• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MHD Flow and Heat Transfer of a Generalized Burgers’Fluid Due to an Exponential Accelerating Plate with Effects of the Second Order Slip and Viscous Dissipation?

    2017-05-12 08:53:09YanZhang張艷HaoJieZhao趙豪杰andYuBai白羽
    Communications in Theoretical Physics 2017年6期
    關(guān)鍵詞:豪杰張艷白羽

    Yan Zhang(張艷), Hao-Jie Zhao(趙豪杰),and Yu Bai(白羽)

    School of Science,Beijing University of Civil Engineering and Architecture,Beijing 100044,China

    Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation,Beijing University of Civil Engineering and Architecture,Beijing 100044,China

    1 Introduction

    In recent decades,the researches on the flow and heat transfer of viscoelastic fluid,which exhibit both elastic and viscous properties have received numerous attentions because its abundant applications in engineering,industrial and technology fields,such as extrusion of polymer fluids,continuous casting,exotic lubricants,foodstuffprocessing,wire and fiber coating,etc.[1?3]The fractional derivative has been found to be quite flexible in describing rheological characteristics of viscoelastic fluid.[4?6]Various fractional constitutive equations such as the generalized second grade fluid,[7?8]generalized Maxwell fluid,[9?10]generalized Oldroyd-B fluid,[11?12]and generalized Burgers’fluid[13?14]have been proposed.Compared with generalized second grade fluid,Maxwell fluid and Oldroyd-B fluid,the generalized Burgers’ fluid can better describe the performances of asphalt and asphalt concrete.Some recent works about the generalized Burgers’ fluid flow with fractional derivative method have been done.Khan et al.[15?17]obtained exact solutions for oscillating flow,accelerated flow and rotating flow of a fractional Burgers’fluid with the help of integral transforms.Ghada et al.[18]discussed the pressure gradient influence on the flow of generalized Burgers’ fluid.And a closed form solutions for the velocity and shear stress were derived in terms of Fox H-function by using the discrete Laplace transform.

    Among the flows of viscoelastic fluids,the flow over an exponentially stretching sheet has many applications in industrial manufacturing processes such as production of polymer films or thin sheets.2D flow of viscoelastic fluid over an exponentially stretching sheet was carried out by Sanjayanand et al.[19]and Khan.[20]Sahoo et al.[21]discussed flow and heat transfer of a third grade fluid past an exponentially stretching sheet.Recently,Alhuthali et al.[22]and Hayat et al.[23]documented the 3D flow of viscoelastic fluid over an exponentially stretching surface.

    MHD flow of a Newtonian fluid has been widely applied in energy generation and geophysical fluid dynamics.Recently,MHD flows of viscoelastic fluid have been also studied in detail.Hayat et al.[24]demonstrated MHD boundary layer flow of an upper-convected Maxwell fluid and obtained the analytical solution using homotopy analysis method(HAM).Khan et al.[25?26]discussed MHD flows of a generalized Oldroyd-B fluid and a generalized Burgers’ fluid.Furthermore,the related velocity distributions were calculated by means of Fourier transform and Laplace transform techniques for the fractional calculus.The results of the above study indicate that the magnetic field provides a force,which resists the flow since it is applied in the transverse direction.MHD flows under different situations have been dealt with in Refs.[27–30].

    Beyond that,the viscoelastic fluids such as polymer solutions and suspensions,exhibit boundary slip,which is derived by a nonlinear and nonmonotonic relation between the slip velocity and the shear stress at the wall is a fascinating macroscopically physical phenomenon in hydrodynamics.In an interesting published literature,Thompson et al.[31]discovered that the velocity slip was connected with the slip length,the shear rate and the critical shear rate.Hayat et al.[32]and Shehawy et al.[33]investigated slip effects on peristaltic flows of a third order fluid and a non-Newtonian Maxwellian fluid.Recently,a new second order velocity slip model was proposed by Wu,[34]which showed the excellent agreement with the result of Fukui and Kaneko.[35]Subsequently,Zhu et al.,[36]Hayat et al.[37]and Mabood et al.[38]studied the effect of second order slip velocity on nano fluid respectively.The above investigations are mainly focused on the flow problem.

    In fact,heat transfer of a viscoelastic fluid over a stretching sheet is often encountered in polymer processing engineering,steel fiber coating engineering,and foodstuff processing.Ezzat[39]investigated heat transfer of non-Newtonian fluid,in which a new formula of heat conduction equation with fractional derivative has been constructed in the context of generalized thermoelectric MHD theory.Subsequently,Zheng et al.[40]introduced the modified fractional Fourier’s law and Darcy’s law to discuss heat transfer of a generalized Maxwell fluid in a porous medium.Particularly,in analogy with the fractional momentum equation,Zheng et al.[41?43]obtained the fractional energy equation of a generalized Maxwell fluid.However,in view of the above researches,due to the high complexity of computation,no one has ever attempted to study the energy equation with the effect of viscous dissipation based on the fractional Burgers’ fluid constitutive relationship.

    In the present work,we investigate MHD flow and heat transfer of a generalized Burgers’ fluid over an exponential accelerating plate with the effects of a second order velocity slip and viscous dissipation.The energy equation and momentum equation are coupled by the fractional Burgers’ fluid constitutive model.The finite difference method is an effective method to solve the fractional partial differential equations.[44?46]Numerical solutions for velocity,temperature and shear stress are obtained using the modified implicit finite difference method combined with the G1-algorithm.Moreover,the effects of relevant parameters on the velocity,temperature and shear stress fields are discussed graphically in detail.

    2 Mathematical Formulation of the Problem

    Unsteady flow and heat transfer of an incompressible generalized Burgers’ fluid due to an exponential accelerating plate is considered.It is assumed the fluid occupies the spacey>0.The forms of the velocity and shear stress fields are

    whereuis the velocity and i is the unit vector in thexdirection,the initial condition S(y,0)=0.In addition,Sxx,Syy,Sxy,Syxare the components of shear stress and we haveSxx=Syy=0 andSxy=Syx.

    According to Ref.[18],the fractional constitutive model of generalized Burgers’ fluid is given as follows

    whereμ,λ1,andλ3are the dynamic viscosity,relaxation time and retardation time respectively,λ2is the material parameter,αandβare the fractional derivative parameters such that 0<α,β<1,,andare the Riemann–Liouville fractional differentiation operators,and the fractional derivative of orderp(m≤p<m+1,mis an integer)denotes as[4]

    where Γ(·)is the Gamma function.

    By ignoring the pressure gradient and heat source,the continuous,motion and energy equations are given by

    whereρ,b,e,and q denote the density of the fluid,the body force field,energy term,and heat flux respectively.

    Consider a uniform magnetic fieldB0,which acts in the positivey-coordinate is introduced to the fluid.The magnetic body force can be written asσu(σis the electrical conductivity)when the assumption of low-magnetic Reynolds number.[47?48]Substituting Eq.(2)into Eq.(5),the governing equations can be written as

    whereν=μ/ρis the kinematic viscosity,M=σ/ρis the magnetic parameter,Cpis the specific heat at constant pressure of the fluid,Tis the temperature,Kdenotes the thermal conductivity,τ=Sxyis the shear stress.

    The corresponding initial and boundary conditions of motion and energy equations are

    wherea,c,andu0are constants,T∞is the environment temperature,the velocity slip modelusliphas been given by Wu[34]and used also by Fang[49]and Rosca,[50]θ1(>0)is the first-order velocity slip parameter,θ2(<0)is the second-order velocity slip parameter.

    Employ the non-dimensional quantities in Eqs.(7)–(15):

    The dimensionless governing equations can be given as follows(for omitting the dimensionless mark “*” here)

    whereη=/CpT∞is defined as boundary parameter,Mis the Hartmann number,Pr=CPμ/Kis the Prandtl number.

    The initial and boundary conditions become

    3 Numerical Calculations

    Under the initial conditions,the Grünwald–Letnikov fractional derivative is equiva lent to the Riemann–Liouville fractional derivative.So we can obtain the numerical solutions with the G1 algorithm based on the standard Grünwald–Letnikov fractional derivative definition.

    Definetn=nδ(n=0,1,...,N)andyi=ih(i=0,1,...,W),whereδ= Δt=t/Nis the time step,h=Δy=y/Wis the space step.Letandbe the numerical approximation tou(yi,tn)andT(yi,tn).The G1 algorithm is applied to discretize the fractional derivative of orderpas

    Equation(26)is substituted into the governing equation(17),we can obtain

    In the same way,we yield

    Similarly,the above method is dealt with Eqs.(17)–(19). Combining with the implicit finite difference method,we obtain the following iteration equations

    Here,we construct an example with an analytic solution in order to show the convergence of the discrete schemes.Consider the following fractional equation:

    The analytical solution of Eq.(34)isu(y,t)=t3y(3?y).

    The iteration equations of Eq.(34)obtained using numerical technique are as follow:

    Figure 1 shows the comparison of the numerical solution with the analytical result.It can be seen that they are in good agreement each other.Simultaneously,let the maximum error MERR=shows the numerical errors between the numerical solutions and the analytical solution.It indicates that the error is reduced with the decrease of the step size.These results illustrate that the solution obtained by the finite difference scheme is convergent.

    Table 1 Comparison of maximum errors(MERR).

    Fig.1 Comparison of the example result of different method.

    4 Results and Discussion

    The numerical solutions of the velocity,temperature and shear stress are obtained by solving the numerical discrete equations(31)–(33).In order to study the characteristics of velocity,temperature and shear stress fields,the numerical results are plotted in Figs.2–12.

    Fig.2 Velocity distribution for different α.

    Fig.3 Velocity distribution for different β.

    Fig.4 Velocity distribution for different λ1.

    Fig.5 Velocity distribution for different λ3.

    4.1 Effects on Velocity and Shear Stress Fields

    Figures 2–3 show the impacts of the fractional parametersαandβon velocity field.We can find that the velocity distribution is strongly depended on the fractional parameters.Figure 2 tells us that the greaterαis,the lower velocity is,which implies that the thickness of the velocity boundary layer is thinner asαincreases.While Fig.3 displays thatβhas an opposite behavior.The effects of relaxation timeλ1and retardation timeλ3on the velocity field are presented in Figs.4–5,which can depict that viscoelastic fluid has the memory function.It is observed from Fig.4 that the velocity decreases with the increasing of relaxation timeλ1,which can be used to describe the stress relaxation characteristic of viscoelastic fluid.As shown in Fig.5,the velocity will be accelerated with the increase of retardation timeλ3,which can depict the delaying characteristic of viscoelastic fluid.Figure 6 provides the illustration for the influences of the first-order velocity slip parameterθ1and the second-order velocity slip parameterθ2on the velocity.An interesting physical phenomenon is discovered that when increasingθ1,the velocity pro file and the boundary layer thickness both decrease.However,the behavior ofθ2is opposite toθ1.Figures 7–8 show the velocity and shear stress pro files for different Hartmann numberM.The magnetic field provides a resistance named the Lorentz force causing a decrease in the velocity and shear stress.

    Fig.6 Velocity distribution for different θ1and θ2.

    Fig.7 Velocity distribution for different M.

    Fig.8 Shear stress distribution for different M.

    Fig.9 Temperature distribution for different α.

    Fig.10 Temperature distribution for different β.

    4.2 Effects on Temperature Field

    The effects of fractional parametersαandβ,Prandtl numberPrand boundary parameterηon the temperature are shown in Figs.9–12.From Figs.9–10,we can see that the impacts of fractional parametersαandβon the temperature are same as the velocity.Figure 11 illustrates that larger values ofPrlead to higher temperature and thinner boundary layer thicknesses.The effect ofηon the temperature is similar toPr,which is showed in Fig.12.It can be found that increasingηwill lead to the temperature rise,while has seldom effect to the boundary layer thickness.

    Fig.11 Temperature distribution for different Prandtl number.

    Fig.12 Temperature distribution for different η.

    5 Conclusion

    This paper provides a numerical analysis for MHD flow and heat transfer of an incompressible generalized Burgers’ fluid due to a slip accelerating plate.Numerical solutions are obtained by using the modified implicit finite difference method and the G1-algorithm.Validity of the proposed method is confirmed by the comparison of obtained numerical result and analytical result.The effects of fractional parameters,relaxation time,retardation time,slip parameters,Hartmann number,Prandtl number and boundary parameter on velocity,temperature and shear stress are analyzed.Obtained results indicate that the influences of the fractional parameterαon the velocity and temperature are opposite toβ.Meanwhile,the effects of relaxation time and retardation time on the velocity field are opposite each other.The influences of Prandtl number and boundary parameter on the temperature are similar.

    Acknowledgments

    The authors sincerely thank the editor and referees for their helpful comments and suggestions.

    References

    [1]L.C.Zheng,Y.Q.Liu,and X.X.Zhang,Math.Comput.Model.54(2011)780.

    [2]˙I.Aslan,Commun.Theor.Phys.66(2016)315.

    [3]B.Y.Shen,L.C.Zheng,and S.T.Chen,AIP Adv.5(2015)107133.

    [4]I.Podlubny,Fractional Differential Equations,Academic Press,San Diego(1999).

    [5]P.Roul,Commun.Theor.Phys.60(2013)269.

    [6]L.C.Zheng,Y.Q.Liu,and X.X.Zhang,Nonlinear Anal.RWA 13(2012)513.

    [7]M.Khan,S.Nadeem,T.Hayat,and A.M.Siddiqui,Math.Comput.Model.41(2005)629.

    [8]M.Nazar,F.Corina,and A.Awan,Nonlinear Anal.RWA 11(2010)2207.

    [9]C.Fetecau,M.Athar,and C.Fetecau,Comput.Math.Appl.57(2009)596.

    [10]M.Jamil,A.Rauf,A.A.Zafar,and N.A.Khan,Comput.Math.Appl.62(2011)1013.

    [11]M.Khan,S.H.Ali,and H.T.Qi,Nonlinear Anal.RWA 10(2009)980.

    [12]L.C.Zheng,Z.L.Guo,and X.X.Zhang,Nonlinear Anal.RWA 12(2011)3499.

    [13]C.F.Xue and J.X.Nie,Nonlinear Anal.RWA 9(2008)1628.

    [14]S.H.Han,L.C.Zheng,and X.X.Zhang,J.Egypt.Math.Soc.24(2016)130.

    [15]M.Khan,A.Anjum,C.Fetecau,and H.T.Qi,Math.Comput.Model.51(2010)682.

    [16]M.Khan,S.Hyder Ali,and H.T.Qi,Nonlinear Anal.RWA 10(2009)2286.

    [17]M.Khan,S.Hyder Ali,and H.T.Qi,Nonlinear Anal.RWA 10(2009)1775.

    [18]H.I.Ghada and M.A.Ahmed,Int.J.Eng.Res.Appl.7(2014)19.

    [19]E.Sanjayanand and S.K.Khan,Int.J.Therm.Sci.45(2006)819.

    [20]S.K.Khan,Int.J.Appl.Mech.Eng.11(2006)321.

    [21]B.Sahoo and S.Poncet,Int.J.Heat Mass Transf.54(2011)5010.

    [22]M.S.Alhuthali,S.A.Shehzad,H.Malaikah,and T.Hayat,J.Petrol.Sci.Eng.119(2014)221.

    [23]T.Hayat,I.Ullah,T.Muhammad,and A.Alsaedi,J.Mol.Liq.220(2016)1004.

    [24]T.Hayat and M.Sajid,Int.J.Eng.Sci.45(2007)393.

    [25]M.Khan,T.Hayat,and S.Asghar,Int.J.Eng.Sci.44(2006)333.

    [26]M.Khan,R.Malik,and A.Anjum,Appl.Math.Mech.36(2015)211.

    [27]M.M.Rashidi,Comput.Phys.Commun.180(2009)2210.

    [28]M.M.Rashidi and E.Erfani,Comput.Fluids 40(2011)172.

    [29]M.M.Rashidi,N.Vishnu Ganesh,A.K.Abdul Hakeem,and B.Ganga,J.Mol.Liq.198(2014)234.

    [30]C.Fetecau,D.Vieru,C.Fetecau,and I.Pop,Eur.Phys.J.Plus 130(2015)6.

    [31]P.A.Thompson and S.M.Troian,Nature(London)389(1997)360.

    [32]T.Hayat,M.U.Qureshi,and N.Ali,Phys.Lett.A 372(2008)2653.

    [33]E.F.El-Shehawy,N.T.El-Dabe,and I.M.El-Desoki,Acta Mech.186(2006)141.

    [34]L.Wu,Appl.Phys.Lett.93(2008)253103.

    [35]S.Fukui and R.Kaneko,ASME J.Tribol.112(1990)78.

    [36]J.Zhu,D.Yang,L.C.Zheng,and X.X.Zhang,Appl.Math.Lett.52(2016)183.

    [37]T.Hayat,M.Imtiaz,and A.Alsaedi,J.Magn.Magn.Mater.395(2015)294.

    [38]F.Mabood and A.Mastroberardino,J.Taiwan Inst.Chem.Eng.57(2015)62.

    [39]M.A.Ezzat,Phys.B 405(2010)4188.

    [40]C.R.Li,L.C.Zheng,X.X.Zhang,and G.Chen,Comput.Fluids 125(2016)25.

    [41]J.H.Zhao,L.C.Zheng,X.X.Zhang,and F.W.Liu,Int.J.Heat Mass Transf.97(2016)760.

    [42]Z.Cao,J.H.Zhao,Z.Wang,F.W.Liu,and L.C.Zheng,J.Mol.Liq.222(2016)1121.

    [43]J.H.Zhao,L.C.Zheng,X.X.Zhang,and F.W.Liu,Int.J.Heat Mass Transf.103(2016)203.

    [44]M.L.Zheng,F.W.Liu,I.Turner,and V.Anh,SIAM J.Sci.Comput.37(2015)A701.

    [45]F.H.Zeng,C.P.Li,F.W.Liu,and I.Turner,SIAM J.Sci.Comput.37(2015)A55.

    [46]F.W.Liu,V.Anh,and I.Turner,J.Comput.Appl.Math.166(2004)209.

    [47]S.Momani and Z.Odibat,Appl.Math.Comput.177(2006)488.

    [48]T.Hayat,M.Khan,and M.Ayub,Appl.Math.Comput.151(2004)105.

    [49]T.G.Fang,S.S.Yao,J.Zhang,and A.Aziz,Commun.Nonlinear Sci.Numer.Simulat.15(2010)1831.

    [50]N.C.Rosca and I.Pop,Int.J.Heat Mass Transf.65(2013)102.

    猜你喜歡
    豪杰張艷白羽
    白羽蟻鳥
    江山如畫,一時多少豪杰
    眼里有光,心中有愛
    張艷治療胸痹臨床經(jīng)驗
    戰(zhàn)地女豪杰
    快快長慢慢長
    廈門破獄成功的女豪杰——楊淑和
    紅土地(2018年8期)2018-09-26 03:19:10
    2017年第三季度白羽肉雞市場行情回顧及后市展望
    Teaching Language and Cross—Cultural Skills through Drama
    有扇白羽,有燈琉璃
    久久久精品欧美日韩精品| 亚洲精华国产精华液的使用体验| 精品亚洲乱码少妇综合久久| 亚洲国产欧美人成| 一级毛片久久久久久久久女| 18禁裸乳无遮挡免费网站照片| 免费在线观看成人毛片| av在线老鸭窝| 五月开心婷婷网| 在线观看av片永久免费下载| 我的女老师完整版在线观看| 黄色怎么调成土黄色| 精品一区二区三区视频在线| 内地一区二区视频在线| 免费看光身美女| av网站免费在线观看视频| 少妇人妻 视频| 精品一区在线观看国产| 大香蕉97超碰在线| 99热这里只有精品一区| 午夜免费男女啪啪视频观看| 成人免费观看视频高清| 亚洲无线观看免费| 亚洲在久久综合| 国产黄片美女视频| 午夜日本视频在线| 26uuu在线亚洲综合色| 精品久久久久久电影网| 麻豆国产97在线/欧美| 国产亚洲最大av| 久久人人爽av亚洲精品天堂 | 欧美人与善性xxx| 欧美激情国产日韩精品一区| 欧美日韩一区二区视频在线观看视频在线 | 嫩草影院新地址| 大码成人一级视频| 欧美另类一区| 美女内射精品一级片tv| 国产美女午夜福利| 国产成人aa在线观看| 国产精品一二三区在线看| 免费黄色在线免费观看| 中文字幕免费在线视频6| 日日啪夜夜爽| 国产在线男女| 伦理电影大哥的女人| 日本免费在线观看一区| 男人舔奶头视频| 亚洲天堂av无毛| 男女啪啪激烈高潮av片| 亚洲av成人精品一二三区| 777米奇影视久久| 狂野欧美激情性xxxx在线观看| 少妇裸体淫交视频免费看高清| 国产免费视频播放在线视频| 欧美成人一区二区免费高清观看| av国产精品久久久久影院| 一个人观看的视频www高清免费观看| 亚洲va在线va天堂va国产| 狂野欧美激情性bbbbbb| 日日啪夜夜爽| 尾随美女入室| 寂寞人妻少妇视频99o| freevideosex欧美| 男人舔奶头视频| 永久免费av网站大全| 日本与韩国留学比较| 日本wwww免费看| 大片电影免费在线观看免费| 六月丁香七月| 天堂俺去俺来也www色官网| 欧美高清性xxxxhd video| 大又大粗又爽又黄少妇毛片口| 午夜免费男女啪啪视频观看| 91精品一卡2卡3卡4卡| 特级一级黄色大片| 国产高潮美女av| 哪个播放器可以免费观看大片| 亚洲精品乱久久久久久| 一个人观看的视频www高清免费观看| 好男人在线观看高清免费视频| 麻豆精品久久久久久蜜桃| 亚洲不卡免费看| 一级毛片aaaaaa免费看小| 人妻一区二区av| 成人亚洲欧美一区二区av| 男女啪啪激烈高潮av片| 亚洲国产欧美在线一区| 国产成人a∨麻豆精品| 麻豆成人午夜福利视频| 日韩免费高清中文字幕av| 乱系列少妇在线播放| 国产中年淑女户外野战色| 丝瓜视频免费看黄片| 成年女人在线观看亚洲视频 | 亚洲美女视频黄频| 久久久精品欧美日韩精品| 午夜老司机福利剧场| 免费观看性生交大片5| 亚洲最大成人手机在线| 性色av一级| 乱码一卡2卡4卡精品| 人人妻人人看人人澡| 日韩电影二区| 久久精品熟女亚洲av麻豆精品| 国产在线一区二区三区精| 欧美丝袜亚洲另类| 麻豆成人午夜福利视频| 国产精品久久久久久精品电影小说 | 精品人妻一区二区三区麻豆| 又爽又黄a免费视频| 中文字幕制服av| 91久久精品国产一区二区成人| 久久久久久伊人网av| 久久久久精品久久久久真实原创| 久久精品久久久久久噜噜老黄| 亚洲av中文av极速乱| 亚洲精品aⅴ在线观看| 一级毛片黄色毛片免费观看视频| 国产亚洲5aaaaa淫片| 搡女人真爽免费视频火全软件| 欧美日韩精品成人综合77777| 男女边吃奶边做爰视频| 国产亚洲av嫩草精品影院| 中文字幕亚洲精品专区| 国产在线男女| 伊人久久精品亚洲午夜| 国产真实伦视频高清在线观看| 色吧在线观看| 亚洲aⅴ乱码一区二区在线播放| 午夜爱爱视频在线播放| 国产 一区 欧美 日韩| 亚洲国产精品999| 寂寞人妻少妇视频99o| 精品国产三级普通话版| 久久精品久久精品一区二区三区| 国产视频内射| 国产精品蜜桃在线观看| 尾随美女入室| 国产精品一区二区性色av| 国产伦精品一区二区三区视频9| 噜噜噜噜噜久久久久久91| 春色校园在线视频观看| 欧美极品一区二区三区四区| 赤兔流量卡办理| 欧美变态另类bdsm刘玥| 国产精品99久久久久久久久| 男女啪啪激烈高潮av片| 国产真实伦视频高清在线观看| 国产亚洲午夜精品一区二区久久 | 国产亚洲精品久久久com| 美女国产视频在线观看| 免费看光身美女| 老师上课跳d突然被开到最大视频| 成人欧美大片| 少妇被粗大猛烈的视频| 亚洲成色77777| 在线看a的网站| 亚洲熟女精品中文字幕| 久久午夜福利片| 丝袜喷水一区| 只有这里有精品99| 嫩草影院入口| 成人欧美大片| 亚洲精品日韩av片在线观看| 美女内射精品一级片tv| 欧美一级a爱片免费观看看| 国产爱豆传媒在线观看| 色播亚洲综合网| 最近最新中文字幕大全电影3| 国内精品美女久久久久久| av一本久久久久| 干丝袜人妻中文字幕| 亚洲经典国产精华液单| 精品久久久久久久久av| 欧美极品一区二区三区四区| 午夜福利网站1000一区二区三区| 久久久久久久精品精品| 亚洲天堂国产精品一区在线| 我的老师免费观看完整版| 777米奇影视久久| 在线免费十八禁| 亚洲性久久影院| 少妇被粗大猛烈的视频| 熟女人妻精品中文字幕| 大香蕉久久网| 国产成年人精品一区二区| 国产美女午夜福利| 夫妻性生交免费视频一级片| 欧美国产精品一级二级三级 | 最近中文字幕高清免费大全6| 内地一区二区视频在线| 亚洲精品日韩在线中文字幕| 丝袜美腿在线中文| 国产午夜精品一二区理论片| 国产精品秋霞免费鲁丝片| 毛片女人毛片| 搞女人的毛片| 亚洲精品乱久久久久久| 人妻系列 视频| 九草在线视频观看| 亚洲内射少妇av| 国产中年淑女户外野战色| 国产成人精品福利久久| 午夜激情久久久久久久| 中文字幕制服av| 制服丝袜香蕉在线| 久久精品久久精品一区二区三区| 日韩一区二区视频免费看| 亚洲自拍偷在线| 少妇猛男粗大的猛烈进出视频 | 国产av不卡久久| 国产精品一二三区在线看| 三级男女做爰猛烈吃奶摸视频| 亚洲av免费在线观看| 少妇人妻精品综合一区二区| av福利片在线观看| 一级二级三级毛片免费看| 狠狠精品人妻久久久久久综合| 久久久久久久久久人人人人人人| 亚洲国产欧美人成| 国产久久久一区二区三区| 国产爱豆传媒在线观看| 卡戴珊不雅视频在线播放| 亚洲av成人精品一区久久| 神马国产精品三级电影在线观看| 亚洲欧美日韩卡通动漫| 久久这里有精品视频免费| 欧美日韩精品成人综合77777| 国产高清国产精品国产三级 | 亚洲av在线观看美女高潮| 午夜福利网站1000一区二区三区| 精品久久久久久久末码| 日韩成人伦理影院| 久久久久久伊人网av| 人妻系列 视频| 熟女电影av网| av国产精品久久久久影院| 精品久久久噜噜| 黄片无遮挡物在线观看| 男人爽女人下面视频在线观看| 天天一区二区日本电影三级| 精品午夜福利在线看| 在线免费观看不下载黄p国产| 五月开心婷婷网| 有码 亚洲区| 18禁动态无遮挡网站| 国产女主播在线喷水免费视频网站| 国产综合精华液| 免费黄频网站在线观看国产| eeuss影院久久| 国产精品嫩草影院av在线观看| 国产成人一区二区在线| 九色成人免费人妻av| 晚上一个人看的免费电影| 身体一侧抽搐| 嫩草影院入口| 久久久久国产网址| 亚洲精品色激情综合| 成人鲁丝片一二三区免费| 日本免费在线观看一区| 天天躁日日操中文字幕| 特级一级黄色大片| 狂野欧美激情性xxxx在线观看| 涩涩av久久男人的天堂| 少妇丰满av| 一级黄片播放器| 精品国产一区二区三区久久久樱花 | 91午夜精品亚洲一区二区三区| 日日摸夜夜添夜夜爱| 波多野结衣巨乳人妻| 久久久久久伊人网av| 美女高潮的动态| 我的老师免费观看完整版| 国产视频首页在线观看| 午夜激情福利司机影院| 天堂中文最新版在线下载 | 赤兔流量卡办理| 亚洲av.av天堂| 久久久久国产精品人妻一区二区| 肉色欧美久久久久久久蜜桃 | 国产白丝娇喘喷水9色精品| 国产一区二区亚洲精品在线观看| 99热这里只有是精品50| 久久精品久久久久久噜噜老黄| 免费黄色在线免费观看| 成年女人看的毛片在线观看| 97热精品久久久久久| 熟女av电影| 成人国产av品久久久| 国产有黄有色有爽视频| 日日摸夜夜添夜夜爱| 久久久欧美国产精品| 七月丁香在线播放| 99久久人妻综合| 男人舔奶头视频| 99久国产av精品国产电影| 大香蕉久久网| 青春草亚洲视频在线观看| 亚洲人成网站高清观看| 少妇人妻 视频| 国产69精品久久久久777片| 日本黄大片高清| 在线观看美女被高潮喷水网站| 国产欧美日韩一区二区三区在线 | 黄色视频在线播放观看不卡| 你懂的网址亚洲精品在线观看| 色视频在线一区二区三区| a级一级毛片免费在线观看| 中国三级夫妇交换| 日日啪夜夜爽| 草草在线视频免费看| 超碰97精品在线观看| 欧美xxⅹ黑人| 国产亚洲av嫩草精品影院| 国产黄片美女视频| 午夜福利视频精品| 五月开心婷婷网| 国产综合精华液| 欧美变态另类bdsm刘玥| 亚洲国产欧美在线一区| 国产日韩欧美亚洲二区| 少妇人妻久久综合中文| 国产91av在线免费观看| 日韩伦理黄色片| 国产亚洲一区二区精品| 亚洲av国产av综合av卡| 国产 精品1| 国产av码专区亚洲av| 女人十人毛片免费观看3o分钟| 看黄色毛片网站| 国产一区亚洲一区在线观看| 九九爱精品视频在线观看| 国产 一区精品| 国产精品99久久99久久久不卡 | 亚洲欧美中文字幕日韩二区| 日本-黄色视频高清免费观看| 国产免费视频播放在线视频| 精品酒店卫生间| 日本av手机在线免费观看| 97超碰精品成人国产| 一级片'在线观看视频| 精品99又大又爽又粗少妇毛片| 亚洲自拍偷在线| 久久人人爽人人片av| 午夜福利高清视频| 麻豆成人午夜福利视频| 成人毛片a级毛片在线播放| 最后的刺客免费高清国语| 三级经典国产精品| 色播亚洲综合网| 国产一区二区三区综合在线观看 | 国产中年淑女户外野战色| 亚洲精品aⅴ在线观看| 久久国内精品自在自线图片| 全区人妻精品视频| 2021少妇久久久久久久久久久| 最近中文字幕2019免费版| av卡一久久| 色5月婷婷丁香| 精品一区在线观看国产| 亚洲精华国产精华液的使用体验| 搡老乐熟女国产| 亚洲丝袜综合中文字幕| 亚洲内射少妇av| 精品一区二区三卡| 日韩av免费高清视频| 欧美97在线视频| 精品午夜福利在线看| av在线老鸭窝| 欧美精品国产亚洲| 亚洲三级黄色毛片| 国产一区二区亚洲精品在线观看| 波多野结衣巨乳人妻| 国产国拍精品亚洲av在线观看| 国产综合懂色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日产精品乱码卡一卡2卡三| 在线免费十八禁| 永久免费av网站大全| 日韩亚洲欧美综合| 91久久精品电影网| 国产视频首页在线观看| 国产 一区 欧美 日韩| 中国三级夫妇交换| 成人综合一区亚洲| 高清av免费在线| 亚洲在线观看片| 爱豆传媒免费全集在线观看| 大又大粗又爽又黄少妇毛片口| 又粗又硬又长又爽又黄的视频| 内地一区二区视频在线| 国产精品一及| 久久久久久久亚洲中文字幕| 国产成人福利小说| 欧美变态另类bdsm刘玥| 偷拍熟女少妇极品色| 欧美老熟妇乱子伦牲交| 黄色怎么调成土黄色| 国产一区二区三区综合在线观看 | 国产精品伦人一区二区| 亚洲自拍偷在线| 美女视频免费永久观看网站| 视频区图区小说| av线在线观看网站| 日本午夜av视频| 香蕉精品网在线| 久久精品久久久久久噜噜老黄| 狠狠精品人妻久久久久久综合| 免费播放大片免费观看视频在线观看| 又爽又黄a免费视频| 丰满人妻一区二区三区视频av| 国产一区有黄有色的免费视频| 一本色道久久久久久精品综合| 观看免费一级毛片| 国产黄a三级三级三级人| 精品久久久久久久人妻蜜臀av| 91久久精品国产一区二区三区| 国产午夜精品一二区理论片| 视频中文字幕在线观看| 久久久久久久久久久免费av| 久久久久九九精品影院| 麻豆久久精品国产亚洲av| 久久久久精品性色| 自拍偷自拍亚洲精品老妇| 一级av片app| 五月伊人婷婷丁香| 亚洲不卡免费看| 七月丁香在线播放| 免费人成在线观看视频色| 激情五月婷婷亚洲| kizo精华| 亚洲av一区综合| 伊人久久精品亚洲午夜| 欧美成人一区二区免费高清观看| 制服丝袜香蕉在线| 一级黄片播放器| 欧美日韩视频精品一区| 中文字幕免费在线视频6| 亚洲国产精品专区欧美| 涩涩av久久男人的天堂| 国产成人freesex在线| 少妇裸体淫交视频免费看高清| 黄色配什么色好看| 亚洲欧美清纯卡通| 中文天堂在线官网| 免费看av在线观看网站| 国内揄拍国产精品人妻在线| videos熟女内射| 亚洲精品色激情综合| 成人一区二区视频在线观看| 18禁裸乳无遮挡动漫免费视频 | 亚洲精品国产成人久久av| 国产伦在线观看视频一区| 久久99热这里只频精品6学生| 伊人久久精品亚洲午夜| 最后的刺客免费高清国语| 麻豆久久精品国产亚洲av| 99热6这里只有精品| 一区二区三区精品91| 超碰97精品在线观看| 少妇人妻 视频| 又黄又爽又刺激的免费视频.| 欧美精品国产亚洲| 国产毛片在线视频| 国产免费一区二区三区四区乱码| 亚洲欧美一区二区三区黑人 | 噜噜噜噜噜久久久久久91| 久久久国产一区二区| 又爽又黄a免费视频| 午夜激情久久久久久久| 91狼人影院| 久久6这里有精品| 夫妻性生交免费视频一级片| 国产淫片久久久久久久久| 国产极品天堂在线| 亚洲国产成人一精品久久久| 各种免费的搞黄视频| 国产在线男女| 久久6这里有精品| 你懂的网址亚洲精品在线观看| 黄色视频在线播放观看不卡| av免费观看日本| 国产在线一区二区三区精| 一级片'在线观看视频| 日韩成人伦理影院| 六月丁香七月| 午夜福利高清视频| 晚上一个人看的免费电影| 免费电影在线观看免费观看| 小蜜桃在线观看免费完整版高清| 久久6这里有精品| 亚洲电影在线观看av| 精品人妻熟女av久视频| 精品久久久久久久久亚洲| 免费黄频网站在线观看国产| 精品一区在线观看国产| 成人免费观看视频高清| 男人和女人高潮做爰伦理| 亚洲一区二区三区欧美精品 | 国产成年人精品一区二区| 免费av观看视频| 久久韩国三级中文字幕| 国产高潮美女av| 一级av片app| 亚洲av男天堂| 久热这里只有精品99| 久久精品久久精品一区二区三区| 日本-黄色视频高清免费观看| 麻豆乱淫一区二区| 成人国产麻豆网| 国产淫语在线视频| 免费观看性生交大片5| 免费观看av网站的网址| 久久人人爽人人片av| 少妇人妻 视频| 欧美潮喷喷水| 91在线精品国自产拍蜜月| 欧美xxⅹ黑人| 国产精品久久久久久精品古装| av免费在线看不卡| 波多野结衣巨乳人妻| 亚洲国产精品成人综合色| 永久网站在线| 亚洲精品456在线播放app| 亚洲精品乱久久久久久| 亚洲性久久影院| 亚洲va在线va天堂va国产| 亚洲精品久久久久久婷婷小说| 亚洲精品乱码久久久v下载方式| 日韩av免费高清视频| 亚洲欧美日韩东京热| 一本一本综合久久| 国产午夜精品久久久久久一区二区三区| 尤物成人国产欧美一区二区三区| 国产亚洲最大av| 波野结衣二区三区在线| 午夜爱爱视频在线播放| 男女下面进入的视频免费午夜| 免费人成在线观看视频色| 一区二区三区四区激情视频| 亚洲欧美精品自产自拍| 国产一级毛片在线| 亚洲精品色激情综合| 国产精品99久久久久久久久| 亚洲四区av| 国产精品成人在线| 国产大屁股一区二区在线视频| 听说在线观看完整版免费高清| 国产老妇女一区| 国产精品一二三区在线看| 99久久中文字幕三级久久日本| 日韩成人伦理影院| 午夜福利视频1000在线观看| 日韩欧美精品v在线| 亚洲人成网站高清观看| 最近中文字幕高清免费大全6| 在线看a的网站| 久久久久久久大尺度免费视频| 精品午夜福利在线看| 日本熟妇午夜| 国产精品一区www在线观看| 日韩精品有码人妻一区| 欧美变态另类bdsm刘玥| 欧美日韩国产mv在线观看视频 | 男女国产视频网站| 大陆偷拍与自拍| 韩国高清视频一区二区三区| 亚州av有码| 亚洲欧美日韩东京热| 亚洲国产精品成人久久小说| 日韩欧美精品v在线| 午夜精品一区二区三区免费看| 一区二区三区四区激情视频| 22中文网久久字幕| 高清在线视频一区二区三区| 噜噜噜噜噜久久久久久91| 国产一区二区三区综合在线观看 | 亚洲av不卡在线观看| 亚洲国产欧美人成| 在线a可以看的网站| 热re99久久精品国产66热6| 免费不卡的大黄色大毛片视频在线观看| 精品少妇黑人巨大在线播放| 一本一本综合久久| 最新中文字幕久久久久| 国产精品人妻久久久久久| 美女cb高潮喷水在线观看| 亚洲精品成人久久久久久| 人妻 亚洲 视频| 精品久久久精品久久久| 国产精品成人在线| 青春草视频在线免费观看| 国产精品久久久久久av不卡| 欧美亚洲 丝袜 人妻 在线| 99热这里只有是精品50| 777米奇影视久久| 亚洲,欧美,日韩| 亚洲欧美中文字幕日韩二区| 久久久成人免费电影| 特级一级黄色大片| 黄色视频在线播放观看不卡| 99热网站在线观看| 国产毛片在线视频| 麻豆成人午夜福利视频| 菩萨蛮人人尽说江南好唐韦庄| 免费看不卡的av| 日韩免费高清中文字幕av| 五月伊人婷婷丁香| 人人妻人人看人人澡| 2021少妇久久久久久久久久久| 久久精品久久久久久噜噜老黄| 国产精品不卡视频一区二区| 老司机影院成人| 亚洲伊人久久精品综合|