欧美无线码| 秋霞在线观看毛片| 久久精品成人免费网站| 日韩 亚洲 欧美在线| 精品福利永久在线观看| 国产精品久久久久久精品电影小说| 男女免费视频国产| 超碰成人久久| 日本a在线网址| 高清欧美精品videossex| 美女脱内裤让男人舔精品视频| 午夜福利影视在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 一本综合久久免费| 久久人妻福利社区极品人妻图片| 精品久久久精品久久久| 久久人妻福利社区极品人妻图片| 精品久久久精品久久久| 久久人妻福利社区极品人妻图片| 免费在线观看视频国产中文字幕亚洲 | 精品熟女少妇八av免费久了| 亚洲精品国产av蜜桃| 视频区图区小说| 国产日韩欧美亚洲二区| 首页视频小说图片口味搜索| 午夜影院在线不卡| 成人三级做爰电影| 国产淫语在线视频| 正在播放国产对白刺激| 亚洲精品一二三| 久久热在线av| 亚洲成av片中文字幕在线观看| 国产精品一区二区免费欧美 | 欧美中文综合在线视频| 国产精品香港三级国产av潘金莲| 高清av免费在线| 午夜福利乱码中文字幕| 伦理电影免费视频| 蜜桃在线观看..| 天堂8中文在线网| 欧美日本中文国产一区发布| 一区二区三区四区激情视频| 美女高潮到喷水免费观看| 亚洲中文日韩欧美视频| 国产一区二区三区在线臀色熟女 | 99热全是精品| 天天影视国产精品| 成人手机av| 精品国产超薄肉色丝袜足j| 香蕉国产在线看| 伊人久久大香线蕉亚洲五| av片东京热男人的天堂| 国产精品香港三级国产av潘金莲| 中文字幕最新亚洲高清| 国产一区二区激情短视频 | 久久久精品免费免费高清| 欧美中文综合在线视频| 欧美午夜高清在线| 日日爽夜夜爽网站| 99国产综合亚洲精品| 美国免费a级毛片| av超薄肉色丝袜交足视频| 亚洲精品第二区| 亚洲天堂av无毛| 精品人妻1区二区| 亚洲国产看品久久| 久久ye,这里只有精品| 巨乳人妻的诱惑在线观看| 午夜成年电影在线免费观看| 久久亚洲国产成人精品v| 中文字幕av电影在线播放| 日韩视频一区二区在线观看| 欧美精品啪啪一区二区三区 | 亚洲国产毛片av蜜桃av| 午夜福利在线观看吧| 亚洲自偷自拍图片 自拍| 交换朋友夫妻互换小说| 狂野欧美激情性bbbbbb| 伊人亚洲综合成人网| 侵犯人妻中文字幕一二三四区| 亚洲色图 男人天堂 中文字幕|