• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Mass Transport and Electrochemistry Coupling Scheme for Reliable Multiphysics Modeling of Planar Solid Oxide Fuel Cell Stack

    2017-05-18 09:31:11AngLiZijingLin
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年2期

    Ang Li,Zi-jing Lin

    Hefei National Lab oratory for Physical Sciences at the Microscales&CAS Key Lab oratory of Strongly-Coupled Quantum Matter Physics,Department of Physics,University of Science and Technology of China,Hefei 230026,China

    Efficient Mass Transport and Electrochemistry Coupling Scheme for Reliable Multiphysics Modeling of Planar Solid Oxide Fuel Cell Stack

    Ang Li,Zi-jing Lin?

    Hefei National Lab oratory for Physical Sciences at the Microscales&CAS Key Lab oratory of Strongly-Coupled Quantum Matter Physics,Department of Physics,University of Science and Technology of China,Hefei 230026,China

    (Dated:Received on October 23,2016;Accepted on November 05,2016)

    A multiphysics model for a production scale planar solid oxide fuel cell(SOFC)stack is important for the SOFC technology,but usually requires an unpractical amount of computing resource.The major cause for the huge computing resource requirement is identified as the need to solve the cathode O2transport and the associated electrochemistry.To overcome the technical obstacle,an analytical model for solving the O2transport and its coupling with the electrochemistry is derived.The analytical model is used to greatly reduce the numerical mesh complexity of a multiphysics model.Numerical test shows that the analytical approximation is highly accurate and stable.A multiphysics numerical modeling tool taking advantage of the analytical solution is then developed through Fluent?.The numerical efficiency and stability of this modeling tool are further demonstrated by simulating a 30-cell stack with a production scale cell size.Detailed information about the stack performance is revealed and briefly discussed.The multiphysics modeling tool can be used to guide the stack design and select the operating parameters.

    Simulation,Mesh setting,Analytical model,Computational efficiency,Numerical stability

    I.INTRODUCTION

    Solid oxide fuel cell(SOFC)has considerable potential in future clean energy industry due to its high efficiency and low level of pollutant emissions[1-5].The planar design is competitive due to its high volumetric power density and relatively low cost of manufacturing.For a widespread adoption of the technology, substantial improvement of SOFC stack performance to approach its theoretical limit is required.A theoretical modeling tool that can reliably analyze and predict the operating characteristics of production scale SOFC stacks is critically important for advancing the technology.

    The performance of SOFC stack are governed by the interplay of a number of physical processes such as fuel and air transport in flow channels and porous electrodes,electrochemical reaction at the triple-phaseboundary,current,and heat conduction in the stack. These physical processes are strongly coupled,resulting in considerable complexity about the stack operating behavior.Reliable improvement of stack performance can only be made based on in-depth understanding of the coupled multiphysics phenomenon.Multiphysics fully coupled models of production scale SOFC stacks are necessary for providing credible predictions of the stack performance in practical scenarios.

    The existing multiphysics numerical models of planar SOFC(pSOFC)stacks can be roughly classified into two categories.The first category or the early model was characterized by in-house developed software employing simplified SOFC geometries and coarse grids [6-14].The second category or the recent model focuses on developing user defined functions(UDFs)of commercial computational fluid dynamics(CFD)or finite element codes to take advantage of the well developed commercial tool[15-52].Even though the commercial code based models were reported more than a decade ago[31,46],the progress made since then is quite limited.

    For example,most models are in fact a single cell or even a partial single cell model[17-39],even though some may be claimed as stack models[31,33,35-37]. The main progress is reflected by using refined grids to capture the true structure of an SOFC cell.However,it is well recognized that a cell model is far from representative of an operating stack[54],but to extend similar grids to a production scale pSOFC stack demands a huge computing resource and is unrealistic.Efforts of developing stack models all used unrealistic stack geometries as well as partially coupled multiphysics descriptions[40-52].Simulations are often performed onstacks with no gas manifolds and interconnect ribs,or with very small cell sizes[47,52].Moreover,the solution for the species transport in the electrodes is omitted by assuming a direct relationship between the concentration polarizations and the local current[47,52].For example,the 5-and 10-cell stack models recently developed by Sudaprasert et al.[38]do not solve the gas transport in the electrodes and use an active cell area of only 11.6 cm2that is one order of magnitude smaller than the production cell size.Stack models with realistic geometries have been developed,but only the physical processes that are easy to couple are actually solved.Such stack models often avoid the electrochemistry and charge transport modeling by using the average current density and the average heat source[41,42, 44,48,49].Due to the strong coupling among the flow, electrochemistry and thermal conduction,however,the results of the physical fields obtained through simplified stack geometries or partially coupled scheme are often quite different from the reality.To summarize,none of the models reported so far possess the true features of a multiphysics pSOFC stack model that solves the full couplings of mass flows,chemical and electrochemical reactions,thermal and current conductions in a realistic pSOFC stack geometry.

    To fully realize the power of numerical models for the in-depth understanding and development of operating SOFC stacks,the development of realistic geometry based multiphysics stack model is mandatory.In this report,a major technical obstacle impeding the development of a full multiphysics pSOFC stack model is analyzed.The obstacle is overcome by designing an algorithm for the electrochemistry and mass transport coupling.The algorithm is capable of drastically reducing the grid complexity of stack model and tested to be highly accurate for practical requirements.The algorithm is implemented as a UDF interacting with the commercial CFD software of Fluent?,enabling a creation of an authentic multiphysics model for pSOFC stack.The fully coupled multiphysics stack model is shown to be numerically highly efficient.

    II.METHOD

    A.Analysis of technical problem in developing multiphysics SOFC stack model

    Understanding the difficulties of creating an authentic multiphysics model for production scale SOFC stacks is a necessary step towards solving the problem. Therefore,a brief analysis about the major difficulty is presented first.The analysis is based on realistic stack geometry parameters.

    A production scale SOFC stack may consist of,30 cell units.Each cell unit may include about 30 gaschannel-interconnect-rib pitches consisting of the cathode(positive)-electrolyte-anode(negative)(PEN)assembly,the air and fuel channels and interconnects. One major difficulty of developing a multiphysics SOFC stack model is about the description of O2transport and electrochemistry in the interconnect rib covered cathode area,as schematically illustrated in Fig.1.Due to the relatively low O2diffusion coefficient and the thinness of cathode layer(50-200μm)for O2flux,the O2concentration decreases rapidly away from the gas channel, as shown in Fig.1(c).To describe the O2transport in the cathode-rib area requires a very fine mesh setting, as illustrated in Fig.1(b)and(d).Moreover,the strong coupling between the rapidly varying O2concentration and the electrochemistry may cause instability in the numerical simulation.

    To solve the O2transport and electrochemistry process with reasonable accuracy,tests show that a minimum of 2000 grid points are required for a 2D repeating pitch unit model(Fig.1)with a pitch width of 4 mm and a cell height of 4.1 mm.For a 3D repeating pitch unit with a channel length of 120 mm,about 105grid points are necessary.A 30-cell stack with 30 repeating pitch units in each cell asks for 90 million grid points.Considering the grids for the stack flow channels,frame, walls,etc.,and the requirement of grid continuity,the total number of grid points is about 150 millions,unacceptably large for a multiphysics fully coupled simulation.Consequently,multiphysics simulations are only reported for single-cell stack models or stacks with a low number of cells and small cell sizes.

    B.Determination of cathode O2transport and current production

    As discussed above,a fine grid setting is required due to the need to describe the O2transport and electrochemistry in the cathode-rib area.However,the contribution of the cathode-rib area to the physical processes (O2distribution,current generation,heat production, etc.)is relatively small[18].That is,major resources are devoted to solutions of minor influences.Such an undesirable situation points to the need of finding a method to estimate the contribution of the cathode-rib area with reasonable accuracy and eliminate the associated fine mesh requirement.Such a method is derived below.

    FIG.1 Representative structural domain of SOFC stack and the associated O2distribution and mesh setting.(a)2D cross section of a repeating structural unit in a SOFC planar stack,(b)mesh setting in a repeating structural unit,(c)O2distribution in the cathode-rib region,and(d)mesh setting for the cathode-rib domain.

    Here weffis the effective width of the cathode-rib area that is electrochemically active and jcribis the corresponding average local current density.ˉk is the effective permeability coefficient andμthe viscosity coefficient, P the air pressure.Based on the effective parameter weff,we may write

    It is natural to expect that jcribincreases with the increased current density in the cathode-channel region, jcc.As a first order approximation,one may simply write,

    where h is a parameter independent of jcc.Combining Eqs.(2)-(5),we have

    Eq.(6)means that the contribution of the cathoderib region to the current generation per unit cell area is known once jccis given.That is,it is not necessary to solve jcribdirectly,eliminating the need of the described above fine mesh in the cathode-rib region.Naturally, the usefulness of Eq.(6)depends on whether a constant parameter h for different jccof practical importance can be found.

    C.Implementation of multiphysics model

    Eq.(1)shows that the O2distribution in the cathodechannel region is known once jccis given.Combining with Eq.(6),for the mass transport and electrochemistry processes,it is necessary only to solve jcc.Therefore,the overall electrical potential balance of an SOFC stack may be expressed as:

    Here Vstackis the total operating voltage of the stack,Vithe output voltage of the i th cell in the stack.ENernst, ηOhm,ηactand ηconare the Nernst potential,the Ohmic polarization,activation polarization,and the concentration polarization,respectively.The subscripts i,a,c denote the i th cell,the anode and the cathode,respectively.

    FIG.2 Comparison of the numerical grids for repeating pitch unit of SOFC required by a fully coupled multiphysics model without(a)and with(c)the analytical approximation developed in this work.(b)and(d)are the close-up view of(a)and (c),respectively.

    As there is no need to explicitly solve the O2transport in the cathode,the electrolyte and cathode layers may be combined into a single material layer with properly adjusted electrical and thermal properties.This observation can be used to further simplify the mesh setting and is implemented in our stack model.

    The multiphysics model is implemented through commercial CFD software of Fluent?[53]with a number of user defined functions(UDFs)to account for the specific nature of the SOFC physics.The UDFs account for the species source terms and the effective current generation reflected by Eq.(1)and Eq.(6)as well as the corresponding electrochemical reaction and heat source terms.The UDFs also include a module for the multi-component gas diffusion in the porous anode as described by an equivalent of the Dusty gas model[26]a dynamic reaction rate equation for the methane steam reforming [55].A self-consistent iteration scheme is also coded as a UDF to determine the cell and stack outputs of the current and voltages.

    III.RESULTS AND DISCUSSION

    A.Validation of the stack model

    To validate the use of Eq.(1)and Eq.(6)to simply the multiphysics in SOFC,a single-cell stack model with and without the analytical simplification is constructed to simulate the cell I-V curve.The material properties and geometric parameters described in Ref.[25]are used.The grid dependence test shows that the original model without the analytical approximation requires at least 105grids for each repeating pitch unit,while only 8400 grids are required by the model using the analytical expressions of Eq.(1)and(6).The details of themesh settings are shown in Fig.2.

    Figure 3 compares the I-V curves of the two models. The parameter h in Eq.(6)is set at 0.91.As shown in Fig.3,the results obtained with the analytical approximation are in excellent agreement with the results obtained by the fully coupled numerical model for all practical operating current outputs.The agreement demonstrates that the method developed here can be used to simulate SOFC stack and obtain reliable results.

    Moreover,it is important to note that the numerical instability induced by the coupled O2transport and electrochemical consumption in the cathode-rib region is removed in the new model.Figure 4 shows the numerical convergence behavior of the new multiphysics model.As shown in Fig.4,the residual curves are rather smooth for a multiphysics simulation of SOFC.The worst convergence of the continuity equations is about 10-4,in comparison with a typical convergence level of 10-2shown in the model presented in Fluent?[53].The result shows that the new model is numerically highly efficient and stable.

    FIG.3 Comparison of I-V curves obtained with(red)and without(blue)the analytical approximation.

    B.Multiphysics simulation of production scale SOFC stack

    With the help of Eq.(1)and Eq.(6),a truly multiphysics fully coupled numerical model can be constructed for a production scale pSOFC stack and simulated with high numerical efficiency.To demonstrate the success of the new method,numerical examples are provided for the simulations of the complex multiphysics behaviors of production scale SOFC stack with a heat convection boundary condition.

    Figure 5 shows a geometric model for a production scale 30-cell pSOFC stack with parallel flow design. The overall stack size is Lx×Ly×Lz=153 mm×131.5 mm×134 mm,where x is along the direction of flow in the gas channel indicated in Fig.1 and z is along the stack thickness direction.The PEN structures and relevant mesh setting were the same as that presented in Fig.2(c)and(d).The computational domain includes all cells,gas channels,manifolds,interconnects, seals and frames.The total number of grids for the model is about 1.2×107.Some operating parameters and boundary conditions for the simulations are indicated in Table I.In addition,the thermal boundary for the stack walls is of heat convection type.The film coefficient of the heat exchange is set to 15 W/(m2·K), contacting a free stream at 300 K.

    FIG.4 Examples of the residual convergent behaviors obtained by multiphysics simulation of an SOFC stack with the analytical relationship between the O2transport and current production.

    FIG.5(a)Geometric model of a 30-cell planar SOFC stack, (b)fuel or air flow path within the stack.

    Figure 6 shows the temperature distribution of thestack.Temperature varies strongly due to the endothermic steam reforming reaction coupled with the exothermic electrochemical reaction,the water-gas shift reaction,and the Ohmic heating.The heat transport within the stack is coupled to the thermal exchange with the surrounding environment.The boundary heat convection affected the stack temperature profile in a profound way.Temperature in the cell area near the stack end plate is markedly lower than that in the middle,with a temperature difference of about 50 K.The maximum temperature difference with the whole stack is about 200 K.The maximum temperature difference within a cell is the highest for the middle cell that is least influenced by the heat exchange with the stack surrounding.

    The reduced temperature in the cells near the stack end plates due to the boundary heat convection slowered down the endothermic steam reforming reaction therein.As a result,CH4is reformed faster in the middle cells than that in the end cells,as can be seen in Fig.7(a)and(b).The difference in the steam reforming reaction rate induced by the uneven temperature distribution causes different distributions of fuel gas species in different stack cells,as shown in Fig.7(c).The uneven temperature distribution also causes different current distributions for different cells in the stack,as shown in Fig.7(d).

    As the ionic conductivity of the electrolyte material is strongly temperature dependent,the different cell temperatures also result in different cell output volatges due to the constraint that every cell in the stack should generate the same amount of total current.Moreover, as the fuel flow viscosity is dependent on its gas composition and temperature,the flow distributions among different stack cells are necessarily different.Both the nonuniform flow distribution and cell output voltages are detrimental to the stack electrical efficiency and should be avoided as much as possible.Therefore,a reduced heat exchange between the stack and the environment is favorable.That is,a good insulation is not only beneficial for the stack thermal self-sustainability, but is also expected to be helpful to the stack performance.

    The numerical simulations of the above 30-cell stack are carried out in a 2-CPU/16-core PC.The fully coupled multiphysics model of production scale SOFC stack developed here is highly efficient and stable numerically. Simulations with this numerical model can provide reliable information about the stack operations and has great potential for guiding the stack design and the selection of operating parameters.

    TABLE I Basic operating parameters and boundary conditions for the stack simulations.

    FIG.6 Temperature distribution in(a)the whole stack, (b)three representative cells and flow channles.The three cells are the top,middle,and bottom cells of the stack.

    IV.CONCLUSION

    A crucial technical improvement for realizing a multiphysics fully coupled numerical model for production scale SOFC stack has been achieved.The improvement is made by developing an analytical model for solving the O2transport in the cathode and its coupling with the electrochemistry.The model significantly reduces the grid complexity and numerical stability.The analytical model is validated for all practical working conditions by comparing with the results obtained with rigorous simulations.The new algorithm makes it feasible to construct a multiphysics model for production scale SOFC stack.Numerical examples are shown by simulating a 30-cell stack,revealing a wealthy of valuable information about the stack operation and demonstrating the numerical efficiency and stability of the model. The multiphysics model developed here can be used to speed up the development of the SOFC technology by selecting the stack design and operating parameters.

    FIG.7 Distributions of(a)CH4,(b)H2,(c)H2O in kmol/m3,and(d)current densities in 10-4A/cm2.

    V.ACKNOWLEDGMENTS

    This work is supported the National Natural Science Foundation of China(No.11374272 and No.11574284), the National Basic Research Program of China (No.2012CB215405)and Collaborative Innovation Center of Suzhou Nano Science and Technology are gratefully acknowledged.

    [1]B.C.H.Steele and A.Heinzel,Nature 414,345(2001).

    [2]R.M.Ormerod,Chem.Soc.Rev.32,17(2003).

    [3]A.Hawkes,I.Staffell,D.Brett,and N.Brandon,Energy Environ.Sci.2,729(2009).

    [4]R.J.Gorte and J.M.Vohs,Ann.Rev.Chem.Biomol. Eng.2,9(2011).

    [5]I.Dincer and C.Acar,Int.J.Energy Res.39,585 (2015).

    [6]H.Yakabe,T.Ogiwara,M.Hishinuma,and I.Yasuda, J.Power Sources 102,144(2001).

    [7]E.Achenbach,J.Power Sources 49,333(1994).

    [8]J.R.Ferguson,J.M.Fiard,and R.Herbin,J.Power Sources 58,109(1996).

    [9]H.Yakabe,M.Hishunuma,M.Uratani,Y.Matsuzaki, and I.Yasuda,J.Power Sources 86,423(2000).

    [10]M.Iwata,T.Hikosaka,M.Morita M,T.Iwanari,K. Ito,K.Onda,Y.Esaki,Y.Sakaki,and S.Nagata,Solid State Ionics 132,297(2000).

    [11]P.V.Hendriksen,M odel S tudies of I nternal S team Ref or ming in S OF C S tack s.S olid Oxide F uel C ells (S OF C-5)P roceeding s,U.Stimming,S.C.Singhal, H.Tagawa,and W.Lehnert Eds.,Pennington,NJ:Electrochemical Society,Incorporated,1319(1997).

    [12]Z.J.Lin,Y.Gu,and X.H.Zhang,J.Electrochem.8, 445(2002).

    [13]D.H.Jeon,J.H.Nam,and C.J.Kim,J.Electrochem. Soc.153,A406(2006).

    [14]D.H.Jeon,Electrochim.Acta 54,2727(2009).

    [15]P.-W.Li and M.K.Chyu,J.Power Sources 124,487 (2003).

    [16]M.Lockett,M.J.H.Simmons,and K.Kendall,J. Power Sources 131,243(2004).

    [17]G.L.Wang,Y.Z.Yang,H.O.Zhang,and W.S.Xia, J.Power Sources 167,398(2007).

    [18]S.X.Liu,C.Song,and Z.J.Lin,J.Power Sources 183, 214(2008).

    [19]F.Arpino and N.Massarotti,Energy 34,2033(2009).

    [20]S.X.Liu,W.Kong,and Z.J.Lin,J.Power Sources 194,854(2009).

    [21]W.S.Xia,Y.Z.Yang,and Q.S.Wang,J.Power Sources 194,886(2009).

    [22]T.X.Ho,P.Kosinski,A.C.Hoffmann,and A.Vik,J. Power Sources 195,6764(2010).

    [23]A.Mauro,F.Arpino,and N.Massarotti,Int.J.Hydrogen Energy 36,10288(2011).

    [24]H.Iwai,Y.Yamamoto,M.Saito,and H.Yoshida,Energy 36,2225(2011).

    [25]W.Kong,J.Y.Li,S.X.Liu,and Z.J.Lin,J.Power Sources 204,106(2012).

    [26]W.Kong,H.Y.Zhu,Z.Y.Fei,and Z.J.Lin,J.Power Sources 206,171(2012).

    [27]M.Ni,Energy Convers.Manag.70,116(2013).

    [28]X.Han,D.Zheng,and B.F.Bai,Energy 67,575 (2014).

    [29]H.R.Amedi,B.Bazooyar,and M.R.Pishvaie,Energy 90,605(2015).

    [30]B.X.Wang,J.Zhu,and Z.Lin,Appl.Energy 176,1 (2016).

    [31]K.P.Recknagle,R.E.Williford,L.A.Chick,and M. A.Khaleel,J.Power Sources 113,109(2003).

    [32]N.Autissier,D.Larrain,J.Van herle,and D.Favrat, J.Power Sources 131,313(2004).

    [33]R.T.Leah,N.P.Brandon,and P.Aguiar,J.Power Sources 145,336(2005).

    [34]C.M.Huang,S.S.Shy,and C.H.Lee,J.Power Sources 183,205(2008).

    [35]A.A.Kulikovsky,J.Fuel Cell Sci.Technol.7,011015 (2010).

    [36]S.Hosseini,K.Ahmed,and M.O.Tad,J.Power Sources 234,180(2013).

    [37]B.Lin,Y.X.Shi,M.Ni,and N.S.Cai,Int.J.Hydrogen Energy 40,3035(2015).

    [38]M.Fardadi,D.F.McLarty,and F.Jabbari,Appl.Energy 178,43(2016).

    [39]W.X.Bi,D.F.Chen,and Z.J.Lin,Int.J.Hydrogen Energy 34,3873(2009).

    [40]M.Peksen,Int.J.Hydrogen Energy 36,11914(2011).

    [41]M.Peksen,Int.J.Hydrogen Energy 39,5137(2014).

    [42]S.S.Wei,T.H.Wang,and J.S.Wu,Energy 69,553 (2014).

    [43]A.Al-Masri,M.Peksen,L.Blum,and D.Stolten,Appl. Energy 135,539(2014).

    [44]L.Petruzzi,S.Cocchi,and F.Fineschi,J.Power Sources 118,96(2003).

    [45]A.C.Burt,I.B.Celik,R.S.Gemmen,and A.V. Smirnov,J.Power Sources 126,76(2004).

    [46]M.A.Khaleel,Z.Lin,P.Singh,W.Surdoval,and D. Collin,J.Power Sources 130,136(2004).

    [47]B.A.Haberman and J.B.Young,J.Fuel Cell Sci. Technol.5,011006(2008).

    [48]H.Mounir,A.El Gharad,M.Belaiche,and M Boukalouch,Energy Convers.Manag.50,2685(2009).

    [49]C.K.Lin,L.H.Huang,L.K.Chiang,and Y.P.Chyou, J.Power Sources 192,515(2009).

    [50]S.F.Lee and C.W.Hong,Int.J.Hydrogen Energy 35, 1330(2010).

    [51]K.Sudaprasert,R.P.Travis,and R.F.Martinez-Botas, J.Fuel Cell Sci.Technol.7,011002(2010).

    [52]K.Lai,B.J.Koeppel,K.S.Choi,K.P.Recknagle,X. Sun,L.A.Chick,V.Korolev,and M.Khaleel,J.Power Sources 196,3204(2011).

    [53]ANSYS,AN S Y S F LU E N T 14.5 in AN S Y S W ork bench U sers Guide,Canonsburg,PA:ANSYS, Inc.,(2012).

    [54]A.Li,X.Fang,and Z.Lin,ECS Trans.68,3025(2015).

    [55]B.X.Wang,J.Zhu,and Z.J.Lin,Chin.J.Chem.Phys. 28,299(2015).

    ?Author to whom correspondence should be addressed.E-mail: zjlin@ustc.edu.cn,Tel:+86-551-63606345

    免费在线观看视频国产中文字幕亚洲| 日本 欧美在线| 女生性感内裤真人,穿戴方法视频| 久久久国产欧美日韩av| 色老头精品视频在线观看| 国产亚洲精品av在线| 麻豆久久精品国产亚洲av| 在线国产一区二区在线| 午夜免费鲁丝| 精品国产乱子伦一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产精品久久男人天堂| 国产亚洲欧美98| 国产区一区二久久| 女警被强在线播放| 性色av乱码一区二区三区2| 嫩草影院精品99| 淫秽高清视频在线观看| 亚洲,欧美精品.| 一区二区日韩欧美中文字幕| 久久精品国产清高在天天线| 亚洲av成人av| 亚洲国产欧洲综合997久久, | 极品教师在线免费播放| 91麻豆精品激情在线观看国产| 一a级毛片在线观看| 久久人人精品亚洲av| 日韩 欧美 亚洲 中文字幕| 久久精品aⅴ一区二区三区四区| 草草在线视频免费看| 日韩精品免费视频一区二区三区| 日韩精品免费视频一区二区三区| 日韩欧美一区视频在线观看| 国产高清激情床上av| 一级a爱片免费观看的视频| 日韩精品免费视频一区二区三区| 丰满的人妻完整版| 少妇被粗大的猛进出69影院| 天天躁狠狠躁夜夜躁狠狠躁| 精品人妻1区二区| 一a级毛片在线观看| 久久精品国产清高在天天线| 亚洲成av片中文字幕在线观看| av有码第一页| 日日干狠狠操夜夜爽| 久久精品91无色码中文字幕| 18禁裸乳无遮挡免费网站照片 | www国产在线视频色| 亚洲avbb在线观看| 观看免费一级毛片| 精品久久久久久久人妻蜜臀av| 91在线观看av| 国产成+人综合+亚洲专区| 欧美日韩瑟瑟在线播放| 在线观看66精品国产| 精品一区二区三区视频在线观看免费| 不卡一级毛片| 男人舔女人的私密视频| 亚洲欧美日韩无卡精品| 国产亚洲欧美98| 久久久久久亚洲精品国产蜜桃av| 老司机福利观看| 黑人欧美特级aaaaaa片| 久久国产亚洲av麻豆专区| 熟妇人妻久久中文字幕3abv| 侵犯人妻中文字幕一二三四区| 欧美日韩精品网址| 一边摸一边做爽爽视频免费| 日韩中文字幕欧美一区二区| 精品国产超薄肉色丝袜足j| 亚洲一区二区三区色噜噜| 老熟妇仑乱视频hdxx| 国产男靠女视频免费网站| 久久精品夜夜夜夜夜久久蜜豆 | 男人舔女人的私密视频| av在线播放免费不卡| 亚洲第一青青草原| 欧美激情极品国产一区二区三区| 亚洲狠狠婷婷综合久久图片| 免费搜索国产男女视频| 好男人在线观看高清免费视频 | 天天躁夜夜躁狠狠躁躁| 国产一级毛片七仙女欲春2 | 国产精品久久久人人做人人爽| 男女下面进入的视频免费午夜 | 欧美乱妇无乱码| 麻豆成人午夜福利视频| 老司机午夜十八禁免费视频| 欧美中文日本在线观看视频| 黄色丝袜av网址大全| 久久青草综合色| 亚洲一区二区三区不卡视频| 黑人操中国人逼视频| 搞女人的毛片| 亚洲国产高清在线一区二区三 | 成人免费观看视频高清| 91av网站免费观看| 母亲3免费完整高清在线观看| a在线观看视频网站| 十分钟在线观看高清视频www| 免费看日本二区| 九色国产91popny在线| 在线观看舔阴道视频| 麻豆成人av在线观看| 午夜福利高清视频| 午夜a级毛片| 久久精品影院6| 国产黄色小视频在线观看| 久久精品国产亚洲av高清一级| 午夜免费激情av| 免费在线观看成人毛片| 亚洲成a人片在线一区二区| 亚洲天堂国产精品一区在线| 麻豆一二三区av精品| 天天一区二区日本电影三级| 妹子高潮喷水视频| 国产男靠女视频免费网站| 久久天堂一区二区三区四区| 久久香蕉国产精品| 搡老妇女老女人老熟妇| 又大又爽又粗| 麻豆成人午夜福利视频| 亚洲欧美精品综合久久99| 国产片内射在线| 中文字幕av电影在线播放| 手机成人av网站| 午夜视频精品福利| 亚洲真实伦在线观看| 久久精品国产亚洲av香蕉五月| 亚洲精品国产精品久久久不卡| 大型av网站在线播放| 久久九九热精品免费| e午夜精品久久久久久久| 高清在线国产一区| 国产亚洲欧美在线一区二区| 日韩欧美一区视频在线观看| 亚洲av成人av| 天天添夜夜摸| 老鸭窝网址在线观看| 久久九九热精品免费| 可以免费在线观看a视频的电影网站| 日本三级黄在线观看| 国产精品电影一区二区三区| 曰老女人黄片| 精品不卡国产一区二区三区| 天天躁夜夜躁狠狠躁躁| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品二区激情视频| 亚洲性夜色夜夜综合| 最近最新免费中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 无人区码免费观看不卡| 可以免费在线观看a视频的电影网站| 91大片在线观看| 国产成人精品久久二区二区免费| 超碰成人久久| 亚洲三区欧美一区| 伊人久久大香线蕉亚洲五| 国产免费av片在线观看野外av| 久久香蕉国产精品| 18禁美女被吸乳视频| 男人的好看免费观看在线视频 | 亚洲五月天丁香| av福利片在线| 校园春色视频在线观看| 国内精品久久久久精免费| 美国免费a级毛片| 精品不卡国产一区二区三区| av中文乱码字幕在线| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲中文字幕日韩| 日韩精品青青久久久久久| 亚洲精品久久成人aⅴ小说| 国产精品二区激情视频| av视频在线观看入口| 男人的好看免费观看在线视频 | 久久这里只有精品19| 91麻豆av在线| 麻豆一二三区av精品| 少妇 在线观看| 午夜影院日韩av| 亚洲男人天堂网一区| 国产高清有码在线观看视频 | 国产精品自产拍在线观看55亚洲| 午夜免费激情av| 首页视频小说图片口味搜索| 制服人妻中文乱码| 欧美性长视频在线观看| 精品久久久久久,| 女性生殖器流出的白浆| 制服诱惑二区| 精品一区二区三区av网在线观看| 国产亚洲精品综合一区在线观看 | 日本熟妇午夜| 每晚都被弄得嗷嗷叫到高潮| 亚洲激情在线av| 亚洲国产精品成人综合色| 欧美成人一区二区免费高清观看 | 久久久久久人人人人人| 亚洲成人国产一区在线观看| 日日干狠狠操夜夜爽| 人人妻人人澡人人看| 午夜久久久久精精品| 精品一区二区三区av网在线观看| 欧美日韩精品网址| 男女午夜视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久久久久国内视频| 中文字幕精品亚洲无线码一区 | av免费在线观看网站| www日本黄色视频网| 精品久久久久久久毛片微露脸| 欧美色视频一区免费| 久久伊人香网站| 欧美绝顶高潮抽搐喷水| 大型黄色视频在线免费观看| 国产欧美日韩精品亚洲av| 久久久久国内视频| 狂野欧美激情性xxxx| 精品卡一卡二卡四卡免费| 每晚都被弄得嗷嗷叫到高潮| 在线免费观看的www视频| 夜夜爽天天搞| 成人国语在线视频| 国产成人精品久久二区二区免费| 久久婷婷成人综合色麻豆| 在线永久观看黄色视频| 国产成人精品无人区| 久久久久久亚洲精品国产蜜桃av| 久久 成人 亚洲| 在线观看www视频免费| 国产欧美日韩一区二区三| 国产高清有码在线观看视频 | 国产精品av久久久久免费| 国产国语露脸激情在线看| 亚洲精品国产一区二区精华液| 欧美成人免费av一区二区三区| 淫妇啪啪啪对白视频| 成人18禁高潮啪啪吃奶动态图| 黄色成人免费大全| 高清毛片免费观看视频网站| 最近最新中文字幕大全免费视频| 欧美色欧美亚洲另类二区| 真人做人爱边吃奶动态| 色哟哟哟哟哟哟| 欧美黄色片欧美黄色片| 国产精品 国内视频| 十分钟在线观看高清视频www| 精品卡一卡二卡四卡免费| 此物有八面人人有两片| 亚洲精品国产精品久久久不卡| 国产真实乱freesex| 成人欧美大片| 日本免费一区二区三区高清不卡| 国产精品九九99| 国产国语露脸激情在线看| 中文字幕av电影在线播放| 12—13女人毛片做爰片一| 亚洲精品粉嫩美女一区| 久9热在线精品视频| 精品国产美女av久久久久小说| 亚洲国产精品成人综合色| 美女扒开内裤让男人捅视频| 婷婷亚洲欧美| 久久精品夜夜夜夜夜久久蜜豆 | 久久精品夜夜夜夜夜久久蜜豆 | 婷婷六月久久综合丁香| 免费搜索国产男女视频| 欧美成人免费av一区二区三区| 亚洲国产精品合色在线| 一a级毛片在线观看| 一夜夜www| 亚洲免费av在线视频| 好看av亚洲va欧美ⅴa在| 久久人人精品亚洲av| 欧美日韩亚洲综合一区二区三区_| 一卡2卡三卡四卡精品乱码亚洲| 日本黄色视频三级网站网址| 久久久久久大精品| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 午夜a级毛片| 亚洲av熟女| 国产久久久一区二区三区| 又紧又爽又黄一区二区| 巨乳人妻的诱惑在线观看| 男女之事视频高清在线观看| 亚洲一区高清亚洲精品| 一本大道久久a久久精品| 国产精品久久久av美女十八| 欧美成人性av电影在线观看| 欧美成人免费av一区二区三区| 欧美不卡视频在线免费观看 | 国产一区在线观看成人免费| 亚洲九九香蕉| 中出人妻视频一区二区| 午夜激情av网站| 黄色女人牲交| 亚洲五月婷婷丁香| 天堂影院成人在线观看| 国产高清视频在线播放一区| 国产欧美日韩精品亚洲av| aaaaa片日本免费| 无限看片的www在线观看| 欧美在线黄色| 精品久久久久久久末码| 中文字幕最新亚洲高清| 动漫黄色视频在线观看| 黄色视频不卡| 免费在线观看亚洲国产| 亚洲国产欧美网| 男女午夜视频在线观看| 国产成人精品无人区| 别揉我奶头~嗯~啊~动态视频| 99精品在免费线老司机午夜| 999久久久国产精品视频| 免费高清在线观看日韩| 亚洲免费av在线视频| 成年女人毛片免费观看观看9| 在线av久久热| 人人妻人人澡人人看| 精品欧美国产一区二区三| 淫秽高清视频在线观看| 欧美黑人精品巨大| 亚洲电影在线观看av| 曰老女人黄片| 丰满的人妻完整版| 99国产精品一区二区蜜桃av| 色尼玛亚洲综合影院| 夜夜看夜夜爽夜夜摸| 日韩三级视频一区二区三区| 很黄的视频免费| 亚洲av成人一区二区三| 在线视频色国产色| 性色av乱码一区二区三区2| 黑人巨大精品欧美一区二区mp4| 亚洲精品中文字幕在线视频| 欧美日韩中文字幕国产精品一区二区三区| 国产精品美女特级片免费视频播放器 | 男女那种视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦观看免费观看视频高清| 女人高潮潮喷娇喘18禁视频| 国产av不卡久久| av片东京热男人的天堂| 无限看片的www在线观看| 久久99热这里只有精品18| a在线观看视频网站| 波多野结衣巨乳人妻| av天堂在线播放| 亚洲五月天丁香| 日日夜夜操网爽| 美女大奶头视频| 18禁裸乳无遮挡免费网站照片 | 非洲黑人性xxxx精品又粗又长| 久久国产亚洲av麻豆专区| av天堂在线播放| 一个人观看的视频www高清免费观看 | 免费在线观看日本一区| 神马国产精品三级电影在线观看 | 亚洲无线在线观看| 久久精品国产99精品国产亚洲性色| 精品福利观看| 久久久水蜜桃国产精品网| 成人国语在线视频| 久久精品91蜜桃| 欧美性猛交╳xxx乱大交人| 色尼玛亚洲综合影院| 999久久久国产精品视频| 男女之事视频高清在线观看| 国产av一区在线观看免费| 日韩欧美 国产精品| 亚洲欧美一区二区三区黑人| 天堂影院成人在线观看| 欧美+亚洲+日韩+国产| 最近最新中文字幕大全免费视频| 精品第一国产精品| 国产男靠女视频免费网站| 丝袜人妻中文字幕| 精品高清国产在线一区| av在线播放免费不卡| 99久久无色码亚洲精品果冻| 精品第一国产精品| 成人国产一区最新在线观看| 久久久久久久精品吃奶| 50天的宝宝边吃奶边哭怎么回事| 人人妻人人澡欧美一区二区| av超薄肉色丝袜交足视频| 成人一区二区视频在线观看| 巨乳人妻的诱惑在线观看| 一级作爱视频免费观看| 国产精品免费视频内射| 一个人免费在线观看的高清视频| 99久久综合精品五月天人人| 妹子高潮喷水视频| 免费女性裸体啪啪无遮挡网站| 久久午夜综合久久蜜桃| 免费看a级黄色片| a在线观看视频网站| 国产伦在线观看视频一区| 国产精品二区激情视频| 成人国语在线视频| 亚洲三区欧美一区| 久久中文字幕人妻熟女| 亚洲五月婷婷丁香| 亚洲午夜理论影院| 男女下面进入的视频免费午夜 | 91大片在线观看| 国产男靠女视频免费网站| 亚洲精品久久国产高清桃花| 国产亚洲精品av在线| 岛国视频午夜一区免费看| 桃色一区二区三区在线观看| 妹子高潮喷水视频| 大型av网站在线播放| 成人精品一区二区免费| 日本 av在线| 国产欧美日韩一区二区精品| 99国产精品一区二区三区| 久久香蕉国产精品| 婷婷丁香在线五月| 每晚都被弄得嗷嗷叫到高潮| 国产成人精品无人区| 免费观看精品视频网站| 日韩精品青青久久久久久| 黄色毛片三级朝国网站| 日韩欧美一区视频在线观看| 午夜精品久久久久久毛片777| 色老头精品视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国内久久婷婷六月综合欲色啪| 免费看a级黄色片| 99在线视频只有这里精品首页| 亚洲午夜精品一区,二区,三区| 日韩视频一区二区在线观看| 精品久久久久久久久久免费视频| 啦啦啦免费观看视频1| 别揉我奶头~嗯~啊~动态视频| 精品福利观看| 国产一区二区三区在线臀色熟女| 亚洲天堂国产精品一区在线| 18禁黄网站禁片免费观看直播| 欧美日韩福利视频一区二区| 中文亚洲av片在线观看爽| 香蕉丝袜av| 精品国产乱子伦一区二区三区| 久久精品aⅴ一区二区三区四区| 亚洲成a人片在线一区二区| 亚洲成人久久性| 视频在线观看一区二区三区| 熟妇人妻久久中文字幕3abv| 女性生殖器流出的白浆| 正在播放国产对白刺激| 97人妻精品一区二区三区麻豆 | 国产高清videossex| 女人高潮潮喷娇喘18禁视频| 1024手机看黄色片| 国产精品1区2区在线观看.| 中文字幕另类日韩欧美亚洲嫩草| 一区二区三区国产精品乱码| 99热只有精品国产| 亚洲国产精品久久男人天堂| 亚洲第一av免费看| 99热6这里只有精品| 不卡一级毛片| 欧美成人一区二区免费高清观看 | 国产极品粉嫩免费观看在线| 中文亚洲av片在线观看爽| 啪啪无遮挡十八禁网站| 搡老熟女国产l中国老女人| 亚洲精品美女久久av网站| 天堂影院成人在线观看| 美女午夜性视频免费| av天堂在线播放| 啪啪无遮挡十八禁网站| 欧美乱色亚洲激情| 午夜福利免费观看在线| 看片在线看免费视频| 天堂动漫精品| 午夜久久久久精精品| 一区二区日韩欧美中文字幕| 久久精品国产99精品国产亚洲性色| 欧美又色又爽又黄视频| 男人操女人黄网站| 欧美日韩黄片免| 国产成人影院久久av| 午夜激情av网站| 满18在线观看网站| 91九色精品人成在线观看| av有码第一页| 一级毛片女人18水好多| 国产成年人精品一区二区| 久久伊人香网站| 国产在线观看jvid| 久久久久久亚洲精品国产蜜桃av| 日韩免费av在线播放| 欧美乱妇无乱码| 中文亚洲av片在线观看爽| 色播亚洲综合网| 色婷婷久久久亚洲欧美| 听说在线观看完整版免费高清| 色综合婷婷激情| 琪琪午夜伦伦电影理论片6080| 人妻丰满熟妇av一区二区三区| 精品乱码久久久久久99久播| 在线播放国产精品三级| 国产免费av片在线观看野外av| 亚洲国产中文字幕在线视频| 亚洲成人精品中文字幕电影| 夜夜夜夜夜久久久久| www.自偷自拍.com| av福利片在线| 色哟哟哟哟哟哟| 给我免费播放毛片高清在线观看| 少妇 在线观看| 午夜福利在线观看吧| 国产精品免费视频内射| 亚洲aⅴ乱码一区二区在线播放 | 婷婷亚洲欧美| 大型av网站在线播放| 色婷婷久久久亚洲欧美| 欧美激情高清一区二区三区| 9191精品国产免费久久| 一个人免费在线观看的高清视频| 黄色毛片三级朝国网站| 国产一区二区在线av高清观看| 一级毛片女人18水好多| 长腿黑丝高跟| 久久热在线av| 亚洲,欧美精品.| 欧美大码av| 黄片小视频在线播放| 国产又黄又爽又无遮挡在线| 一区二区日韩欧美中文字幕| 国产亚洲欧美精品永久| 久久亚洲精品不卡| 欧洲精品卡2卡3卡4卡5卡区| 美女午夜性视频免费| 成熟少妇高潮喷水视频| 亚洲精品久久成人aⅴ小说| 99热这里只有精品一区 | 免费在线观看成人毛片| 人人妻,人人澡人人爽秒播| av片东京热男人的天堂| 午夜影院日韩av| 久久久国产成人精品二区| 搡老岳熟女国产| 人妻久久中文字幕网| 久久狼人影院| 国产成人啪精品午夜网站| 婷婷六月久久综合丁香| 国产高清videossex| 久久天堂一区二区三区四区| 九色国产91popny在线| 波多野结衣高清作品| 亚洲 欧美一区二区三区| 黄色视频不卡| 亚洲午夜理论影院| 国产精品av久久久久免费| 成人永久免费在线观看视频| 久久中文字幕一级| 不卡av一区二区三区| 亚洲黑人精品在线| 国产亚洲av高清不卡| 后天国语完整版免费观看| 亚洲国产欧美日韩在线播放| 中文字幕人妻熟女乱码| 嫩草影视91久久| 亚洲成a人片在线一区二区| 国产精品久久久av美女十八| 色综合欧美亚洲国产小说| 久久99热这里只有精品18| 观看免费一级毛片| 一二三四社区在线视频社区8| 一区二区三区国产精品乱码| av在线天堂中文字幕| 欧美精品啪啪一区二区三区| 国产精品久久视频播放| 久久婷婷成人综合色麻豆| 免费在线观看黄色视频的| 亚洲精品一区av在线观看| 欧美一级毛片孕妇| 久热这里只有精品99| www.熟女人妻精品国产| 国产成年人精品一区二区| 精品高清国产在线一区| 欧美激情高清一区二区三区| 曰老女人黄片| 嫁个100分男人电影在线观看| 日韩欧美 国产精品| 一级作爱视频免费观看| 天天一区二区日本电影三级| 69av精品久久久久久| 午夜两性在线视频| 中文字幕人妻熟女乱码| 波多野结衣av一区二区av| 国产精品久久电影中文字幕| 日韩欧美三级三区| 中文字幕高清在线视频| 搡老妇女老女人老熟妇| 老熟妇乱子伦视频在线观看| 男人的好看免费观看在线视频 | 男人舔女人的私密视频| www国产在线视频色| 他把我摸到了高潮在线观看| 欧美最黄视频在线播放免费| 国产一区二区三区在线臀色熟女| 欧美精品啪啪一区二区三区| www.www免费av| 18禁观看日本| 在线av久久热| 精品国产美女av久久久久小说| 日韩大尺度精品在线看网址| 国产精品自产拍在线观看55亚洲|