張?jiān)娀莺?瓊謝富安洪笑遷劉寬燦,
上皮干細(xì)胞參與腫瘤惡變的機(jī)制
張?jiān)娀?胡 瓊2謝富安3洪笑遷2劉寬燦2,3
上皮干細(xì)胞是一類具有自我更新能力和多向分化潛能的細(xì)胞,在維持上皮穩(wěn)定中起到關(guān)鍵作用。隨著研究不斷深入,發(fā)現(xiàn)上皮干細(xì)胞可作為上皮腫瘤發(fā)生的起始細(xì)胞,上皮干細(xì)胞惡變不僅受干細(xì)胞微環(huán)境影響,它還與多條信號(hào)通路失調(diào)及基因突變相關(guān)。但上皮干細(xì)胞如何惡變?yōu)槟[瘤的具體機(jī)制依舊不清楚。本文就上皮干細(xì)胞和腫瘤干細(xì)胞兩者的聯(lián)系以及上皮干細(xì)胞惡變?yōu)槟[瘤的作用機(jī)制進(jìn)行闡述。
上皮細(xì)胞; 腫瘤干細(xì)胞; 機(jī)制
上皮干細(xì)胞存在于腸[1]、乳腺[2]、前列腺[3]、食管[4]、皮膚[5]以及卵巢[6]等多個(gè)上皮組織中,這些干細(xì)胞是保持上皮穩(wěn)態(tài)所必需,并貫穿整個(gè)生命進(jìn)程。近年來,腫瘤干細(xì)胞作為腫瘤中具有干細(xì)胞特性的一類細(xì)胞,在腫瘤發(fā)生發(fā)展以及治療抗性中發(fā)揮重要作用,并已成為研究熱點(diǎn)。同時(shí),作為與腫瘤干細(xì)胞特性相似的上皮干細(xì)胞,其與腫瘤干細(xì)胞的關(guān)系和在腫瘤發(fā)生中的作用不斷被揭示。隨著各種技術(shù)包括譜系示蹤技術(shù)以及3D類器官培養(yǎng)[7]的應(yīng)用,對(duì)上皮干細(xì)胞的研究越來越深入。
(一)正常干細(xì)胞與腫瘤干細(xì)胞特性
正常干細(xì)胞,是具有自我更新和多向分化能力的一類細(xì)胞,經(jīng)不對(duì)稱分裂可形成兩個(gè)完全不同的子細(xì)胞,一個(gè)與干細(xì)胞性質(zhì)相同,可繼續(xù)自我更新;另一個(gè)子細(xì)胞經(jīng)過一系列細(xì)胞分裂分化步驟以形成不同的分化細(xì)胞群[8]。干細(xì)胞分裂較慢,這有利于對(duì)特定的外界信號(hào)做出反應(yīng),決定細(xì)胞命運(yùn),同時(shí)可減少干細(xì)胞內(nèi)基因突變的風(fēng)險(xiǎn)。在小鼠中發(fā)現(xiàn),通過模擬生理應(yīng)激以誘導(dǎo)造血干細(xì)胞靜息狀態(tài)改變,可導(dǎo)致DNA損傷[9]。
腫瘤干細(xì)胞是腫瘤細(xì)胞中的亞群,擁有干細(xì)胞屬性,同樣具有自我更新和分化能力[10]。目前,已從多個(gè)腫瘤中分離出具有干細(xì)胞屬性的亞細(xì)胞群,這些細(xì)胞表達(dá)干細(xì)胞標(biāo)志物,同時(shí)具有惡性侵襲遷移的能力。腫瘤干細(xì)胞不僅是腫瘤細(xì)胞的潛在來源,還是腫瘤惡變、復(fù)發(fā)和化放療抗性的可能原因。
(二)上皮干細(xì)胞與腫瘤干細(xì)胞關(guān)系
多年來的研究證實(shí)正常干細(xì)胞和腫瘤干細(xì)胞之間具有較高的相似性,擁有一些共同特征:具有無限增殖、自我更新的能力;表達(dá)相似的分子標(biāo)志物(表1);涉及多個(gè)相同的干細(xì)胞調(diào)節(jié)信號(hào)通路,如WNT、NOTCH等。此外,有證據(jù)表明干細(xì)胞擁有更易惡變的可能性。比如在腸上皮中,腸分化細(xì)胞一般4 ~ 5 d可脫落,但腸干細(xì)胞可長(zhǎng)期存在,遠(yuǎn)遠(yuǎn)長(zhǎng)于已分化后代,使突變發(fā)生可能性增加。自我更新能力可能是一個(gè)癌前病變因子,腫瘤內(nèi)逐漸增多的細(xì)胞要求其必須具備自我更新能力的細(xì)胞,干細(xì)胞本身具備自我更新能力,因而正常上皮干細(xì)胞轉(zhuǎn)換為腫瘤干細(xì)胞可能要比已分化的細(xì)胞轉(zhuǎn)換更容易更快,而已分化細(xì)胞則可能需要特異的突變以獲得相同的自我更新能力[5]。之前發(fā)現(xiàn),皮膚癌中包含具有干細(xì)胞表型的一類細(xì)胞,這部分細(xì)胞的表型和功能與皮膚干細(xì)胞類似,具有高效的腫瘤起始能力,而且皮膚癌干細(xì)胞的維持依賴β-catenin信號(hào)[11]。
細(xì)胞不對(duì)稱分裂缺陷與腫瘤形成密切相關(guān),這可能也是正常干細(xì)胞轉(zhuǎn)換為腫瘤干細(xì)胞的機(jī)制之一。細(xì)胞極性對(duì)干細(xì)胞分裂(對(duì)稱或不對(duì)稱)以及在干細(xì)胞粘附和靜息狀態(tài)維持的調(diào)控上具有特別重要的意義[31]。細(xì)胞極性蛋白(包括PAR、CRB、SCRIB復(fù)合物)功能活性或表達(dá)缺失,與腫瘤發(fā)生發(fā)展的晚期階段密切相關(guān),但是,這些蛋白在Hippo和LKB1-AMPK通路以及細(xì)胞增殖中同樣具有關(guān)鍵作用,說明這些極性蛋白與腫瘤形成的早期階段相關(guān)。如極性蛋白的失調(diào)能引起細(xì)胞分裂的定向錯(cuò)誤和成人上皮干細(xì)胞自我更新能力的提高。一旦細(xì)胞極性遭到破壞,生長(zhǎng)抑制信號(hào)可能對(duì)細(xì)胞無法發(fā)揮作用,甚至可能導(dǎo)致細(xì)胞逃避分化、衰老或凋亡[32]。在有絲分裂過程中,細(xì)胞極性機(jī)制也參與上皮干細(xì)胞定向分裂的控制,許多調(diào)控上皮細(xì)胞極性的基因也調(diào)節(jié)干細(xì)胞中的紡錘體定位和分裂對(duì)稱性[33]。乳腺干細(xì)胞中的腫瘤抑制基因P53突變,可提高干細(xì)胞對(duì)稱分裂頻率,從而增加腫瘤發(fā)生的易感性,P53調(diào)節(jié)乳房干細(xì)胞分裂中的極性,并認(rèn)為P53缺失會(huì)促進(jìn)細(xì)胞的對(duì)稱分裂,從而促進(jìn)腫瘤起始[34]。因此,細(xì)胞極性蛋白表達(dá)或功能活性改變,可能促進(jìn)干細(xì)胞的對(duì)稱分裂和分化逃避,從而賦予該干細(xì)胞腫瘤特性。
上皮干細(xì)胞在維持各類上皮組織的組織穩(wěn)態(tài)上起至關(guān)重要的作用。上皮干細(xì)胞異質(zhì)性變化與上皮腫瘤發(fā)生發(fā)展緊密聯(lián)系,上皮干細(xì)胞的增殖分化異常、功能性質(zhì)改變等均會(huì)引發(fā)上皮異常,進(jìn)一步起始上皮腫瘤的發(fā)生。上皮干細(xì)胞依賴的微環(huán)境、信號(hào)通路以及其他因素等對(duì)上皮干細(xì)胞的穩(wěn)定具有重要調(diào)控作用。因此,一旦這些因素改變而導(dǎo)致上皮干細(xì)胞增殖失控,都可能促使上皮干細(xì)胞惡變?yōu)槟[瘤的起始細(xì)胞,誘導(dǎo)腫瘤的發(fā)生(圖1)。
(一)微環(huán)境與上皮干細(xì)胞惡變
干細(xì)胞靜息、遷移、增殖和分化四種可能的細(xì)胞命運(yùn)取決于微環(huán)境,即干細(xì)胞niche[31]。干細(xì)胞niche對(duì)干細(xì)胞的調(diào)控是一個(gè)復(fù)雜網(wǎng)絡(luò),干細(xì)胞需要來自niche的信號(hào)來調(diào)節(jié)自身細(xì)胞命運(yùn)。在腸隱窩中,潘氏細(xì)胞可產(chǎn)生一系列支持腸干細(xì)胞的微環(huán)境信號(hào),包括上皮生長(zhǎng)因子(EGF),WNT3和NOTCH配體等[35]。不同的微環(huán)境可通過賦予干細(xì)胞不同的增殖能力和分子標(biāo)志,從而影響干細(xì)胞行為[36]。微環(huán)境包括營(yíng)養(yǎng)、免疫、炎癥、細(xì)胞因子等,我們主要集中于營(yíng)養(yǎng)和炎癥對(duì)上皮干細(xì)胞惡變的關(guān)系分析。
表1 上皮組織器官中上皮干細(xì)胞和腫瘤干細(xì)胞標(biāo)志物
圖1 上皮干細(xì)胞與腫瘤發(fā)生
1.干細(xì)胞微環(huán)境中的營(yíng)養(yǎng)機(jī)制與腫瘤發(fā)生:干細(xì)胞niche的營(yíng)養(yǎng)機(jī)制可調(diào)節(jié)腸干細(xì)胞池的大小和活性。研究表明,卡路里限制可活化腸干細(xì)胞niche中潘氏細(xì)胞mTOR復(fù)合體1(mechanistic target of rapamycin complex 1,mTORC1)的表達(dá),mTORC1活化能夠消除niche中的腸干細(xì)胞擴(kuò)增能力,從而縮減Lgr5+干細(xì)胞池的大小[37]。高脂肪飲食引起的肥胖可擴(kuò)大LGR5+腸干細(xì)胞的數(shù)量和功能,研究表明,高脂肪飲食可誘導(dǎo)腸干細(xì)胞和祖細(xì)胞表達(dá)過氧化物酶增殖活化受體PPAR-δ(peroxisome proliferator-actived receptor delta)信號(hào),該信號(hào)活化可賦予祖細(xì)胞團(tuán)的類器官起始能力。但在腫瘤抑制基因APC缺失的情況下,增強(qiáng)的PPAR-δ信號(hào)可促使這些祖細(xì)胞在體內(nèi)形成腫瘤。進(jìn)一步研究發(fā)現(xiàn),高脂飲食并沒有改變干細(xì)胞標(biāo)志基因Lgr5的表達(dá),而是誘發(fā)腸干細(xì)胞和祖細(xì)胞中一系列β-catenin靶基因如Bmp4、JAG1、JAG2和Edn3的表達(dá),這些β-catenin靶基因常在腸腫瘤形成中失調(diào),預(yù)示著外在因素比如高脂飲食可能通過促進(jìn)干細(xì)胞分裂,增加癌癥風(fēng)險(xiǎn)[38]。
2.炎癥與上皮干細(xì)胞惡變:炎癥與腫瘤發(fā)生密切相關(guān),炎癥可引起干細(xì)胞微環(huán)境改變,誘導(dǎo)上皮干細(xì)胞惡變。我們前期研究結(jié)果表明,Sox2過量表達(dá)的食管上皮干細(xì)胞能與炎癥激活形成的磷酸化Stat3協(xié)同使干細(xì)胞惡變,導(dǎo)致鱗癌的發(fā)生[39]。傷口愈合過程中參與調(diào)控干細(xì)胞行為的信號(hào)通路(如WNT和Hedgehog)也參與腫瘤的形成。研究表明,腫瘤形成和傷口修復(fù)均依賴于上皮細(xì)胞、間充質(zhì)細(xì)胞和骨髓來源細(xì)胞之間的相互聯(lián)系。兩者依賴的分子機(jī)制相似,然而組織損傷修復(fù)是一個(gè)自限過程,腫瘤形成則被認(rèn)為是所參與信號(hào)通路的持續(xù)活化[40]。在組織損傷和感染中,JNK可通過AP-1活化刺激腸干細(xì)胞增殖,AP-1也可被EGF家族生長(zhǎng)因子所活化。此外,JNK促進(jìn)誘導(dǎo)Upd家族成員,該家族成員能夠活化腸干細(xì)胞的JAK-STAT信號(hào),JAK-STAT信號(hào)還可誘導(dǎo)生長(zhǎng)因子表達(dá),直接刺激腸干細(xì)胞的增殖[41]。促炎性細(xì)胞因子IL-6、IL-8在腫瘤微環(huán)境中大量存在,具有腫瘤起始、轉(zhuǎn)移、血管形成,促進(jìn)腫瘤生長(zhǎng)和增殖的作用,IL-8可活化JAK/STAT3途徑,該通路促進(jìn)腫瘤起始和進(jìn)程[42]。炎癥性WNT信號(hào)能夠活化腸干細(xì)胞增殖相關(guān)的下游分子,促進(jìn)腸干細(xì)胞的增殖。Sonic hedgehog信號(hào)失調(diào)與基底細(xì)胞癌發(fā)展相關(guān),在小鼠中,Hedgehog通路可被不同方法活化,包括Ptch1缺失,Gli1或Gli2過表達(dá),或者Smo突變活化。當(dāng)這些基因表達(dá)被擾亂后,可引起基底細(xì)胞癌樣損傷形成[43-46]。
(二)干細(xì)胞中基因突變及信號(hào)通路異常與腫瘤發(fā)生
腸干細(xì)胞中的APC基因具有腫瘤抑制功能,APC缺失可改變Wnt信號(hào)轉(zhuǎn)導(dǎo)并最終影響細(xì)胞增殖和極性[47]。研究表明APC基因突變可誘導(dǎo)癌癥的發(fā)生,而在非干細(xì)胞中該突變卻不起作用[48],說明干細(xì)胞中DNA突變,可能是腫瘤發(fā)生的起始事件。作為一個(gè)抗凋亡基因,Bcl-2特異性表達(dá)于腸干細(xì)胞中,在APC缺失時(shí),可減緩上皮細(xì)胞凋亡,在腸轉(zhuǎn)化中起關(guān)鍵作用[49]。此外,Mist1是胃體部靜息干細(xì)胞的標(biāo)志物,在Mist1+干細(xì)胞中,Kras和Apc雙重突變或Notch活化可導(dǎo)致粘膜腸樣異常增生,因此這些Mist1+干細(xì)胞可能是腸樣癌癥的細(xì)胞來源[21]。同樣,在敲除小鼠胃Lgr5+干細(xì)胞中的Smad4和PTEN基因后,在胃竇發(fā)現(xiàn)微腺瘤及腺瘤可快速發(fā)展為侵襲性腸樣胃癌。相反,已分化細(xì)胞中敲除Smad4和PTEN基因則不會(huì)起始腫瘤生長(zhǎng)。因此,胃Lgr5+干細(xì)胞可通過基因突變起始癌癥發(fā)生,并可能作為癌增殖細(xì)胞促進(jìn)惡性進(jìn)程[22]。
多個(gè)信號(hào)通路在上皮干細(xì)胞和腫瘤細(xì)胞自我更新中具有關(guān)鍵作用(圖2)。WNT和TGF-β通路具有誘導(dǎo)和保持干細(xì)胞狀態(tài)的作用,它們不僅是正常干細(xì)胞調(diào)節(jié)所必需,而且通常在腫瘤形成中發(fā)生失調(diào)[50]。阻斷細(xì)胞增殖的重要通路能夠促進(jìn)前列腺基底干/祖細(xì)胞的分化,通過使用GSEA和IPA揭示了基底細(xì)胞中的重要信號(hào)通路,包括TGF-β、 NOTCH、WNT/TCF、IGF、FGF、STAT3/IL-6等。通過使用信號(hào)通路特異性抑制劑后,基底細(xì)胞對(duì)FGFR、IGF1R和STAT3信號(hào)通路的抑制劑具有高敏感性,這些通路具有調(diào)節(jié)基底干(祖)細(xì)胞活性的作用。FGFR3、NOTCH1和CTNNB1沉默也顯著減少了基底細(xì)胞的克隆和球體形成,抑制了基底細(xì)胞增殖,并且分別提高了AR、KLK3和KRT18的mRNA水平,表明增殖信號(hào)的抑制可促進(jìn)前列腺基底干/祖細(xì)胞的分化[51]。
圖2 參與上皮干細(xì)胞增殖的主要信號(hào)通路
此外,多個(gè)研究證實(shí)microRNA也參與干細(xì)胞的調(diào)控,它們通過對(duì)靶mRNA翻譯抑制來調(diào)控干細(xì)胞的自我更新、細(xì)胞周期以及分化等多個(gè)功能。如miR-200c可調(diào)節(jié)干細(xì)胞因子Bmi1和Klf4,miR-200c的缺失或下調(diào),導(dǎo)致CD44high/ CD24low干樣細(xì)胞的增長(zhǎng)[52]。△Np63a高表達(dá)于乳腺干細(xì)胞,它是不同上皮結(jié)構(gòu)保持自我更新能力所必須的,miR203在小鼠乳腺腔上皮分化中被活化,而且可靶向調(diào)節(jié)△Np63a和△Np63b。異常表達(dá)miRNA203可抑制△Np63a表達(dá),破壞上皮干細(xì)胞相關(guān)的活性,抑制增殖和克隆形成。因此,miR203可通過抑制△Np63a介導(dǎo)乳腺干細(xì)胞喪失自我更新能力,并可能通過調(diào)節(jié)EMT和腫瘤干細(xì)胞數(shù)量的減少使其具有抗腫瘤活性。而ZEB1可抑制miR203表達(dá)從而提高△Np63a的蛋白水平[53]。還有研究表明,miR-30a-5p對(duì)CD133+Huh7及CD133 ~ +MHCC97L肝癌干細(xì)胞的侵襲和遷移具有明顯的抑制效果,有望成為靶向治療肝癌的有效手段[54-55]。
腫瘤發(fā)生是個(gè)極其復(fù)雜的過程,涉及多個(gè)基因及信號(hào)通路改變,由內(nèi)外多種因素共同促進(jìn)其發(fā)生。干細(xì)胞在微環(huán)境改變、DNA損傷積累等作用下,其內(nèi)部的基因突變引起增殖異常,最終導(dǎo)致腫瘤發(fā)生,但控制這些細(xì)胞干性的分子機(jī)制依尚不清楚。對(duì)非致瘤性的克隆培養(yǎng)后進(jìn)行基因組范圍的表達(dá)分析,發(fā)現(xiàn)EpCAM和CD44分別為上皮和間充質(zhì)細(xì)胞的標(biāo)志,有趣的是,這兩種標(biāo)志物在包括前列腺、胰腺和結(jié)腸的多個(gè)組織中被聯(lián)合用于監(jiān)測(cè)腫瘤干細(xì)胞,說明E/M(epithelial/mesenchymal)中間狀態(tài)可能是腫瘤起始細(xì)胞更為普遍的存在狀態(tài),上皮和間充質(zhì)的過渡在獲得干細(xì)胞特性中起重要作用,干細(xì)胞可能保持在E/M中間狀態(tài)[56-58]。研究發(fā)現(xiàn),CD44+/MyD88+上皮卵巢癌干細(xì)胞產(chǎn)生的間充質(zhì)細(xì)胞具有遷移和致瘤能力,在體內(nèi)發(fā)生EMT形成具有轉(zhuǎn)移能力的間充質(zhì)球體形成細(xì)胞(MSFCS),MSFCS不僅能在小鼠的腹腔,還可在卵巢形成腫瘤,CD44+/MyD88+上皮卵巢癌干細(xì)胞可能通過產(chǎn)生MSFCS成為卵巢癌轉(zhuǎn)移的來源。EMT能夠誘導(dǎo)乳腺上皮細(xì)胞或者乳腺上皮癌細(xì)胞進(jìn)入干樣階段,但是,上皮干細(xì)胞或上皮腫瘤干細(xì)胞是否能經(jīng)歷EMT尚不清楚[59]。
腫瘤干細(xì)胞顯示了更高的遷移力、侵襲力和腫瘤形成能力以及更強(qiáng)的治療抗性。在鱗狀細(xì)胞癌中已發(fā)現(xiàn)上皮腫瘤干細(xì)胞亞群,能表達(dá)干細(xì)胞標(biāo)志,而且與腫瘤細(xì)胞相比,這些腫瘤干細(xì)胞能夠形成高度血管化和侵襲性的腫瘤[60],因此消除干細(xì)胞群體將是阻止腫瘤形成、復(fù)發(fā)的重要策略。攜帶缺氧誘導(dǎo)因子-1α-siRNA的葉酸靶向化的磁性納米復(fù)合物,可通過抑制細(xì)胞內(nèi)HIF-1α表達(dá),進(jìn)而降低cyclin D1表達(dá)水平影響細(xì)胞周期并抑制CD133+Hep3B肝癌干細(xì)胞的增殖[61]。在腫瘤治療中,部分干細(xì)胞可依舊存活,而被忽略的這部分干細(xì)胞往往是導(dǎo)致腫瘤復(fù)發(fā)的關(guān)鍵,挖掘正常干細(xì)胞和腫瘤干細(xì)胞之間的不同標(biāo)記物,將對(duì)腫瘤的治療和預(yù)防復(fù)發(fā)具有重大意義。c-Myc是Wnt/Tcf4的靶基因,內(nèi)源c-Myc在皮膚穩(wěn)態(tài)和TPA誘導(dǎo)的增生中并非必不可少,該基因缺失的上皮可抑制RAS驅(qū)動(dòng)的腫瘤形成,但是一旦在另外P21Cip1缺失(即c-Myc和P21Cip1雙缺失)的情況下,它重新獲得了DMBA/TPA誘導(dǎo)的腫瘤發(fā)生敏感性[62],因?yàn)閏-Myc-P21Cip1和c-Myc-CDK4信號(hào)途徑對(duì)皮膚的穩(wěn)態(tài)并非必需的,因而這兩個(gè)信號(hào)途徑可作為治療皮膚腫瘤的理想靶標(biāo)。值得注意的是,c-Myc對(duì)腸隱窩祖細(xì)胞提供必要的生物合成能力是必須的[63]。表達(dá)于腸干細(xì)胞的抗凋亡基因Bcl-2,其過表達(dá)在腸轉(zhuǎn)化中起到關(guān)鍵作用,但在組織平衡再生中卻無足輕重,因此也可作為化療和治療的理想靶標(biāo)[22]。發(fā)掘各類組織中上皮細(xì)胞或正常干細(xì)胞與腫瘤干細(xì)胞標(biāo)記的區(qū)別,可為今后的治療提供新的思路。
1 Barker N.Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration[J].Nat Rev Mol Cell Biol, 2014, 15(1):19-33.
2 Shackleton M, Vaillant F, Simpson KJ, et al.Generation of a functional mammary gland from a single stem cell[J].Nature, 2006, 439(772):84-88.
3 Lawson DA, Xin L, Lukacs RU, et al.Isolation and functional characterization of murine prostate stem cells[J].Proc Natl Acad Sci U S A, 2007, 104(1):181-186.
4 Deward AD, Cramer J, Lagasse E.Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population[J].Cell Rep, 2014, 9(2):701-711.
5 Phesse TJ, Clarke AR.Normal stem cells in cancer prone epithelial tissues[J].Br J Cancer, 2009, 100(2):221-227.
6 Ng A, Barker N.Ovary and fimbrial stem cells: biology, niche and cancer origins[J].Nat Rev Mol Cell Biol, 2015, 16(10):625-638.
7 Kessler M, Hoffmann K, Brinkmann V, et al.The notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids[J].Nat Commun, 2015, 6:8989-8999.
8 Smalley M, Ashworth A.Stem cells and breast cancer: A field in Transit[J].Nat Rev Cancer, 2003, 3(11):832-844.
9 Walter D, Lier A, Geiselhart A, et al.Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells[J].Nature, 2015, 520(7548):549-552.
10 李紅,臧雋章,馮振卿,等.腫瘤細(xì)胞與骨髓源性細(xì)胞融合對(duì)腫瘤轉(zhuǎn)移的影響及機(jī)制[J].醫(yī)學(xué)研究生學(xué)報(bào), 29(6):658-662.
11 Malanchi I, Peinado H, Kassen D, et al.Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling[J].Nature, 2008, 452(7187):U12-650.
12 Jardé T, Kass L, Staples M, et al.ERBB3 Positively Correlates with Intestinal Stem Cell Markers but Marks a Distinct Non Proliferative CellPopulation in Colorectal Cancer[J].PLoS One, 2015, 10(9):e0138336- e0138351.
13 Swindall AF, Londo?o-Joshi AI, Schultz MJ, et al.ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in normal tissues and colon cancer cell lines[J].Cancer Res, 2013, 73(7):2368-2378.
14 Chekhun SV, Zadvorny TV, Tymovska YO, et al.CD44+/CD24-markers of cancer stem cells in patients with breast cancer of different molecular subtypes[J].Exp Oncol, 2015, 37(1):58-63.
15 Mansour SF, Atwa MM.Clinicopathological significance of CD133 and ALDH1 cancer stem cell marker expression in invasive ductal breast carcinoma[J].Asian Pac J Cancer Prev, 2015, 16(17):7491-7496.
16 Heerma van Voss MR, van der Groep P, Bart J, et al.Expression of the stem cell marker ALDH1 in the normal breast of BRCA1 mutation carriers[J].Breast Cancer Res Treat, 2010, 123(2):611-612.
17 Guinot A, Oeztuerk-Winder F, Ventura JJ.miR-17-92/p38 alpha dysregulation enhances Wnt signaling and selects Lgr6(+) cancer stemlike cells during lung adenocarcinoma progression[J].Cancer Res, 2016, 76(13):4012-4022.
18 Kobayashi I, Takahashi F, Nurwidya F, et al.Oct4 plays a crucial role in the maintenance of gefitinib-resistant lung cancer stem cells[J].Biochem Biophys Res Commun, 2016, 473(1):125-132.
19 Li T, Su Y, Mei Y, et al.ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients' outcome[J].Lab Invest, 2010, 90(2):234-244.
20 Collins AT, Berry PA, Hyde C, et al.Prospective identification of tumorigenic prostate cancer stem cells[J].Cancer Res, 2005, 65(23):10946-10951.
21 Hayakawa Y, Ariyama H, Stancikova J, et al.Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche[J].Cancer Cell, 2015, 28(6):800-814.
22 Li XB, Yang G, Zhu L, et al.Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice[J].Cell Res, 2016, 26(7):838-849.
23 Zhang XW, Hua RX, Wang XF, et al.Identification of stem-like cells and clinical significance of candidate stem cell markers in gastric cancer[J].Oncotarget, 2016, 7(9):9815-9831.
24 Zhao XZ, Wang F, Hou MX.Expression of stem cell markers nanog and PSCA in gastric cancer and its significance[J].Oncol Lett, 2016, 11(1, A):442-448.
25 Snippert HJ, Haegebarth A, Kasper M, et al.Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin[J].Science, 2010, 327(5971):1385-1389.
26 Brownell I, Guevara E, Bai CB, et al.Nerve-Derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells[J].Cell Stem Cell, 2011, 8(5):552-565.
27 Liu S, Gong Z, Chen M, et al.Lgr5-positive cells are cancer stem cells in skin squamous cell carcinoma[J].Tumour Biol, 2014, 35(11):11605-11612.
28 Sabet MN, Rakhshan A, Erfani E, et al.Co-Expression of putative cancer stem cell markers, CD133 and nestin, in skin tumors[J].Asian Pac J Cancer Prev, 2014, 15(19):8161-8169.
29 Von Rahden BH, Kircher S, Lazariotou M, et al.LgR5 expression and cancer stem cell hypothesis:Clue to define the true origin of esophageal adenocarcinomas with and without Barrett's esophagus[J].J Exp Clin Cancer Res, 2011, 30:23-33.
30 Tomizawa Y, Wu TT, Wang KK.Epithelial mesenchymal transition and cancer stem cells in esophageal adenocarcinoma originating from Barrett's esophagus[J].Oncol Lett, 2012, 3(5):1059-1063.
31 Florian MC, Geiger H.Concise review: polarity in stem cells, disease, and aging[J].Stem Cells, 2010, 28(9):1623-1629.
32 Martin-Belmonte F, Perez-Moreno M.Epithelial cell polarity, stem cells and cancer[J].Nat Rev Cancer, 2012, 12(1):23-38.
33 Knoblich JA.Asymmetric cell division: recent developments and their implications for tumour biology[J].Nat Rev Mol Cell Biol, 2010, 11(12):849-860.
34 Cicalese A, Bonizzi G, Pasi CE, et al.The tumor suppressor p53 regulates polarity of Self-Renewing divisions in mammary stem cells[J].Cell, 2009, 138(6):1083-1095.
35 Sato T, Van Es JH, Snippert HJ, et al.Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts[J].Nature, 2011, 469(7330):415-418.
36 Goodell MA, Nguyen H, Shroyer N.Somatic stem cell heterogeneity:diversity in the blood, skin and intestinal stem cell compartments[J].Nat Rev Mol Cell Biol, 2015, 16(5):299-309.
37 Yilmaz ?H, Katajisto P, Lamming DW, et al.mTORC1 in the paneth cell niche couples intestinal stem-cell function to calorie intake[J].Nature, 2012, 486(744):490-495.
38 Beyaz S, Mana MD, Roper J, et al.High-fat diet enhances stemness and tumorigenicity of intestinal progenitors[J].Nature, 2016, 531(7592):53-58.
39 Liu KC, Jiang M, Lu Y, et al.Sox2 cooperates with Inflammation-Mediated Stat3 activation in the malignant transformation of foregut basal progenitor cells[J].Cell Stem Cell, 2013, 12(3):304-315.
40 Arwert EN, Hoste E, Watt FM.Epithelial stem cells, wound healing and cancer[J].Nat Rev Cancer, 2012, 12(3):170-180.
41 Ayyaz A, Jasper H.Intestinal inflammation and stem cell homeostasis in aging Drosophila melanogaster[J].Front Cell Infect Microbiol, 2013, 3:98-105.
42 Waldner MJ, Foersch S, Neurath MF.Interleukin-6-A key regulator of colorectal cancer development[J].Int J Biol Sci, 2012, 8(9):1248-1253.43 Grachtchouk M, Rong M, Yu S, et al.Basal cell carcinomas in mice overexpressing Gli2 in skin[J].Nat Genet, 2000, 24(3):216-217.
44 Youssef KK, Van Keymeulen A, Lapouge G, et al.Identification of the cell lineage at the origin of basal cell carcinoma[J].Nat Cell Biol, 2010, 12(3):299-U111.
45 Wong SY, Reiter JF.Wounding mobilizes hair follicle stem cells to form tumors[J].Proc Natl Acad Sci U S A, 2011, 108(10):4093-4098.
46 Cordero JB, Stefanatos RK, Scopelliti A, et al.Inducible progenitorderived Wingless regulates adult midgut regeneration in Drosophila[J].EMBO J, 2012, 31(19):3901-3917.
47 Thenappan A, Li Y, Shetty K, et al.New therapeutics targeting colon cancer stem cells[J].Curr Colorectal Cancer Rep, 2009, 5(4):209-220.
48 Barker N, Ridgway RA, Van Es JH, et al.Crypt stem cells as the cellsof-origin of intestinal cancer[J].Nature, 2009, 457(7229):608-U119.
49 Van Der Heijden M, Zimberlin CD, Nicholson AM, et al.Bcl-2 is a critical mediator of intestinal transformation[J].Nat Commun, 2016, 7:10916-10926.
50 Scheel C, Eaton EN, Li SH, et al.Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast[J].Cell, 2011, 145(6):926-940.
51 Zhang D, Park D, Zhong Y, et al.Stem cell and neurogenic geneexpression profiles Link prostate basal cells to aggressive prostate cancer[J].Nat Commun, 2016,7: 10798-10812.
52 Chang CJ, Chao CH, Xia WY, et al.p53 regulates epithelialmesenchymal transition and stem cell properties through modulating miRNAs[J].Nat Cell Biol, 2011, 13(3):317-U296.
53 Decastro AJ, Dunphy KA, Hutchinson J, et al.MiR203 mediates subversion of stem cell properties during mammary epithelial differentiation via repression of DeltaNP63alpha and promotes mesenchymal-to-epithelial transition[J].Cell Death Dis, 2013,4:e514-e523.
54 刁競(jìng)芳, 莫嘉強(qiáng), 趙祥, 等.miR-30a-5p對(duì)人肝癌干細(xì)胞增殖和凋亡的影響[J].中華細(xì)胞與干細(xì)胞雜志(電子版), 2016, 6(1):31-35.
55 刁競(jìng)芳, 莫嘉強(qiáng), 趙祥, 等.miR-30a-5p對(duì)CD133+Huh7人肝癌干細(xì)胞侵襲和遷移能力的影響[J].中華細(xì)胞與干細(xì)胞雜志(電子版), 2016, 6(3):167-173.
56 Visvader JE, Lindeman GJ.Cancer stem cells in solid tumours:accumulating evidence and unresolved questions[J].Nat Rev Cancer, 2008, 8(10):755-768.
57 Strauss R, Sova P, Liu Y, et al.Epithelial phenotype confers resistance of ovarian cancer cells to oncolytic adenoviruses[J].Cancer Res, 2009, 69(12):5115-5125.
58 Marhaba R, Klingbeil P, Nuebel T, et al.CD44 and EpCAM: Cancer-Initiating cell markers[J].Curr Mol Med, 2008, 8(8):784-804.
59 Yin G, Alvero AB, Craveiro V, et al.Constitutive proteasomal degradation of TWIST-1 in epithelial-ovarian cancer stem cells impacts differentiation and metastatic potential[J].Oncogene, 2013, 32(1):39-49.
60 Grun D, Adhikary G, Eckert RL.VEGF-A acts via neuropilin-1 to enhance epidermal cancer stem cell survival and formation of aggressive and highly vascularized tumors[J].Oncogene, 2016, 35(33):4379-4387.
61 彭穗, 王晶, 彭振維, 等.攜帶缺氧誘導(dǎo)因子-1α-siRNA的葉酸靶向化的磁性納米復(fù)合物抑制肝癌干細(xì)胞增殖的實(shí)驗(yàn)研究[J].中華細(xì)胞與干細(xì)胞雜志(電子版), 2016, 6(1):42-46.
62 Oskarsson T, Essers MA, Dubois N, et al.Skin epidermis lacking the c-Myc gene is resistant to Ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the p21Cip1 gene[J].Genes Dev, 2006, 20(15):2024-2029.
63 Muncan V, Sansom OJ, Tertoolen L, et al.Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc[J].Mol Cell Biol, 2006, 26(22):8418-8426.
Involvement of epithelial stem cells in malignant transformation and mechanisms
Zhang Shihui1, Hu Qiong2, Xie Fuan3, Hong Xiaoqian2, Liu Kuancan2,3.1Undergraduate School, Zhongnan University, Changsha 410012, China;2Department of Laboratory Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, China;3Institute for Laboratory Medicine, Fuzhou General Hospital, Fuzhou 350025, China
Corresponding author: Liu Kuancan, Email:liukuancan@163.com
Epithelial stem cells, which have the ability of self-renewal and multiple differentiation, play a crucial role in maintaining epithelial tissue homeostasis.Recently, many studies have showed that epithelial stem cells may be the tumour-initiating cells.The transformation of epithelial stem cell is not only affected by the microenvironment, but also promoted by dysregulation of signal pathways and gene mutations.However, the mechanism how epithelial stem cells transform and become tumor cells remains unclear.Here we review the relationships between epithelial stem cells and cancer stem cells and the mechanism of transformation of epithelial stem cells.
Epithelial cells; Neoplastic stem cells; Mechanisms
2016-10-31)
(本文編輯:李少婷)
10.3877/cma.j.issn.2095-1221.2017.02.009
國(guó)家自然科學(xué)基金(81302068);國(guó)家863青年科學(xué)家專題(2014AA020541);福建省國(guó)際合作重點(diǎn)項(xiàng)目(2017I0014)
410083 長(zhǎng)沙,中南大學(xué)本科生院1;350025 福州,廈門大學(xué)附屬東方醫(yī)院檢驗(yàn)科2;350025 福州總醫(yī)院全軍臨床檢驗(yàn)醫(yī)學(xué)研究所3
劉寬燦,Email:liukuancan@163.com
張?jiān)娀荩?瓊,謝富安,等.上皮干細(xì)胞參與腫瘤惡變的機(jī)制[J/CD].中華細(xì)胞與干細(xì)胞雜志(電子版),2017,7(2):112-116.
中華細(xì)胞與干細(xì)胞雜志(電子版)2017年2期