• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Long-Lived Coherence Originating from Electronic-Vibrational Couplings in Light-Harvesting Complexes

    2017-05-18 09:31:19XiantingLiang
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年2期

    Xian-ting Liang

    Department of Physics and Institute of Optics,Ningb o University,Ningb o 315211,China

    Long-Lived Coherence Originating from Electronic-Vibrational Couplings in Light-Harvesting Complexes

    Xian-ting Liang?

    Department of Physics and Institute of Optics,Ningb o University,Ningb o 315211,China

    (Dated:Received on September 25,2016;Accepted on November 14,2016)

    We theoretically investigate the evolutions of two-dimensional,third-order,nonlinear photon echo rephasing spectra with population time by using an exact numerical path integral method.It is shown that for the same system,the coherence time and relaxation time of excitonic states are short,however,if the couplings of electronic and intra-pigment vibrational modes are considered,the coherence time and relaxation time of this vibronic states are greatly extended.It means that the couplings between electronic and vibrational modes play important roles in keeping long-lived coherence in light-harvesting complexes.Particularly, by using the method we can fix the transition path of the energy transfer in bio-molecular systems.

    Light-harvesting complex,Coherence,Exciton model,Vibronic model

    I.INTRODUCTION

    The significance of photosynthesis is indisputable because it is the fundamental biological process through which solar energy is converted into biomass[1],and it provides chemical energy for plants,algae,and bacteria,while heterotrophic organisms rely on these species as their ultimate food source.The initial step in photosynthesis involves the capture of energy from sunlight. It is followed by the excitation energy transfer(EET) to the reaction center,where charge separation is initiated and physical energy is converted into chemical energy.At low light intensities,the quantum efficiency of the transfer of energy is very high,with a near unity quantum yield.

    There is a hypothesis that the high efficiency of near unity EET attributes to coherent superposition between excitation states that belongs to different chromophores of some photosynthesis system.It is considered that quantum coherence between the electronic states involved in energy or electron transfer introduces correlations between the wave functions of these states enabling the excitations to move rapidly(by virtue of wave packet collapse)and to sample multiple pathways (due to different coherent superposition states)in space. Thus,the quantum coherence effects may render the process of effective energy and electron transfer[2,3].

    Indeed,several experimental results show that there is coherence with long enough time in light-harvesting complexes which is inconceivable in inorganic materials at physiological temperature.Fleming et al.[4-6] found that in the Fenna-Matthew-Olson(FMO)complex the coherence between the two excitation states lasts for longer time which is similar to the time scale of the EET,and specially,in a photosynthetic purple bacterium R b.S phaeroides,the coherence of the excitations created from laser pulses on adjacent bacteriochlorophyll(Bchls)and bacteriopheophytin(BPhys) can prolong for longer time which is long enough for the coherent transfer of energies between the chromophores Bchls and BPhys[6].These kinds of experimental results imply that electronic excitations may move coherently through these photosynthesis systems rather than by incoherent hopping motion as it has usually been assumed[7,8].

    However,how to probe the coherence of these coherent superposition states?Theoretically,one can measures the degree of the coherence through quantifying the of f-diagonal elements of the density matrix of the states.And experimentally,the coherence can be detected through measuring oscillations of the photon echo rephasing and non-rephasing signals[9-11].In Ref.[12]can help us to understand this problem.This kind of experimental results can be verified theoretically by using the simulating method of 2D spectroscopy[13, 14]based on the quantum dissipative dynamics[15-18]. Initially it was conjectured that long-lived oscillations are a manifestation of purely electronic coherence,however,this appeared to require unrealistically low reorganization energies of the vibrational environment or the existence of correlated fluctuations,both of which appear unlikely to be correct.Recent studies suggested that vibrational motion may modulate both diagonal and of f-diagonal features of the 2D spectra.

    The electronic,vibrational,and electronicvibrational[19-23]coherence has been extensivelyinvestigated by using the nonlinear 2D spectroscopy [23-27].Recently,Chin et al.[28]proposed a mechanism,which shows that the resonant electronicvibrational configuration can sustain,regenerate, or even create coherence between electronic states during the time scale of energy and electron transfer. Lim et al.[12]theoretically verify the experimental long-lasting coherence of an artificial light harvester by using the exciton-vibrational(vibronic)model.

    These efforts,however,still cannot ascertain: whether the couplings between the electronic and vibrational modes must lead to coherence time expanding? In this work,we design a theoretical scheme to accurately answer this question.We plot the evolutions of the two-dimensional(2D),third-order,nonlinear photon echo spectra of two models for the same system. One of which is the exciton model,while the other is the vibronic model,namely the electronic-vibrational coupling model.It will be shown that the diagonal peaks and the cross-peaks of the 2D,third-order,nonlinear photon echo spectra calculated from the vibronic model can survive longer time than that obtained from the exciton model as other conditions are kept unchanged.

    Thus,our investigations support that the long-lived coherence of the light-harvesting complex may origin from the couplings of the electronic-vibrational modes. In this study protocol the decay of the cross-peaks shows the decoherence,and the decay of the diagonal peaks reflects the relaxation of the system.In this investigation,we have not deliberately use the unrealistically low reorganization energies and correlated fluctuations of the environment.The evolution of the 2D,thirdorder,nonlinear photon echo rephasing spectra are calculated at lower temperature 77 K.Lower temperature is also applicable to ambient temperature.

    II.MODEL AND 2D,THIRD-ORDER,NONLINEAR PHOTON ECHO SPECTRA

    According to Sato’s report[29],if we assign the zeromode of the nuclear vibrations to an intra-pigment vibration and exempt it from reorganization dynamics, and assign the rest modes to the continuum of the protein bath.The vibronic model can be written as

    It is known that all information about the interaction of the system with bath is contained in the spectral density function which is defined as

    By fixing the environmental spectrum Jm(ω),described with some math functions or discrete data,we can investigate not only the dynamics but also the 2D,thirdorder,nonlinear photon echo spectroscopy by using some quantum dissipative dynamical methods.In this work,we are interested in the evolution features of the 2D,third-order,nonlinear photon echo spectra for the exciton and vibronic models in principle,so we simply choose the single excitation dipole operator.For the exciton model,it is

    TABLE I HveSfor the vibronic model.Here and in the text we set|g0〉=|1,0,0〉,|g1〉=|1,0,1〉,|g2〉=|1,1,0〉, |e0〉=|2,0,0〉,|e1〉=|2,0,1〉,|e2〉=|2,1,0〉.

    And for the vibronic model,it is

    Simply,but without loss of generality,here we set μ12=μ21=1,and use the Debye spectral density function

    Similarly to Ref.[29],here we set the parameters with more practical values,namely,λ=35 cm-1,γ-1=100 fs, ω0=191 cm-1,J12=100 cm-1,?1=191 cm-1, ?2=382 cm-1,and the Huang-Rhys factor S=0.025. And throughout the paper we set the Planck constant h=1.

    III.RESPONSE FUNCTIONS AND 2D SPECTROSCOPY

    In the 2D,third-order photon-echo experiments, three laser pulses with wave-vector k1,k2,k3are projected to the sample,and the third-order nonlinear response signals are detected along the phase-matched direction ks,see Fig.S1(a)and(b)in supplementary materials.In the impulsive limit,the rephasing and nonrephasing spectra are calculated as the real part of the following double Fourier-Laplace transforms of Rr(t3,t2,t1)and Rnr(t3,t2,t1)with respect to t1and t3as Ref.[31-35]

    Here,Rr(t3,t2,t1)and Rnr(t3,t2,t1)are the rephasing (ks=-k1+k2+k3)and nonrephasing(ks=k1-k2+k3) signals,and they can be calculated through

    In the culculations of data for plotting Fig.1 we choose the environmental temperature T=77 K.The calculations are performed with an exact numerical dynamics approach-the quasi-adiabatic propagator path integral(QUAPI)method developed by Makris group [36-40].The theoretical framework for simulating the 2D,third-order,nonlinear photon echo spectra with the QUAPI method may refer to Refs.[41-44].In this work, we are interested in the evolutions of the 2D,thirdorder,nonlinear photon echo rephasing spectra with the population time t2.The figures in Fig.1 are obtained from exciton(I)and vibronic(II)models.In Fig.2 we plot the evolutions of the amplitude of crosspeak marked with arrow line(a)in Fig.1(I),and diagonal peaks marked with double-headed arrow line(b)in Fig.1(I)for the exciton model.The evolutions of cross-peaks marked by(a),(b),(c)in Fig.1(II)for the vibronic model have been plotted in Fig.3(a),(b),(c), and the evolutions of diagonal peaks marked by(d)in Fig.1(II)have been plotted in Fig.3(d).We obtain the following results:(i)for not only the exciton but also the vibronic models,the amplitudes of the cross peaks of the 2D,third-order,nonlinear photon echo rephasing spectra are oscillating with population time t2;(ii)in our choice parameters,the oscillations of the diagonal peaks of the 2D spectrum are not clear in the exciton model,however,they are clearly shown in the vibronic model;(iii)the most important is that the oscillating times of both the diagonal and cross peaks of the 2D spectra obtained from the vibronic model are much longer than that from the exciton model.

    FIG.1 2D,third-order,nonlinear photon echo rephasing spectra at 77 K,for the exciton model(I)at population time t2=720 fs;and for the vibronic model(II),at the population time t2=324 fs.Here,the environment is described with Debye spectral density function,and the values of the environmental spectral parameters.The evolutions of crosspeaks are marked by arrow line(a)in Fig.1(I)for the exciton model,and arrow lines(a),(b),(c)in Fig.1(II)for the vibronic model.The evolutions of diagonal peaks are marked by double-arrow lines(b)in Fig.1(I),and(d)in Fig.1(II).

    FIG.2 The evolutions of the 2D,third-order,nonlinear photon echo rephasing spectra at 77 K for the exciton model. (a)The evolution of cross peak corresponding to(a)in Fig.1 (I),and(b)the evolution of the diagonal peak corresponding to double-arrow line(b)in Fig.1(I).

    IV.DISCUSSION AND CONCLUSION

    We theoretically discuss the numerical results.The eigenvalues of HveSfor the exciton model,see Eq.(6), are approximatively equal to E1=-42.78 cm-1,and E2=233.78 cm-1,from which we can obtain the frequency ω=(E1-E2)/?≈1737 cm-1(here ?=1/2π),and from Fig.2 we can read out the oscillating period τ≈120 fs,then ω′=2π/τ≈1745 cm-1.It shows that they are in good agreement with each other.From Table I we can obtain the eigenvalues of the vibronic model,they are E1=-39.25 cm-1,E2=417.68 cm-1, E3=230.21 cm-1,E4=155.28 cm-1,E5=423.00 cm-1, and E6=150.00 cm-1.Similarly,from Fig.3 we see that the oscillation frequency is about 513 cm-1,and it corresponds to the transitions|e0〉〈g2|,see Table S2, Fig.S1(g)in supplementary materials.

    We also analyse the process according to the Feynman diagrams shown in Fig.4,other two kinds of cases are shown in Fig.S1(c)and(e)in supplementary materials.The 2D,third-order,nonlinear photon echo rephasing spectra are the result of Fourier transformwith time t1,and inverse Fourier transform with time t3.For the diagonal peaks,the Feynman diagram of one kind of pathways is shown in Fig.4(a).We set the initial state of the system be|g0〉〈g0|.At t=0,the first laser pulse with ωβis projected,the system becomes the coherent superposition state,for example|e1〉〈g0|, and then the system evolves for time t1.At t=τ1,the second pulse is pro jected,the system turns into the population state|e1〉〈e1|,and subsequently relaxes for time t2.At t=τ2,the third laser pulse,with frequency ωβis projected,and the system again becomes a coherent superposition state|e1〉〈g0|,and then it evolves for time t3.Fig.2(b)and Fig.3(d)are the evolutions of the diagonal peaks for the 2D,third-order,nonlinear photon echo rephasing spectra with time t2for the exciton and vibronic models.

    For the cross peaks,the Feynman diagram of one kind of pathways is shown in Fig.4(b),other two kinds of cases are shown in Fig.S1(d)and(f)in supplementary materials.The initial state of the system is still set as|g0〉〈g0|.At t=0,the first laser pulse with ωαis projected,the system becomes the coherent superposition state,for example|e0〉〈g0|,and then it evolves till t=τ1,the second pulse is projected,the system turns into the state|e0〉〈e1|,or|e0〉〈e2|till t=τ2,and then at the third laser pulse,frequency ωαis projected.Subsequently,the system again becomes coherent superposition state,|e0〉〈g0|,and evolves for time t3.Fig.2(a), and Fig.3(a),(b),(c)are the evolutions of the crosspeaks of the 2D,third-order,nonlinear photon echo rephasing spectra with time t2for the exciton and vibronic models.From Fig.2(a)we see that the oscillation frequency is about 1745 cm-1,it just corresponds to the transition between state|g〉and|e〉.From Fig.3 we see that the oscillation frequency finally becomes at about 513 cm-1,it means that the main transitions are|e2〉?|g2〉(509 cm-1),see Table S2 in supplementary materials.Similarly,for any practical system we can read out the main pathways of energy transfer by using the evolutions of the 2D,third-order,nonlinear photon echo spectra.In above investigations we set the vibrational transition ω0=191 cm-1,which is not quite high compared to the thermal vibration at temperature 77 and300 K,but it is large enough compared to the thermal vibration at 30 K in Fig.S2 in supplementary materials. If we select the vibrational transition ω0=300 cm-1,as Ref.[45],the cnculsions obtained are all still held.

    FIG.3 The evolutions of the 2D,third-order,nonlinear photon echo rephasing spectra at 77 K for the vibronic model.(a), (b),and(c)are the evolutions of cross peaks corresponding to(a),(b),and(c)in Fig.1(II),and(d)is the evolution of the diagonal peaks corresponding to(d)in Fig.1(II).

    FIG.4 Double-side Feynman diagrams representing the pathways contributing to a diagonal peak(a)and to a cross peak(b).

    In summary,in this work,we have theoretically investigated the role of the couplings of the vibrationalelectronic modes.We use the comparative data of the evolutions of 2D,third-order,nonlinear photon echo rephasing spectra,calculated from the exciton and vibronic models.We carefully analyze the single excitation exciton and vibronic models at temperature 77 K. In supplementary materials,we give the results of 300 and 30 K.It is shown that the coherence exists indeed at ambient temperature,and the conclusions obtained at 77 K are kept at ambient temperature,but the coherent time becomes shorter at 300 K than at 77 K.We clearly show that when the vibrational modes coupled to the electronic modes,the electronic coherence time becomes considerable long compared to the cases without couplings.This result is in agreement with the corresponding experiments and supports the theory about long-lived coherence for some light-harvesting systems [46-48].However,other mechanisms of the long-lived coherence[6,49,50],such as correlated fluctuations of the environment,are not ruled out yet.We suggest that it may be coexistence of a variety of mechanisms for long-lived coherence in light-harvesting complexes. Supplementary materials:Tables S1 and S2 show the eigenvalues,and transition scheme and frequencies for the vibronic model.Table S3 shows the oscillation periods of the evolution of the 2D, third-order,non-linear photon echo spectra for the vibronic model.Figure S1 shows the laser excitation pulses,non-colinear geometrical configuration,two kinds of Feynman diagrams for diagonal peaks and and cross-peaks,the energy levels,and their transition diagrams for the vibronic model.Figure S2 and S3 show the evolution figures of the 2D,third-order, non-linear photon echo rephasing spectra at 30 and 300 K for the exciton and vibronic models.

    V.ACKNOWLEDGMENTS

    This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No.LY13A040006),and the K.C.Wong Magna Foundation in Ningbo University.

    [1]F.M¨uh,M.E.A.Madjet,J.Adolphs,A.Abdurahman,B.Rabenstein,H.Ishikita,E.W.Knapp,and T. Renger,Proc.Natl.Acad.Sci.104,16862(2007).

    [2]T.Renger,V.May,and O.K¨uhn,Phys.Rep.343,137 (2001).

    [3]S.Huelga and M.Plenio,Contemp.Phys.54,181 (2013).

    [4]G.S.Engel,T.R.Calhoun,E.L.Read,T.K.Ahn, T.Manˇcal,Y.C.Cheng,R.E.Blankenship,and G.R. Fleming,Nature 446 782(2007).

    [5]T.Brixner,J.Stenger,H.M.Vaswani,M.Cho,R. E.Blankenship,and G.R.Fleming,Nature 434,625 (2005).

    [6]H.Lee,Y.C.Cheng,and G.R.Fleming,Science 316, 1462(2007).

    [7]M.Mohseni,P.Rebentrost,S.Lloyd,and A.Aspuru-Guzik,J.Chem.Phys.129,174106(2008).

    [8]P.Rebentrost and A.Aspuru-Guzik,J.Chem.Phys. 134,101103(2011).

    [9]E.E.Fenn,D.B.Wong,and M.D.Fayer,J.Chem. Phys.134,054512(2011).

    [10]Y.C.Cheng and G.R.Fleming,J.Phys.Chem.A 112, 4254(2008).

    [11]M.Cho,H.M.Vaswani,T.Brixner,J.Stenger,and G. R.Fleming,J.Phys.Chem.B 109,10542(2005).

    [12]J.Lim,D.Paleˇcek,F.Caycedo-Soler,C.N.Lincoln, J.Prior,H.von Berlepsch,S.F.Huelga,M.B.Plenio, D.Zigmantas,and J.Hauer,Nature Comm.6,8755 (2015).

    [13]S.Mukamel,P rinciples of N onlinear Optical S pectroscopy,Vol.29,New York:Oxford University Press(1995).

    [14]P.Hamm and M.Zanni,C oncepts and M ethods of 2D I nf rared S pectr oscopy,Cambridge:Cambridge University Press(2011).

    [15]U.Weiss,Quantum D issipativ e S ystems,Fourth edition,Singapore:World Scientific Publishing Co.Pte. Ltd.,(2012).

    [16]A.J.Leggett,S.Chakravarty,A.T.Dorsey,M.P.A. Fisher,A.Garg,and W.Zwerger,Mod.Phys.59,1 (1987).

    [17]A.O.Caldeira and A.J.Leggett,Phys.A 121,587 (1983).

    [18]C.P.Sun and L.H.Yu,Phys.Rev.A 51,1845(1995).

    [19]S.Mukamel,Annu.Rev.Phys.Chem.51,691(2000).

    [20]Y.Jing,R.Zheng,H.X.Li,and Q.Shi,J.Phys.Chem. B 116,1164(2012).

    [21]D.B.Turner,K.E.Wilk,P.M.G.Curmi,and G.D. Scholes,J.Phys.Chem.Lett.2,1904(2011).

    [22]D.Hayes and G.S.Engel,Philos.Trans.370,3692 (2012).

    [23]M.T.Zanni,N.H.Ge,Y.S.Kim,and R.M. Hochstrasser,Proc.Natl.Acad.Sci.U.S.A.98,11265 (2001).

    [24]J.Xu,H.D.Zhang,R.X.Xu,and Y.Yan,J.Chem. Phys.138,244(2013).

    [25]Y.Tanimura and S.Mukamel,J.Chem.Phys.99 (1993).

    [26]L.Chen,R.Zheng,Y.Jing,and Q.Shi,J.Chem.Phys. 134,194508(2011).

    [27]W.G.Noid,G.S.Ezra,and R.F.Loring,J.Chem. Phys.119,1003(2003).

    [28]A.Chin,J.Prior,R.Rosenbach,F.Caycedo-Soler,S. Huelga,and M.Plenio,Nature Physics 9,113(2013).

    [29]Y.Sato and B.Doolittle,J.Chem.Phys.141,185102 (2014).

    [30]V.May and O.K¨uhn,C har ge and E nerg y T ransf er Dy namics in M olecular S ystems,2nd Edn.,NewYork:John Wiley&Sons,(2008).

    [31]A.Ishizaki and Y.Tanimura,Chem.Phys.347,185 (2008).

    [32]A.Ishizaki and Y.Tanimura,J.Chem.Phys.125, 084501(2006).

    [33]L.Chen,R.Zheng,Q.Shi,and Y.Yan,J.Chem.Phys. 132,024505(2010).

    [34]Y.Tanimura,arXiv preprint arXiv:1211.1469(2012).

    [35]A.Ishizaki and Y.Tanimura,J.Phys.Chem.A 111, 9269(2007).

    [36]D.E.Makarov and N.Makri,Chem.Phys.Lett.221, 482(1994).

    [37]N.Makri,J.Mathe.Phys.36,2430(1995).

    [38]E.Sim and N.Makri,Comput.Phys.Commun.99,335 (1997).

    [39]E.Sim and N.Makri,J.Phys.Chem.B 101,5446 (1997).

    [40]N.Makri,J.Chem.Phys.141,134117(2014).

    [41]M.M.Sahrapour and N.Makri,J.Chem.Phys.132, 134506(2010).

    [42]X.T.Liang,J.Chem.Phys.141,044116(2014).

    [43]X.T.Liang,Chin.Phys.Lett.29,084211(2012).

    [44]H.G.Duan,A.G.Dijkstra,P.Nalbach,and M.Thorwart,Phys.Rev.E 92,042708(2015).

    [45]J.Xu,R.Xu,D.Abramavicius,H.Zhang,and Y.Yan, Chin.J.Chem.Phys.24,497(2011).

    [46]K.Avinash,E.J.O’Reilly,G.D.Scholes,and O.C. Alexandra,J.Chem.Phys.137,174109(2012).

    [47]A.W.Chin,S.F.Huelga,and M.B.Plenio,Philos. Trans.A Math.Phys.Eng.Sci.370,3638(2012).

    [48]T.Vivek,W.K.Peters,and D.M.Jonas,Proc.Natl. Acad.Sci.USA.110,1203(2012).

    [49]I.Akihito,T.R.Calhoun,G.S.Schlau-Cohen,and G. R.Fleming,Phys.Chem.Chem.Phys.12,7319(2010). [50]H.Dugan,G.B.Griffin,and G.S.Engel,Science 340, 1431(2013).

    ?Author to whom correspondence should be addressed.E-mail: liangxianting@nbu.edu.cn

    国产野战对白在线观看| 熟妇人妻久久中文字幕3abv| 2021天堂中文幕一二区在线观| 天堂动漫精品| 欧美色视频一区免费| 99久久成人亚洲精品观看| 亚洲午夜理论影院| 免费看a级黄色片| 男女床上黄色一级片免费看| av女优亚洲男人天堂 | 我的老师免费观看完整版| 午夜免费观看网址| 又大又爽又粗| 一本精品99久久精品77| 亚洲精品在线美女| 亚洲精品粉嫩美女一区| 99热6这里只有精品| 九色国产91popny在线| 免费在线观看视频国产中文字幕亚洲| 97人妻精品一区二区三区麻豆| 听说在线观看完整版免费高清| 麻豆国产av国片精品| 国产在线精品亚洲第一网站| 欧美三级亚洲精品| 亚洲精品色激情综合| 18禁裸乳无遮挡免费网站照片| www国产在线视频色| 搡老熟女国产l中国老女人| 悠悠久久av| 国产欧美日韩一区二区三| 日本a在线网址| 亚洲欧美激情综合另类| 国产伦一二天堂av在线观看| av国产免费在线观看| or卡值多少钱| 91麻豆av在线| 欧美绝顶高潮抽搐喷水| 国产真人三级小视频在线观看| 久久中文字幕人妻熟女| 又爽又黄无遮挡网站| 9191精品国产免费久久| 成人三级黄色视频| 男女视频在线观看网站免费| 国产又黄又爽又无遮挡在线| 亚洲成人久久性| 99在线人妻在线中文字幕| 午夜精品在线福利| 麻豆一二三区av精品| 三级国产精品欧美在线观看 | 一级毛片高清免费大全| 国产乱人视频| av在线天堂中文字幕| 很黄的视频免费| 波多野结衣巨乳人妻| 黄色 视频免费看| 亚洲av免费在线观看| 亚洲精品久久国产高清桃花| 亚洲在线观看片| 熟女电影av网| 国产午夜精品久久久久久| 国产精品久久视频播放| 亚洲在线观看片| 国内精品美女久久久久久| 精品乱码久久久久久99久播| 最近在线观看免费完整版| 91老司机精品| 久久久久久九九精品二区国产| 亚洲国产欧洲综合997久久,| 国产成人一区二区三区免费视频网站| 国产激情偷乱视频一区二区| 村上凉子中文字幕在线| 狠狠狠狠99中文字幕| 特大巨黑吊av在线直播| 国产精品国产高清国产av| 男女下面进入的视频免费午夜| 国产精品久久久久久人妻精品电影| 亚洲欧美精品综合久久99| 婷婷亚洲欧美| 久久天堂一区二区三区四区| 18禁黄网站禁片午夜丰满| 波多野结衣巨乳人妻| av天堂在线播放| 亚洲九九香蕉| 国产精品久久电影中文字幕| 女同久久另类99精品国产91| 波多野结衣高清作品| 午夜精品久久久久久毛片777| 可以在线观看毛片的网站| 成人国产一区最新在线观看| 狠狠狠狠99中文字幕| 欧美日韩亚洲国产一区二区在线观看| 日韩中文字幕欧美一区二区| 国产一区二区在线av高清观看| 国产成人av教育| 国产激情偷乱视频一区二区| 亚洲一区二区三区色噜噜| 欧美av亚洲av综合av国产av| 国产黄a三级三级三级人| 久久久久久国产a免费观看| 免费观看人在逋| 禁无遮挡网站| 亚洲人成电影免费在线| 午夜福利成人在线免费观看| 可以在线观看毛片的网站| 九九热线精品视视频播放| 欧美日韩中文字幕国产精品一区二区三区| 黄色视频,在线免费观看| 亚洲黑人精品在线| 国产精华一区二区三区| 国产成人av教育| 精品久久久久久久久久久久久| 搡老熟女国产l中国老女人| 亚洲熟女毛片儿| 婷婷六月久久综合丁香| 欧美性猛交╳xxx乱大交人| 这个男人来自地球电影免费观看| 高潮久久久久久久久久久不卡| 国产爱豆传媒在线观看| 18禁美女被吸乳视频| 亚洲国产中文字幕在线视频| 三级国产精品欧美在线观看 | 熟妇人妻久久中文字幕3abv| 久久久久久久久久黄片| 亚洲人与动物交配视频| 国产黄片美女视频| 长腿黑丝高跟| 欧美一级毛片孕妇| 三级国产精品欧美在线观看 | 国语自产精品视频在线第100页| 亚洲,欧美精品.| 精品欧美国产一区二区三| 精品久久久久久久人妻蜜臀av| 国内少妇人妻偷人精品xxx网站 | 脱女人内裤的视频| 成人高潮视频无遮挡免费网站| 国产三级中文精品| 88av欧美| 天天添夜夜摸| cao死你这个sao货| 后天国语完整版免费观看| 成熟少妇高潮喷水视频| 精品久久久久久久人妻蜜臀av| 一级黄色大片毛片| 国产三级中文精品| 热99在线观看视频| 欧美性猛交黑人性爽| 久久久久久久久中文| 一二三四在线观看免费中文在| 波多野结衣高清无吗| 丰满人妻一区二区三区视频av | 国产单亲对白刺激| 每晚都被弄得嗷嗷叫到高潮| 两个人视频免费观看高清| 中文字幕最新亚洲高清| 午夜福利高清视频| 亚洲国产欧美一区二区综合| 日日摸夜夜添夜夜添小说| 少妇人妻一区二区三区视频| 亚洲成av人片免费观看| 欧美激情久久久久久爽电影| 久久久久久国产a免费观看| 久久草成人影院| 国产视频一区二区在线看| 麻豆国产97在线/欧美| 亚洲一区高清亚洲精品| 国产一区二区三区视频了| 综合色av麻豆| 一本精品99久久精品77| 在线视频色国产色| 亚洲色图 男人天堂 中文字幕| 欧美高清成人免费视频www| 一a级毛片在线观看| 精品久久久久久久末码| 好看av亚洲va欧美ⅴa在| 久久这里只有精品中国| 成人av在线播放网站| 亚洲自偷自拍图片 自拍| 亚洲激情在线av| 狂野欧美白嫩少妇大欣赏| www日本在线高清视频| 97超视频在线观看视频| 很黄的视频免费| 国产精品1区2区在线观看.| 亚洲精品美女久久av网站| 国产69精品久久久久777片 | 午夜激情福利司机影院| 九九在线视频观看精品| 免费观看人在逋| 真实男女啪啪啪动态图| 亚洲美女黄片视频| 久9热在线精品视频| 国产免费男女视频| 女生性感内裤真人,穿戴方法视频| 中出人妻视频一区二区| 精品电影一区二区在线| 欧美成人一区二区免费高清观看 | 91久久精品国产一区二区成人 | 亚洲自偷自拍图片 自拍| 欧美黄色片欧美黄色片| xxxwww97欧美| 成人av一区二区三区在线看| www.www免费av| 中文字幕av在线有码专区| 午夜a级毛片| 精品熟女少妇八av免费久了| 黄色日韩在线| 淫秽高清视频在线观看| 国产av一区在线观看免费| 人人妻,人人澡人人爽秒播| 亚洲精品久久国产高清桃花| 久久久久免费精品人妻一区二区| www.999成人在线观看| 女人被狂操c到高潮| 午夜福利在线观看免费完整高清在 | 亚洲午夜精品一区,二区,三区| 九色成人免费人妻av| 色av中文字幕| 久久久国产欧美日韩av| 99久久国产精品久久久| 一区二区三区激情视频| 欧美黑人巨大hd| 99国产精品99久久久久| 岛国视频午夜一区免费看| 女人被狂操c到高潮| 亚洲一区二区三区色噜噜| а√天堂www在线а√下载| 精品一区二区三区av网在线观看| 国产免费av片在线观看野外av| 国产麻豆成人av免费视频| 婷婷精品国产亚洲av| 露出奶头的视频| 制服人妻中文乱码| 97碰自拍视频| а√天堂www在线а√下载| 91麻豆av在线| 日本成人三级电影网站| 丰满人妻一区二区三区视频av | 深夜精品福利| 亚洲片人在线观看| 90打野战视频偷拍视频| 国产欧美日韩一区二区精品| 亚洲欧美精品综合久久99| 老司机深夜福利视频在线观看| 国产三级在线视频| 19禁男女啪啪无遮挡网站| 欧美色视频一区免费| 蜜桃久久精品国产亚洲av| 婷婷精品国产亚洲av| 国产免费av片在线观看野外av| 精品久久久久久久末码| 中文字幕最新亚洲高清| av天堂中文字幕网| 色吧在线观看| 日本一二三区视频观看| 日日摸夜夜添夜夜添小说| 无遮挡黄片免费观看| 1024手机看黄色片| 亚洲国产高清在线一区二区三| 国产伦人伦偷精品视频| 国产熟女xx| 五月玫瑰六月丁香| 国产人伦9x9x在线观看| 亚洲美女视频黄频| 亚洲av电影不卡..在线观看| 午夜福利18| 欧美色视频一区免费| 黄色成人免费大全| 亚洲精品中文字幕一二三四区| 国产av麻豆久久久久久久| 一进一出好大好爽视频| svipshipincom国产片| 最好的美女福利视频网| 午夜激情欧美在线| 99久久久亚洲精品蜜臀av| 欧美xxxx黑人xx丫x性爽| 国产成+人综合+亚洲专区| 久久久水蜜桃国产精品网| 国产精品 欧美亚洲| 亚洲成人精品中文字幕电影| 亚洲国产色片| 亚洲成人久久性| 成人无遮挡网站| 亚洲va日本ⅴa欧美va伊人久久| 国产一区二区在线av高清观看| 制服人妻中文乱码| 一进一出好大好爽视频| 丰满人妻熟妇乱又伦精品不卡| 在线视频色国产色| 又爽又黄无遮挡网站| 亚洲av成人不卡在线观看播放网| 一进一出抽搐动态| 亚洲专区中文字幕在线| 在线观看日韩欧美| 每晚都被弄得嗷嗷叫到高潮| 欧美色视频一区免费| 欧美日韩综合久久久久久 | 国产亚洲精品综合一区在线观看| 成年女人永久免费观看视频| 啦啦啦韩国在线观看视频| 久久天堂一区二区三区四区| 99久久成人亚洲精品观看| 亚洲国产看品久久| 99久国产av精品| 人人妻,人人澡人人爽秒播| 成人av在线播放网站| 精品国产亚洲在线| 两性夫妻黄色片| 小说图片视频综合网站| 这个男人来自地球电影免费观看| 亚洲色图av天堂| 男女之事视频高清在线观看| 老司机深夜福利视频在线观看| 一个人免费在线观看的高清视频| 亚洲中文日韩欧美视频| 90打野战视频偷拍视频| 亚洲av片天天在线观看| 国产精品自产拍在线观看55亚洲| 国产成人精品久久二区二区免费| 淫秽高清视频在线观看| 99久久99久久久精品蜜桃| 19禁男女啪啪无遮挡网站| 精品久久久久久久久久免费视频| 国产精品一区二区三区四区久久| 中文字幕久久专区| 19禁男女啪啪无遮挡网站| 亚洲人成网站高清观看| 亚洲激情在线av| 丰满人妻熟妇乱又伦精品不卡| 国产精品香港三级国产av潘金莲| 亚洲avbb在线观看| 国产精品香港三级国产av潘金莲| 法律面前人人平等表现在哪些方面| 97人妻精品一区二区三区麻豆| 97超级碰碰碰精品色视频在线观看| 成人国产一区最新在线观看| 很黄的视频免费| 91字幕亚洲| tocl精华| 亚洲成人久久性| 男人和女人高潮做爰伦理| 在线观看免费视频日本深夜| 黄片大片在线免费观看| 亚洲 欧美 日韩 在线 免费| 国模一区二区三区四区视频 | 叶爱在线成人免费视频播放| 伦理电影免费视频| 亚洲 国产 在线| 成人午夜高清在线视频| 国产激情偷乱视频一区二区| 国产主播在线观看一区二区| 亚洲人与动物交配视频| 岛国在线观看网站| 麻豆国产97在线/欧美| 美女扒开内裤让男人捅视频| 999精品在线视频| 欧美激情在线99| 免费看光身美女| 一夜夜www| 国产精品99久久久久久久久| 亚洲精品中文字幕一二三四区| 免费在线观看视频国产中文字幕亚洲| 亚洲av熟女| 757午夜福利合集在线观看| 日日干狠狠操夜夜爽| 亚洲最大成人中文| 国产精品 国内视频| 亚洲av五月六月丁香网| 这个男人来自地球电影免费观看| 麻豆成人av在线观看| 久久精品91无色码中文字幕| 成人特级黄色片久久久久久久| 日韩高清综合在线| 麻豆久久精品国产亚洲av| 麻豆国产av国片精品| 亚洲成人久久性| 久99久视频精品免费| 国产高清视频在线播放一区| 亚洲人与动物交配视频| 国产野战对白在线观看| 成人三级做爰电影| 国产精品久久久久久精品电影| 日本在线视频免费播放| 丰满人妻一区二区三区视频av | 国产亚洲精品av在线| 99国产综合亚洲精品| 欧美日韩国产亚洲二区| 两个人视频免费观看高清| 日韩精品中文字幕看吧| 精品久久久久久久末码| 亚洲中文字幕一区二区三区有码在线看 | 少妇的逼水好多| 90打野战视频偷拍视频| 亚洲自偷自拍图片 自拍| 亚洲精品中文字幕一二三四区| 欧美激情久久久久久爽电影| 免费看十八禁软件| 人妻夜夜爽99麻豆av| 国产真实乱freesex| 伊人久久大香线蕉亚洲五| 久久这里只有精品19| 婷婷精品国产亚洲av在线| 在线看三级毛片| 久久国产乱子伦精品免费另类| 老司机午夜福利在线观看视频| 日韩 欧美 亚洲 中文字幕| 国产激情久久老熟女| 色综合亚洲欧美另类图片| 男女那种视频在线观看| 久久精品综合一区二区三区| 国产午夜精品论理片| 黄频高清免费视频| av福利片在线观看| 欧美色视频一区免费| 国产乱人视频| 少妇的丰满在线观看| 色噜噜av男人的天堂激情| 高清在线国产一区| 国产欧美日韩精品亚洲av| 一级毛片高清免费大全| 岛国视频午夜一区免费看| 人妻丰满熟妇av一区二区三区| 亚洲精品粉嫩美女一区| 国产伦在线观看视频一区| а√天堂www在线а√下载| 欧美日韩精品网址| 黄片大片在线免费观看| 男人舔女人的私密视频| 久久精品国产99精品国产亚洲性色| 亚洲精品一区av在线观看| 黄色片一级片一级黄色片| 精品国产亚洲在线| 岛国在线免费视频观看| 国产熟女xx| 亚洲性夜色夜夜综合| 国产伦精品一区二区三区四那| 亚洲成人中文字幕在线播放| aaaaa片日本免费| 午夜两性在线视频| 色精品久久人妻99蜜桃| 欧美日韩瑟瑟在线播放| 欧美性猛交黑人性爽| 制服人妻中文乱码| 国产不卡一卡二| 国产麻豆成人av免费视频| 国产精品99久久99久久久不卡| 嫩草影院精品99| 国产精品久久电影中文字幕| 国产成人精品无人区| 国产精品电影一区二区三区| 男女床上黄色一级片免费看| 制服人妻中文乱码| 久久久成人免费电影| 女人被狂操c到高潮| 亚洲av成人不卡在线观看播放网| 1024手机看黄色片| 亚洲中文字幕日韩| 欧美xxxx黑人xx丫x性爽| 国产精品一区二区三区四区免费观看 | 韩国av一区二区三区四区| 成年女人永久免费观看视频| 亚洲在线自拍视频| 国产精品一及| 亚洲精品乱码久久久v下载方式 | 18禁国产床啪视频网站| 高清在线国产一区| 亚洲美女视频黄频| 精品久久久久久成人av| 亚洲国产看品久久| 亚洲第一欧美日韩一区二区三区| 国产又色又爽无遮挡免费看| 精品久久久久久久久久久久久| 长腿黑丝高跟| 搞女人的毛片| 午夜福利视频1000在线观看| 日本五十路高清| 一卡2卡三卡四卡精品乱码亚洲| 久久久成人免费电影| 欧美最黄视频在线播放免费| 欧美日韩乱码在线| 亚洲人成网站在线播放欧美日韩| 美女 人体艺术 gogo| 国产又色又爽无遮挡免费看| 欧美一级a爱片免费观看看| 黄色视频,在线免费观看| 老司机在亚洲福利影院| 国产真实乱freesex| 久久国产乱子伦精品免费另类| 高清在线国产一区| 亚洲无线在线观看| 又黄又爽又免费观看的视频| 亚洲色图 男人天堂 中文字幕| av中文乱码字幕在线| 亚洲国产精品久久男人天堂| 国产精品九九99| 欧美精品啪啪一区二区三区| 男人和女人高潮做爰伦理| 久久人人精品亚洲av| 亚洲国产精品久久男人天堂| 国产黄a三级三级三级人| 99国产精品一区二区三区| 男人的好看免费观看在线视频| 国产精品久久久久久亚洲av鲁大| 国产成人啪精品午夜网站| 床上黄色一级片| 欧美精品啪啪一区二区三区| 真人一进一出gif抽搐免费| 欧美日本亚洲视频在线播放| 国产aⅴ精品一区二区三区波| 国产精品爽爽va在线观看网站| 曰老女人黄片| 成人av在线播放网站| 亚洲成人中文字幕在线播放| 高潮久久久久久久久久久不卡| 欧美日韩乱码在线| 国产极品精品免费视频能看的| 成年免费大片在线观看| 国内揄拍国产精品人妻在线| 免费一级毛片在线播放高清视频| 啪啪无遮挡十八禁网站| 一区二区三区高清视频在线| 中出人妻视频一区二区| 亚洲熟妇中文字幕五十中出| 亚洲va日本ⅴa欧美va伊人久久| 麻豆av在线久日| 成年女人看的毛片在线观看| 一本一本综合久久| 亚洲中文字幕日韩| 精品欧美国产一区二区三| 大型黄色视频在线免费观看| 操出白浆在线播放| 日韩欧美 国产精品| 在线看三级毛片| 久久精品夜夜夜夜夜久久蜜豆| 最近最新中文字幕大全电影3| 亚洲18禁久久av| 国产综合懂色| 国产精品久久久人人做人人爽| 国产人伦9x9x在线观看| 免费电影在线观看免费观看| 亚洲av成人精品一区久久| 久久精品影院6| 精品久久久久久久人妻蜜臀av| 综合色av麻豆| 亚洲无线观看免费| 岛国在线免费视频观看| 亚洲欧美精品综合一区二区三区| 国产成人影院久久av| 国内精品美女久久久久久| 熟女人妻精品中文字幕| 国产三级中文精品| 色视频www国产| 巨乳人妻的诱惑在线观看| 欧美中文综合在线视频| 国产精品av视频在线免费观看| 久久午夜综合久久蜜桃| 亚洲18禁久久av| 国产1区2区3区精品| 亚洲性夜色夜夜综合| 在线十欧美十亚洲十日本专区| 国产精品 国内视频| 精品国产超薄肉色丝袜足j| 国内精品久久久久久久电影| 久久天堂一区二区三区四区| 久久精品亚洲精品国产色婷小说| 精品欧美国产一区二区三| 亚洲国产看品久久| 小蜜桃在线观看免费完整版高清| 久久久久国内视频| 日韩欧美精品v在线| 一级毛片女人18水好多| 夜夜爽天天搞| 久久欧美精品欧美久久欧美| xxx96com| 亚洲七黄色美女视频| 日本免费一区二区三区高清不卡| 午夜成年电影在线免费观看| 听说在线观看完整版免费高清| 精品一区二区三区视频在线观看免费| 99久国产av精品| 久久久久久久午夜电影| 小说图片视频综合网站| 少妇的丰满在线观看| 国产成人福利小说| 小说图片视频综合网站| www国产在线视频色| 国产黄a三级三级三级人| 一二三四在线观看免费中文在| 夜夜夜夜夜久久久久| 天堂动漫精品| 婷婷精品国产亚洲av| 欧美丝袜亚洲另类 | 亚洲av片天天在线观看| 毛片女人毛片| 中文字幕人成人乱码亚洲影| 99国产精品99久久久久| 黄片大片在线免费观看| 国产又色又爽无遮挡免费看| 欧美高清成人免费视频www| 欧美成狂野欧美在线观看| 国产主播在线观看一区二区| 国产亚洲精品一区二区www| 麻豆国产av国片精品| 日韩欧美一区二区三区在线观看| 久久精品亚洲精品国产色婷小说| 成人av在线播放网站| 亚洲激情在线av| www日本在线高清视频| 非洲黑人性xxxx精品又粗又长| 亚洲精品色激情综合| 精品福利观看| 欧美黄色淫秽网站| 国产三级黄色录像| 国产精品久久久久久久电影 | 国产精品一区二区三区四区免费观看 | 操出白浆在线播放|