焦 政 朱國(guó)琴 周逸嬋 徐 嫻 李曉林 李劍萍 何曉璞 徐 偉 邵 耘 孫為豪#
南京醫(yī)科大學(xué)第一附屬醫(yī)院老年消化科1(210029)
南京醫(yī)科大學(xué)附屬南京醫(yī)院消化科2 鹽城市第一人民醫(yī)院腫瘤科3
熊果酸通過(guò)AMPK/STAT3/COX-2信號(hào)通路抑制胃癌細(xì)胞增殖*
焦 政1朱國(guó)琴1周逸嬋1徐 嫻2李曉林1李劍萍3何曉璞1徐 偉1邵 耘1孫為豪1#
南京醫(yī)科大學(xué)第一附屬醫(yī)院老年消化科1(210029)
南京醫(yī)科大學(xué)附屬南京醫(yī)院消化科2鹽城市第一人民醫(yī)院腫瘤科3
背景:前期研究發(fā)現(xiàn),熊果酸通過(guò)下調(diào)環(huán)氧合酶2(COX-2)表達(dá)抑制胃癌細(xì)胞增殖,但熊果酸抑制COX-2表達(dá)的分子機(jī)制尚未完全明確。目的:探討單磷酸腺苷活化蛋白激酶(AMPK)/信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄活化因子3(STAT3)/COX-2信號(hào)通路在熊果酸抑制胃癌細(xì)胞增殖中的作用。方法:構(gòu)建AMPK-pLVX、AMPK-shRNA、STAT3-pLVX、STAT3-shRNA質(zhì)粒,分別轉(zhuǎn)染胃癌細(xì)胞株SGC-7901和MKN-45,并給予不同濃度或不同培養(yǎng)時(shí)間的熊果酸進(jìn)行培養(yǎng)。以蛋白質(zhì)印跡法檢測(cè)磷酸化AMPK、磷酸化STAT3和COX-2表達(dá),CCK-8法檢測(cè)胃癌細(xì)胞增殖。結(jié)果:在SGC-7901和MKN-45細(xì)胞中,熊果酸呈劑量和時(shí)間依賴性地促進(jìn)AMPK磷酸化、抑制STAT3磷酸化和COX-2表達(dá)。敲除AMPK基因能阻斷熊果酸抑制STAT3磷酸化和COX-2表達(dá)的作用,過(guò)表達(dá)STAT3基因能逆轉(zhuǎn)熊果酸抑制COX-2表達(dá)的作用。敲除AMPK基因和過(guò)表達(dá)STAT3基因均可逆轉(zhuǎn)熊果酸抑制胃癌細(xì)胞增殖的作用。結(jié)論:熊果酸可能通過(guò)AMPK/STAT3通路下調(diào)COX-2表達(dá)而抑制胃癌細(xì)胞增殖。
熊果酸; 胃腫瘤; AMP活化蛋白激酶類; STAT3轉(zhuǎn)錄因子; 環(huán)氧化酶2; 細(xì)胞增殖
胃癌是嚴(yán)重影響我國(guó)人民生命健康的惡性腫瘤,術(shù)后總體5年生存率約20%,有遠(yuǎn)處轉(zhuǎn)移者的5年生存率不到5%[1]。根治性手術(shù)是目前治療胃癌的最有效方法,但近70%的患者確診時(shí)已發(fā)生局部或全身轉(zhuǎn)移,而無(wú)法行手術(shù)切除。因此,尋求有效的輔助治療藥物十分必要,天然藥物及其提取物的抗癌作用近年已引起國(guó)內(nèi)外學(xué)者的廣泛關(guān)注。熊果酸具有抑制腫瘤細(xì)胞增殖、誘導(dǎo)細(xì)胞凋亡、抑制血管生成和抗突變等生物學(xué)活性,已成為腫瘤化學(xué)預(yù)防的研究熱點(diǎn)[2-3]。本研究的前期研究[4-5]發(fā)現(xiàn),環(huán)氧合酶2(COX-2)在胃癌發(fā)生、浸潤(rùn)和轉(zhuǎn)移中發(fā)揮重要作用,熊果酸通過(guò)下調(diào)COX-2表達(dá)而抑制胃癌細(xì)胞增殖、誘導(dǎo)細(xì)胞凋亡。但熊果酸抑制COX-2表達(dá)的分子機(jī)制目前尚不明確。
單磷酸腺苷活化蛋白激酶(AMPK)在人類惡性腫瘤的發(fā)生、發(fā)展中扮演重要角色[6-7],與胃癌的預(yù)后密切相關(guān)[8]。信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄活化因子(STAT)是一種重要的信號(hào)級(jí)聯(lián)分子,參與與細(xì)胞周期進(jìn)程、細(xì)胞凋亡、血管生成、腫瘤細(xì)胞侵襲和轉(zhuǎn)移相關(guān)靶基因的表達(dá),在腫瘤發(fā)生、發(fā)展中發(fā)揮重要的調(diào)控作用[9]。本研究通過(guò)轉(zhuǎn)染人胃腺癌細(xì)胞株敲除或過(guò)表達(dá)AMPK、STAT3的質(zhì)粒,旨在探討AMPK/STAT3/COX-2通路在熊果酸抑制胃癌細(xì)胞增殖中的作用。
一、主要材料
1. 藥物和試劑:熊果酸由中國(guó)藥品生物制品檢定所(北京)提供;BCA試劑盒購(gòu)自Pierce公司;兔抗人AMPK和磷酸化AMPK(p-AMPK)、COX-2、β-actin單克隆抗體、STAT3和磷酸化STAT3(p-STAT3)多克隆抗體購(gòu)自Cell Signaling Technology公司;辣根過(guò)氧化物酶標(biāo)記的山羊抗兔IgG抗體購(gòu)自Santa Cruz公司。ECL試劑盒購(gòu)自Amersham公司;無(wú)內(nèi)毒素質(zhì)粒小提中量試劑盒購(gòu)自天根生化科技(北京)有限公司,CCK-8試劑盒購(gòu)自日本同仁化學(xué)研究所。LipofectamineTM2000轉(zhuǎn)染試劑購(gòu)自Invitrogen公司,AMPK-shRNA、AMPK-pLVX、STAT3-shRNA、STAT3-pLVX、NC-shRNA以及NC-pLVX質(zhì)粒購(gòu)自漢恒生物科技有限公司。
2. 細(xì)胞株:人胃腺癌中分化細(xì)胞株SGC-7901購(gòu)自中國(guó)科學(xué)院上海細(xì)胞生物學(xué)研究所,人胃腺癌低分化細(xì)胞株MKN-45購(gòu)自南京凱基生物科技發(fā)展有限公司。
二、研究方法
1. 藥物配制:熊果酸以DMSO溶解后加入RPMI-1640培養(yǎng)液稀釋至所需濃度,DMSO的終濃度不超過(guò)0.1%,4 ℃保存?zhèn)溆谩?/p>
2. 細(xì)胞培養(yǎng):SGC-7901和MKN-45細(xì)胞常規(guī)傳代培養(yǎng)于含10%胎牛血清的RPMI-1640培養(yǎng)基中,于37 ℃、5% CO2、飽和濕度的孵箱中培養(yǎng),隔天換液,3 d傳代一次。
3. 質(zhì)粒提取:AMPK、STAT3特異性shRNA和pLVX寡核苷酸鏈合成以及DNA序列測(cè)定由漢恒生物科技有限公司完成,提取純化質(zhì)粒DNA。
4. 細(xì)胞轉(zhuǎn)染:轉(zhuǎn)染前24 h,取對(duì)數(shù)生長(zhǎng)期細(xì)胞接種于6孔培養(yǎng)板,以無(wú)抗菌藥物培養(yǎng)基培養(yǎng)至轉(zhuǎn)染當(dāng)日細(xì)胞融合度達(dá)70%~80%,按LipofectamineTM2000轉(zhuǎn)染試劑說(shuō)明書(shū)步驟行瞬時(shí)轉(zhuǎn)染。將細(xì)胞分為空白對(duì)照組、陰性對(duì)照組和轉(zhuǎn)染組,分別給予未轉(zhuǎn)染、轉(zhuǎn)染NC-shRNA或NC-pLVX、轉(zhuǎn)染敲除或過(guò)表達(dá)AMPK和STAT3的質(zhì)粒(轉(zhuǎn)染與脂質(zhì)體配比為 1∶2.5)。轉(zhuǎn)染后37 ℃孵箱培養(yǎng)6 h,更換培養(yǎng)基繼續(xù)孵育 24 h,熒光顯微鏡下檢測(cè)綠色熒光蛋白的表達(dá)。
5. 蛋白質(zhì)印跡法:取對(duì)數(shù)生長(zhǎng)期細(xì)胞,以熊果酸(0、10、20、30 μmol/L)干預(yù)24 h,或以30 μmol/L 熊果酸干預(yù)培養(yǎng)不同時(shí)間(0 h、6 h、12 h、24 h、48 h),或轉(zhuǎn)染24 h后,加或不加30 μmol/L熊果酸干預(yù)24 h,收集細(xì)胞。預(yù)冷的PBS洗滌3次,加入細(xì)胞裂解液裂解細(xì)胞,4 ℃ 12 000×g離心30 min,取上清,BCA法測(cè)定蛋白濃度。取等量蛋白進(jìn)行SDS-PAGE電泳后轉(zhuǎn)印至PVDF膜,4 ℃封閉 2 h,分別加入兔抗人AMPK、p-AMPK、STAT3、p-STAT3、COX-2和β-actin抗體(工作濃度均為1∶1 000),4 ℃ 孵育過(guò)夜,加入二抗,4 ℃孵育2 h。ECL發(fā)光,使用全自動(dòng)熒光/化學(xué)發(fā)光成像分析系統(tǒng)(Tanon 5200 Multi,上海天能科技有限公司)對(duì)蛋白電泳條帶行成像和半定量分析。實(shí)驗(yàn)重復(fù)3次。
6. CCK-8法檢測(cè)細(xì)胞增殖活力:取對(duì)數(shù)生長(zhǎng)期5×103個(gè)細(xì)胞,制成單細(xì)胞懸液,接種于96孔培養(yǎng)板,常規(guī)培養(yǎng)24 h至細(xì)胞貼壁,換無(wú)血清RPMI-1640培養(yǎng)液繼續(xù)培養(yǎng)24 h。加入熊果酸(0、10、20、30 μmol/L)干預(yù)24 h,或轉(zhuǎn)染24 h后,加或不加30 μmol/L 熊果酸干預(yù)24 h,然后每孔加入無(wú)血清RPMI-1640培養(yǎng)液100 μL和CCK-8溶液10 μL,作用2~4 h。以空白對(duì)照組調(diào)零,于波長(zhǎng)450 nm處測(cè)定各孔吸光度(A)值。細(xì)胞活力=(處理組A值-空白對(duì)照組A值)/(非處理組A值-空白對(duì)照組A值),實(shí)驗(yàn)重復(fù)3次,每組設(shè)5個(gè)復(fù)孔。
三、統(tǒng)計(jì)學(xué)分析
一、熊果酸對(duì)AMPK、STAT3磷酸化和COX-2表達(dá)的影響
熊果酸可呈劑量和時(shí)間依賴性地誘導(dǎo)SGC-7901和MKN-45細(xì)胞AMPK磷酸化、抑制STAT3磷酸化和COX-2表達(dá)(圖1、圖2)。
二、熊果酸通過(guò)AMPK抑制STAT3磷酸化和COX-2表達(dá)
與空白對(duì)照組和陰性對(duì)照組相比,AMPK敲除組SGC-7901和MKN-45細(xì)胞p-AMPK蛋白表達(dá)顯著降低,而AMPK過(guò)表達(dá)組顯著升高(P<0.05)??瞻讓?duì)照組與陰性對(duì)照組之間差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)(圖3)。
在SGC-7901和MKN-45細(xì)胞中,與陰性對(duì)照組相比,熊果酸組p-STAT3和COX-2蛋白表達(dá)顯著降低(P<0.01),AMPK敲除組p-STAT3和COX-2蛋白表達(dá)顯著升高(P<0.01)。與熊果酸組相比,熊果酸+AMPK敲除組p-STAT3和COX-2蛋白表達(dá)顯著升高(P<0.05)(圖4)。與AMPK過(guò)表達(dá)組相比,熊果酸+AMPK過(guò)表達(dá)組p-STAT3和COX-2蛋白表達(dá)顯著降低(P<0.05)(圖5)。
與SGC-7901或MKN-45細(xì)胞0 μmol/L熊果酸組比較,*P<0.05,**P<0.01
與SGC-7901或MKN-45細(xì)胞0 h熊果酸比較,*P<0.05,**P<0.01
與SGC-7901或MKN-45細(xì)胞空白對(duì)照組和陰性對(duì)照組比較,*P<0.05,**P<0.01
圖3 敲除或過(guò)表達(dá)AMPK對(duì)胃癌細(xì)胞p-AMPK蛋白表達(dá)的影響(蛋白質(zhì)印跡法)
與SGC-7901或MKN-45細(xì)胞陰性對(duì)照組比較,*P<0.01;與SGC-7901或MKN-45細(xì)胞熊果酸組比較,△P<0.05,△△P<0.01
圖4 敲除AMPK基因?qū)π芄嵋种莆赴┘?xì)胞p-STAT3和COX-2蛋白表達(dá)的影響(蛋白質(zhì)印跡法)
與SGC-7901或MKN-45細(xì)胞陰性對(duì)照組比較,*P<0.05,**P<0.01;與SGC-7901或MKN-45細(xì)胞AMPK過(guò)表達(dá)組比較,△P<0.05,△△P<0.01
圖5 過(guò)表達(dá)AMPK對(duì)熊果酸抑制胃癌細(xì)胞p-STAT3和COX-2蛋白表達(dá)的影響(蛋白質(zhì)印跡法)
三、熊果酸通過(guò)STAT3抑制COX-2表達(dá)
與空白對(duì)照組和陰性對(duì)照組相比,STAT3敲除組p-STAT3蛋白表達(dá)顯著降低(P<0.01),而STAT3過(guò)表達(dá)組顯著升高(P<0.05)??瞻讓?duì)照組與陰性對(duì)照組之間差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)(圖6)。
與SGC-7901或MKN-45細(xì)胞空白對(duì)照組和陰性對(duì)照組比較,*P<0.05,**P<0.01
圖6 敲除或過(guò)表達(dá)STAT3對(duì)胃癌細(xì)胞p-STAT3蛋白表達(dá)的影響(蛋白質(zhì)印跡法)
在SGC-7901和MKN-45細(xì)胞中,與陰性對(duì)照組相比,熊果酸組COX-2蛋白表達(dá)顯著降低(P<0.01),STAT3敲除組COX-2蛋白表達(dá)顯著降低(P<0.01)。與STAT3敲除組相比,熊果酸+STAT3敲除組COX-2蛋白表達(dá)顯著降低(P<0.05);與熊果酸組相比,熊果酸+STAT3過(guò)表達(dá)組顯著升高(P<0.05)(圖7)。
與SGC-7901或MKN-45細(xì)胞陰性對(duì)照組比較,*P<0.01;與SGC-7901或MKN-45細(xì)胞STAT3敲除組、熊果酸組比較,△P<0.05,△△P<0.01
圖7 敲除或過(guò)表達(dá)STAT3對(duì)胃癌細(xì)胞COX-2蛋白表達(dá)的影響(蛋白質(zhì)印跡法)
四、熊果酸抑制胃癌細(xì)胞增殖作用的調(diào)控
熊果酸呈劑量依賴性地抑制SGC-7901和MKN-45細(xì)胞增殖。在SGC-7901和MKN-45細(xì)胞中,空白對(duì)照組與陰性對(duì)照組細(xì)胞活力差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05),熊果酸組較陰性對(duì)照組顯著降低(P<0.05),熊果酸+AMPK敲除組細(xì)胞活力顯著高于熊果酸組(P<0.05),熊果酸+STAT3過(guò)表達(dá)組細(xì)胞活力顯著高于熊果酸組(P<0.05)(圖8)。
*與SGC-7901或MKN-45細(xì)胞空白對(duì)照組比較,P<0.01;+與SGC-7901或MKN-45細(xì)胞陰性對(duì)照組比較,P<0.01;與SGC-7901或MKN-45細(xì)胞熊果酸組比較,#P<0.05,##P<0.01
圖8 敲除AMPK或過(guò)表達(dá)STAT3對(duì)胃癌細(xì)胞增殖作用的調(diào)控(CCK-8法)
近年隨著分子生物學(xué)技術(shù)的發(fā)展以及新化療藥物的應(yīng)用,胃癌診治水平有了一定程度的提高,但其預(yù)后仍不盡如人意。防止腫瘤復(fù)發(fā)和轉(zhuǎn)移的輔助治療越來(lái)越受到國(guó)內(nèi)外學(xué)者的重視。熊果酸是一種五環(huán)三萜類化合物,廣泛存在于白花蛇舌草、夏枯草、女貞子和烏梅等天然植物中。動(dòng)物實(shí)驗(yàn)[3,10]顯示熊果酸在轉(zhuǎn)基因腫瘤動(dòng)物模型和裸鼠移植瘤模型中的抑瘤作用顯著,具有良好的臨床應(yīng)用前景。有研究[11-12]發(fā)現(xiàn),熊果酸通過(guò)激活A(yù)MPK誘導(dǎo)肝癌和膀胱癌細(xì)胞凋亡。AMPK是細(xì)胞能量代謝的主要調(diào)節(jié)器[13],激活A(yù)MPK可誘導(dǎo)胃癌和胰腺癌等腫瘤細(xì)胞發(fā)生凋亡[14-15]。白藜蘆醇(resveratrol)的抗腫瘤作用與AMPK活化有關(guān)[16],另一種植物提取物小檗堿(berberine)通過(guò)激活A(yù)MPK減少COX-2表達(dá)而抑制黑色素瘤細(xì)胞的轉(zhuǎn)移潛能[17]。
本研究結(jié)果顯示,熊果酸促進(jìn)胃癌細(xì)胞AMPK磷酸化,并抑制STAT3磷酸化和COX-2表達(dá)。敲除AMPK基因和過(guò)表達(dá)STAT3基因均可逆轉(zhuǎn)熊果酸誘導(dǎo)的COX-2蛋白表達(dá)下調(diào),降低熊果酸對(duì)胃癌細(xì)胞的增殖抑制作用。Yamaoka等[18]證實(shí)在大鼠、小鼠以及人類COX-2基因啟動(dòng)子內(nèi)含有一種GAS序列,該序列為STAT結(jié)合區(qū)域,提示STAT3可能參與COX-2的上游轉(zhuǎn)錄調(diào)節(jié)過(guò)程。本研究結(jié)果證實(shí),過(guò)表達(dá)AMPK和敲除STAT3基因可進(jìn)一步促進(jìn)熊果酸誘導(dǎo)的COX-2表達(dá)下調(diào),從而增強(qiáng)熊果酸對(duì)胃癌細(xì)胞的增殖抑制作用。熊果酸通過(guò)抑制TNF、佛波酯等引起的NF-κB激活作用,抑制NF-κB依賴性COX-2、MMP-9以及cyclin D1表達(dá),從而產(chǎn)生抗腫瘤的作用[19]。文獻(xiàn)報(bào)道JAK2/STAT3和PI3K/Akt信號(hào)途徑能誘導(dǎo)COX-2的表達(dá)[20-21],而熊果酸能阻斷STAT3通路而抑制多發(fā)性骨髓瘤細(xì)胞的增殖[22]。STAT3在各種人胃癌細(xì)胞株和胃癌組織中均具有較高的活性,JAK/STAT信號(hào)轉(zhuǎn)導(dǎo)途徑可能在胃癌的發(fā)生、發(fā)展中起有重要作用[23]。綜上所述,本研究推測(cè)熊果酸通過(guò)AMPK/STAT3通路下調(diào)COX-2表達(dá)進(jìn)而抑制胃癌細(xì)胞增殖。當(dāng)然,由于細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)機(jī)制十分復(fù)雜,熊果酸抑制胃癌細(xì)胞COX-2表達(dá)尚不排除存在其他通路的作用,且不同通路之間可能存在關(guān)聯(lián)(如cross-talk等),全面了解其機(jī)制還需行大量而深入的研究。
1 Zhang ZX, Gu XZ, Yin WB, et al. Randomized clinical trial on the combination of preoperative irradiation and surgery in the treatment of adenocarcinoma of gastric cardia (AGC) -- report on 370 patients[J]. Int J Radiat Oncol Biol Phys, 1998, 42 (5): 929-934.
2 Zhao C, Yin S, Dong Y, et al. Autophagy-dependent EIF2AK3 activation compromises ursolic acid-induced apoptosis through upregulation of MCL1 in MCF-7 human breast cancer cells[J]. Autophagy, 2013, 9 (2): 196-207.
3 Shanmugam MK, Manu KA, Ong TH, et al. Inhibition of CXCR4/CXCL12 signaling axis by ursolic acid leads to suppression of metastasis in transgenic adenocarcinoma of mouse prostate model[J]. Int J Cancer, 2011, 129 (7): 1552-1563.
4 He XP, Shao Y, Li XL, et al. Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth[J]. FEBS J, 2012, 279 (22): 4201-4212.
5 Zhang H, Li X, Ding J, et al. Delivery of ursolic acid (UA) in polymeric nanoparticles effectively promotes the apoptosis of gastric cancer cells through enhanced inhibition of cyclooxygenase 2 (COX-2)[J]. Int J Pharm, 2013, 441 (1-2): 261-268.
6 Wang J, Qi Q, Feng Z, et al. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway[J]. Oncotarget, 2016, 7 (41): 66944-66958.
7 徐亞洲, 廖紅, 張陸勇, 等. 腺苷一磷酸激活蛋白激酶激活劑研究進(jìn)展[J]. 藥學(xué)進(jìn)展, 2014, 38 (2): 125-131.
8 Zheng Z, Zheng Y, Zhang M, et al. Reciprocal expression of p-AMPKa and p-S6 is strongly associated with the prognosis of gastric cancer[J]. Tumour Biol, 2016, 37 (4): 4803-4811.
9 Siveen KS, Sikka S, Surana R, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors[J]. Biochim Biophys Acta, 2014, 1845 (2): 136-154.
10 Prasad S, Yadav VR, Sung B, et al. Ursolic acid inhibits growth and metastasis of human colorectal cancer in an orthotopic nude mouse model by targeting multiple cell signaling pathways: chemosensitization with capecitabine[J]. Clin Cancer Res, 2012, 18 (18): 4942-4953.
11 Son HS, Kwon HY, Sohn EJ, et al. Activation of AMP-activated protein kinase and phosphorylation of glycogen synthase kinase3 β mediate ursolic acid induced apoptosis in HepG2 liver cancer cells[J]. Phytother Res, 2013, 27 (11): 1714-1722.
12 Zheng QY, Jin FS, Yao C, et al. Ursolic acid-induced AMP-activated protein kinase (AMPK) activation contributes to growth inhibition and apoptosis in human bladder cancer T24 cells[J]. Biochem Biophys Res Commun, 2012, 419 (4): 741-747.
13 Hardie DG. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis[J]. Curr Opin Cell Biol, 2015, 33: 1-7.
14 Saitoh M, Nagai K, Nakagawa K, et al. Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase[J]. Biochem Pharmacol, 2004, 67 (10): 2005-2011.
15 Wang B, Wang XB, Chen LY, et al. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis[J]. Biochem Biophys Res Commun, 2013, 437 (1): 1-6.
16 Yuan Y, Xue X, Guo RB, et al. Resveratrol enhances the antitumor effects of temozolomide in glioblastoma via ROS-dependent AMPK-TSC-mTOR signaling pathway[J]. CNS Neurosci Ther, 2012, 18 (7): 536-546.
17 Kim HS, Kim MJ, Kim EJ, et al. Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression[J]. Biochem Pharmacol, 2012, 83 (3): 385-394.
18 Yamaoka K, Otsuka T, Niiro H, et al. Activation of STAT5 by lipopolysaccharide through granulocyte-macrophage colony-stimulating factor production in human monocytes[J]. J Immunol, 1998, 160 (2): 838-845.
19 Shishodia S, Majumdar S, Banerjee S, et al. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1[J]. Cancer Res, 2003, 63 (15): 4375-4383.
20 Xu W, Chen GS, Shao Y, et al. Gastrin acting on the cholecystokinin2 receptor induces cyclooxygenase-2 expression through JAK2/STAT3/PI3K/Akt pathway in human gastric cancer cells[J]. Cancer Lett, 2013, 332 (1): 11-18.
21 Gao J, Tian J, Lv Y, et al. Leptin induces functional activation of cyclooxygenase-2 through JAK2/STAT3, MAPK/ERK, and PI3K/AKT pathways in human endometrial cancer cells[J]. Cancer Sci, 2009, 100 (3): 389-395.
22 Pathak AK, Bhutani M, Nair AS, et al. Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells[J]. Mol Cancer Res, 2007, 5 (9): 943-955.
23 Huang W, Yu LF, Zhong J, et al. Stat3 is involved in angiotensin Ⅱ-induced expression of MMP2 in gastric cancer cells[J]. Dig Dis Sci, 2009, 54 (10): 2056-2062.
(2016-11-07收稿;2016-12-25修回)
Ursolic Acid Inhibits Gastric Cancer Cells Proliferation through AMPK/STAT3/COX-2 Signaling Pathway
JIAOZheng1,ZHUGuoqin1,ZHOUYichan1,XUXian2,LIXiaolin1,LIJianping3,HEXiaopu1,XUWei1,SHAOYun1,SUNWeihao1.
1DepartmentofGeriatricGastroenterology,theFirstAffiliatedHospitalofNanjingMedicalUniversity,Nanjing(210029);2DepartmentofGastroenterology,NanjingFirstHospitalAffiliatedtoNanjingMedicalUniversity,Nanjing;3DepartmentofOncology,YanchengCityNo.1People’sHospital,Yancheng,JiangsuProvince
SUN Weihao, Email: swh@njmu.edu.cn
Ursolic Acid; Stomach Neoplasms; AMP-Activated Protein Kinases; STAT3 Transcription Factor; Cyclooxygenase 2; Cell Proliferation
10.3969/j.issn.1008-7125.2017.04.004
國(guó)家自然科學(xué)面上項(xiàng)目(No.81372659)
#本文通信作者,Email: swh@njmu.edu.cn
Background: Previous study has found that ursolic acid (UA) inhibited the proliferation of gastric cancer cells by the down-regulation of cyclooxygenase-2 (COX-2) expression. However, its molecular mechanism is not fully clear. Aims: To investigate the role of adenosine monophosphate-activated protein kinase (AMPK)/signal transducer and activator of transcription 3 (STAT3)/COX-2 signaling pathway in UA-mediated inhibition of gastric cancer cells proliferation. Methods: AMPK-pLVX, AMPK-shRNA, STAT3-pLVX, STAT3-shRNA plasmids were constructed, and then were transfected into human gastric cancer cell lines SGC-7901 and MKN-45, respectively. Gastric cancer cells were cultured with different concentrations of UA for different times. The expressions of phosphorylated AMPK (p-AMPK), phosphorylated STAT3 (p-STAT3) and COX-2 were measured by Western blotting, and cell proliferation was detected by CCK-8 assay. Results: UA dose- and time-dependently increased p-AMPK expression, inhibited p-STAT3 and COX-2 expressions in SGC-7901 and MKN-45 cells. Knockdown of AMPK blocked UA-induced inhibition of STAT3 phosphorylation and COX-2 expression. Overexpression of STAT3 blocked UA-induced down-regulation of COX-2 expression. Knockdown of AMPK and overexpression of STAT3 blocked UA-induced inhibition of proliferation of gastric cancer cells. Conclusions: UA may inhibit the proliferation of gastric cancer cells via down-regulation of COX-2 expression through AMPK/STAT3 pathway.