• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of Inclined Magnetic Field and Copper Nanoparticles on Peristaltic Flow of Nano fluid through Inclined Annulus:Application of the Clot Model

    2017-05-12 08:53:11IqraShahzadiandNadeem
    Communications in Theoretical Physics 2017年6期

    Iqra Shahzadiand S.Nadeem

    Department of Mathematics,Quaid-i-Azam University,Islamabad 44000,Pakistan

    1 Introduction

    Nano fluid dynamics is appeared as the newly developed branch of fluid dynamics,which discovers sundry applications in biology,energetics,and medical science.The nanoparticles particularly metallic nanoparticles like copper have been broadly utilized for diagnosis,treatment,drug delivery,and medical device coating such as in Refs.[1–3].Nanofluids are the suspension of nanoparticles within the considered base fluid and were firstly investigated by Choi.[4]After him Akbar et al.[5]examined the contemporary study of ciliary motion under the impact of metallic nanoparticles.Here they examined the model for mucus layer Nadeem et al.[6]investigated the two phase nano fluid model in a curved channel.Due to the exclusive properties,nano fluids have gained considerable attention from investigators and latest studies explored the indispensable advantages of nano fluids in various biomedical applications as given in Refs.[7–15].

    In peristalsis,sinusoidal wave propagation is responsible for flow generation through channel,tube or duct.This phenomenon has great utility in industry and biology.Some physiological examples include transport of bile,urine,chyme and food,cilia transport,male and female breeding cells through their specific tracks.Engineering applications of peristalsis include roller, finger and hose pumps,dialysis,food mixing processes,hear tlung machines,and so forth.Due to such usefulness and immense continuation of peristaltic flows,various investigations are introduced to examine the peristalsis by considering distinct flow con figurations.[16?21]

    Flow of electrically conducting fluid under the impact of applied magnetic field is affected by electromagnetic forces apart from other body and surface forces.Mechanics as well as the thermodynamics of the system is influenced by electromagnetic forces.This situation is occurred in case of severe injuries during bleeding reduction.Several disorders in the human body are diagnosis with the help of different diagnostic test like magnetic resonance imaging.MHD has numerous applications in cosmology,astrophysics,sensors,geophysics,magnetic drug engineering and targeting.Sheikholeslami et al.[22]discussed the effects of magnetic field on natural convection of nano fluid through cubic cavity.These facts realize the importance of determining magneto hydrodynamic peristaltic transport of various fluids through different geometries.[23?28]

    A genuine neurotic condition is experienced when some blood constituents saved on the wall of the artery get confined from the wall,again join the circulation system,and coagulation occurred.This can prompt to partial or even total blockage of the veins.Mekheimer and Elmaboud[29]examined the mathematical model defined for micropolar fluid of incompressible nature in a stenosed artery having coagulation inside it.In order to discuss such a serious situation and its repercussions regarding vortices,we have considered such an analysis.We intend to model and analyze the peristaltic transport of nano fluid in an inclined annulus under the influence of copper nanoparticles.Inclined magnetic field concept is utilized in the problem formulation.In fact,magnetic nanofluids have both the characteristic of fluid as well as the magnetic field.Such types of fluids have many significant applications such as adjustable filters,modulators,optical switches,gratings,cancer therapy,hyperthermia and drug delivery etc.The influence of magnetic nanoparticles on the tumor cells has been found to more adhesive than invigorating cells.Therefore,we have considered the copper as the nanoparticles.The present analysis is completed with the aid of lubrication approach and solved exactly.Some vital conclusions have been gotten on the premise of the present considered investigation.The impulsion of emerging parameters is presented via graphical illustration,trapping phenomena and tables.The results obtained from the examination have many biomedical engineering applications.

    2 Formulation of the Problem

    Consider an incompressible,laminar and viscous nano fluid in an annular region of inclined annulus between two coaxial tube in which inner tube have a clot on its walls.An external magnetic field of strengthB0is inclined at an angleαwhereas annulus is inclined at an angleη,respectively.The consequence of induced magnetic field are ignored for the condition of low magnetic Reynolds number.Nano fluid flow phenomena is consist of blood with copper as the nanoparticles.The central tube is maintained at temperatureT0while the outer tube has a sinusoidal wave of amplitudeband wavelengthλthat is traveling down through its wall with constant speedcand having temperatureT1.It is supposed that the thermal equilibrium is maintained between the nanoparticles and the base fluid.The coordinates(R,Z)are elected in such a way thatR-axis is along radial direction andZ-axis lies along length of the tube.Schematic geometry sketch is visualized through Fig.1.

    Fig.1 Geometry of the problem.

    The two wall surface geometry is described as:

    whereR0is the radius of the outer tube,aR0is the radius of inner tube that keeps the clot inside the tube,bis the amplitude of the wave,f(ˉZ,′t)is the arbitrary shape that can be executed by suitable choice,λis the wavelength,cis the wave speed.

    In the above equations,is the temperature of the fluid,is the pressure,ηis the inclination angle,B0is the strength of magnetic field,andQ0is the constant heat absorption or generation.For the proposed nanofuid model,ρnfis the density of the nano fluid,μnfis the variable nanofuid viscosity,βnfis the thermal expansion coefficient,σnfis the electrical conductivity of the nano fluid,Knfis the thermal conductivity of the nano fluid and(ρCp)nfis the nano fluid heat capacitance.

    The effective viscosity,density and specific heat of nano fluid,are defined as,[14]

    Here,ρ,β,cp,andφare the density,thermal expansion coefficient,specific heat and nanoparticle volume fraction,respectively.The subscriptsfandsare used to indicate the fluid and nanoparticle phases,respectively.Numerical values of the physical parameters are given in Table 1.The H–C model(Hamilton&Crosser,1962)for the effective thermal conductivity of nanofluids is used in this analysis.Hence the expression of effective thermal conductivity of nano fluids is given by

    Table 1 Thermo physical parameters of blood and copper.

    whereKis the thermal conductivity.In this modelndenotes the shape factor of nanoparticles given by 3/ψ,whereψis the sphericity of the nanoparticles and it depends on the shape of the nanoparticles.For spherical nanoparticlesn=3 orψ=1.For cylindrical nanoparticlesψ=0.5 orn=6.For the analysis in this study we assume that the nanoparticles have a spherical shape,i.e.,n=6.

    In the fixed frame the no slip boundary conditions are defined as

    In the above expressionsGr,?θ,Ren,γ,δ,M,Frrepresent the Grashr of number,dimensionless temperature,Reynolds number,dimensionless heat source parameter,wave number,Hart mann number,and Froude number respectively.After using the lubrication approach,the continuity equation is exactly satisfied and Eqs.(13)–(15)take the form:

    The suitable no slip boundary conditions in the wave frame are given as

    Dimensionless flow rateFin the laboratory frame is associated to the dimensionless flow rateqin the wave frame is defined as

    whereq,q1,andq2are defined as,

    The nondimensional form for the suitable choice of the clot model as suggested by Mekheimer and Elmaboud[29]is given as

    where maximum height achieved by the clot atz=zd+0.5 is represented byζ,inner tube radius ratio that keeps the clot in position is represented byaand clot axial displacement is represented byzd.

    3 Solution of the Problem

    Equations(18)and(19)are solved exactly by utilizing the boundary conditions given in Eq.(20).The solutions for temperature and velocity pro file are as follow

    whereC1,C2,C3,andC4can be calculated by using Mathematica.

    We obtain the pressure gradient as defined below,

    wherel1andl2can be calculated by using Mathematica.

    4 Graphical Results and Discussion

    The assurance of velocity pro file,pressure gradient,pressure rise,and streamlines outcomes in light of included parameters have been exhibited graphically in this section.These graphs are set up by controlling the parameters such asη=0?π/2,Gr=0.5?6,γ=0.1?0.9,φ=0?0.1,Ha=1.5?3.5,α=0?π/3,ζ=0.1?0.25,Re=0.2?2.5,andFr=0.2?1.5.Axial velocitywdescribes the parabolic trajectory against the radial distance for all the involved parameters.Figure 2(a)interprets the impact of inclination angleηon axial velocity.The values ofη=0,π/4,π/2 correspond to the horizontal,inclined and vertical annulus,respectively.The magnitude of the velocity increases in the presence of copper nanoparticles as we move from horizontal to vertical annulus having clot inside it.The amplitude of the velocity pro file increases in the regionr ?[0.1,0.7]and decreases inr ?[0.71,1.2].

    The effects ofGronware found increasing from Fig.2(b)in the regionr ?[0.1,0.7]while the opposite trend is observed in the rest of region.This velocity development occurs due to decrease in viscosity.On physical grounds mixed convection is useful in nuclear reactor technology and electronic cooling processes where forced convection is not sufficient to dissipate energy.Figures 3(a)and 3(b)interpret the impact of heat source parameterγand Hartmann numberHaon axail velocity.The variations in heat source parameterγcause increase in the magnitude of velocity whenrlies in the region of 0.1≤r≤0.7 while decreases in the rest of region.The variations of Hartmann numberHaare given in Fig.3(b).It is observed that with an increase in the intensity of magnetic field the velocity pro file increases and then start decreases.It is due to the fact that when magnetic field is applied normal to the fluid,random motion of the particles within the considered base fluid gets slower down and hence flow of blood is retarded.The captured results of Fig.4(a)comprised of increasing impact of velocity pro file upon increasing values of magnetic field inclinationα.As we consider the effects of inclined magnetic field,the magnitude of the velocity increases and inclusion of copper nanoparticles increases the velocity pro file more prominently in comparison to pure blood case.Figure 4(b)is plotted to show the influence of clot heightζon velocity in the presence of copper nanoparticles and concluded that the velocity decreases by increasing the height of the clot which is physically true.It is due to the fact that the increasing values of?causes the resistance to the flow.

    Fig.2 Velocity pro file for different values of(a)inclination angle η;(b)Grashroff number Gr.

    Fig.3 Velocity pro file for different values of(a)heat source parameter γ;(b)Hartmann number Ha.

    Fig.4 Velocity pro file for different values of(a)magnetic field inclination α;(b)Clot height ζ.

    From Fig.5(a),it is analyzed thatwincreases with an increase in the values of Reynolds numberRe.Smaller values ofRemakes the fluid flow more laminar therefore the velocity increases by increasingRe.The velocity pro file for different values of Froude numberFris plotted in Fig.5(b)and observed that the significance of velocity increases with an increase inFrin the presence of copper nanoparticles.Change in pressure gradient for inclination angle,Grashoffnumber,heat source parameter,Hartmann number,mgnetic field inclination,clot height,Reynolds number and Froude number is observed through Figs.6–9.The effect of inclination angleηon dp/dzis displayed in Fig.6(a).It is found that upon increasingηthe amplitude of dp/dzincreases.

    Fig.5 Velocity pro file for different values of(a)Reynolds number Re;(b)Froude number Fr.

    Fig.6 Pressure gradient of distinct values of(a)inclination angle η;(b)Grashroff number Gr.

    Fig.7 Pressure gradient of distinct values of(a)heat source parameter γ;(b)Hartman number Ha.

    It is observed that the growth in pressure gradient is more prominent when we move from horizontal to vertical annulus.The effect of Grashof numberGron the pressure gradient is discussed in Fig.6(b)and noticed that with the growth of the buoyancy forces the pressure gradient increases in the presence of metallic nanoparticles.Figure 7(a)depicts that the increase in the heat source/sink parameter decreases the amplitude of pressure gradient since more heat is generated inside the considered base fluid.And decrease is more prominent for Cu-blood.Figure 7(b)represents the effect of Hartmann number(Ha)on dp/dz.It is investigated that the pressure gradient in inclined annulus gives higher height for copper nanoparticles than pure blood in the presence inclined magnetic field.

    Figure 8(a)reveals that the variation of pressure gradient for an inclined annulus will decrease with the enhancing effect of magnetic field inclinationα.It is revealed that the decrease is more prominent for Cu-blood case in comparison to pure blood.Figure 8(b)represents the behavior of dp/dzversuszfor the different values of clot heightζand revealed that with the increase of clot height the pressure gradient increases under the influence of inclined magnetic field.

    Fig.8 Pressure gradient of distinct values of(a)magnetic field inclination α;(b)Clot height ζ.

    Fig.9 Pressure gradient of distinct values of(a)Reynolds number Re;(b)Froude number Fr.

    Fig.10 Pressure gradient of distinct values of(a)inclination angle eta;(b)Grashroffnumber Gr.

    Figure 9 indicates that the behavior of pressure gradient is inversely proportional to the Froude numberFrand directly related to the Reynolds numberReunder the combine effect of copper nanoparticles and inclined magnetic field.The pressure rise per wavelength is important to explained the pumping properly and sketched here from Figs.10–13.

    Fig.11 Pressure rise for distinct values of(a)heat source parameter γ;(b)Hartmann number Ha.

    Fig.12 Pressure rise for distinct values of(a)magnetic filed inclination α;(b)Clot height ζ.

    Fig.13 Pressure rise for distinct values of(a)Reynolds number Re;(b)Froude number Fr.

    One regular observation from these figures is that the pressure rise per wavelength reduces with the expansion in flow rate.It is important to note that inclusion of nanoparticles changes the free pumping flux(value ofqfor Δp=0).Figure 10(a)is plotted for the analysis of pressure rise for changing values of inclination angleηand observed that the pressure rise enhances when we move from horizontal to vertical annulus having clot inside it.Pressure rise increases more prominently in the retrograde region as compared to augmented region when the effects of nanoparticles are taken into account.Figure 10(b)shows the impact of Grashof number on the pressure rise against the flow rate.Important observation from this figure is that the increase inGrincreases the pressure rise in the retrograde pumping region(q<0,Δp>0)and decreases in augmented pumping region(q>0,Δp>0)when the effects of viscous forces are more prominent in the presence of copper nanoparticles and inclined magnetic field.The fluctuation of pressure rise versusqfor different values of heat source parameterγis given in Fig.11(a)and observed that addition of copper nanoparticles increases the retrograde pumping region more significantly than pure blood in the existence of clot.Figure 11(b)shows that the pressure rise increases with an increase in the Hartmann numberHa.It is depicted that by increasing values of Hartmann number pressure rise becomes an increasing function in the region(?1≤q≤ 0)whereas reverse behavior is seen in the rest of the region.Figure 12 describes the effect of magnetic field inclinationαand clot heightζon the pressure rise.It is declared from these figures that the pressure rise per wavelength is directly related toζbut inversely related toα.Furthermore,pressure rise enhsnces in the retrograde pumping region(q<0,Δp>0)with the increase of nanoparticle volume fraction.

    Fig.14 Streamlines for Copper nanoparticles for distinct values of(a)Gr=4;(b)Gr=5;(c)Gr=6.

    Fig.15 Streamlines for Copper nanoparticles for distinct values of(a)η=0;(b)η= π/4;(c)η=2/π.

    Figure 13 describes the results obtained for the Δpversus the flow rateqfor increasing values of Reynolds numberReand Froude numberFr.It is seen that the pressure rise is an increasing function ofRewhile decreasing function ofFrand variations are more enhanced in the presence of metallic nanoparticles and under the effect of inclined magnetic field.Trapping,describing an interesting phenomenon for the blood flow pattern in an inclined annulus having clot is discussed in Figs.14–20 by considering the copper as nanoparticles.It is analyzed that the number of trapped bolus increases but the size of the bolus decreases by increasing Grashoffnumber with the inclusion of copper nanoparticles by the closed stream lines as shown in Fig.14.The influence of inclination angleηon streamlines are shown in Fig.15.It is seen that no bolus appears for horizontal annulus but size of bolus increases as we considered the inclined annulus having clot and than decreases for vertical case.From Fig.16,it is inspected that the number of trapping bolus increases when we increase the concentration of nanoparticlesφas contrast with pure blood case.It is important to note that the number of bolus decreases when we further increase the concentraion of copper nanoparticles.

    Fig.16 Streamlines for distinct values of nanoparticle volume fraction(a)?=0.00;(b)?=0.05;(c)?=0.1.

    Fig.17 Streamlines for Copper nanoparticles for distinct values of(a)Re=0.2;(b)Re=0.4;(c)Re=0.6.

    Fig.18 Streamlines for Copper nanoparticles for distinct values of(a)Fr=0.1;(b)Fr=0.15;(c)Fr=0.2.

    Figure 17 describes the impact of Reynolds numberReon the trapping phenomena.Increasing the values ofReincreases the number of bolus for Cu-blood.The trapping phenomena for Froude numberFris examined through Fig.18.It is inspected that the streamlines gets closer for increasing values ofFr.The number of the trapped bolus increases with increasing Hartmann numberHain the presence of copper nanoparticles as presented in Fig.19.The trapping phenomena for the heat source parameterγis given in Fig.20.The number of the trapped inner bolus decreases with an increase in the values ofγfor copper nanoparticles.

    Fig.19 Streamlines for Copper nanoparticles for distinct values of(a)Ha=0.2;(b)Ha=0.9;(c)Ha=1.2.

    Fig.20 Streamlines for Copper nanoparticles for distinct values of(a)γ=0.5;(b)γ=0.7;(c)γ=0.9.

    Fig.21 Streamlines for Copper nanoparticles for distinct values of(a)ζ=0.1;(b)ζ=0.21;(c)ζ=0.25.

    Fig.22 Streamlines for Copper nanoparticles for distinct values of(a)α=0;(b)α=π/4;(c)α=π/3.

    Figures 21 and 22 describe the impact of clot heightζand magnetic field inclinationαon the streamlines pattern.The number of circulating bolus increases by increasing clot heightζwhereas opposite behavior is observed for magnetic field inclinationα.Table 2 shows the variation of temperature pro file for increasing values of heat source parameterγ.It is inspected that the enhancing values of heat source parameterγenhance the temperature of the considered base fluid through metabolic system.

    Table 2 Variations of temperature pro file for different values of heat source parameter γ.

    5 Conclusions

    Impact of inclined magnetic field and copper nanoparticles on the peristaltic flow of nano fluid through inclined annulus having clot inside it is discussed in this analysis.Some crucial observations of the considered analysis are listed below

    ?Amplitude of velocity pro files exhibit higher results for copper blood than for the pure blood.

    ?Velocity for viscous fluid flowing through an inclined annulus is less in comparison to that of a nano fluid in the presence of copper nanoparticles.

    ?Pressure gradient for the flow in a horizontal annulus is lower when compared with that of an inclined and vertical annulus.

    ?With an increase in Hartmann number the pressure rise enhances in the retrograde pumping region while opposite behavior is observed in the augmented pumping region.

    ?For the flow through an inclined annulus the pressure rise decreases more for inclined magnetic field when compared with the constant magnetic field.

    References

    [1]R.U.Haq,Z.H.Khanb,S.T.Hussain,and Z.Hammouch,J.Mol.Liq.221(2016)298.

    [2]S.Ijaz and S.Nadeem,Comput.Meth.Prog.Bio.134(2016)43.

    [3]S.U.Rahman,R.Ellahi,S.Nadeem,and Q.M.Z.Zia,J.Mol.Liq.218(2016)484.

    [4]S.U.S.Choi and J.A.Eastman,ASME Int.Mech.Eng.Cong.Expos.66(1995)99.

    [5]N.S.Akbar and A.W.Butt,Comput.Meth.Prog.Bio.134(2016)43.

    [6]S.Nadeem and I.Shahzadi,Commun.Theor.Phys.64(2015)547.

    [7]N.S.Akbar,Comput.Meth.Prog.Bio.132(2016)45.

    [8]S.Nadeem and Iqra shahzadi,Int.J.Heat Mass Trans.97(2016)794.

    [9]T.Hayat,S.Farooq,B.Ahmad,and A.Alsaedi,Int.J.Heat Mass Trans.103(2016)1133.

    [10]M.Atlas,R.U.Haq,and T.Mekkaoui,J.Mol.Liq.doi:10.1016/j.molliq.2016.08.032.

    [11]Y.Xuan,ASME J.Heat Transf.125(2003)151.

    [12]H.C.Brinkman,J.Chem.Phys.20(1952)571.

    [13]R.K.Tiwari and M.K.Das,Int.J.Heat Mass Transf.50(2007)2002.

    [14]R.U.Haq,Z.H.Khanb,S.T.Hussain,and Z.Hammouch,J.Mol.Liq.221(2016)298.

    [15]I.Shahzadi,H.Sadaf,S.Nadeem,and A.Saleem,Comput.Meth.Prog.Bio.139(2016)137.

    [16]S.Nadeem and N.S.Akbar,Int.J.Numer.Meth.Fluids 66(2011)919.

    [17]A.H.Shapiro,M.Y.Jaffrin,and S.Wienberg,J.Fluid Mech.37(1969)799.

    [18]T.Hayat,S.Farooq,B.Ahmad,and A.Alsaedi,Int.J.Heat Mass Transf.103(2016)1133.

    [19]N.S.Akbar,M.Raza,and R.Ellahi,European Phys.J.Plus 129(2014)155.

    [20]Kh.S.Mekheimer,S.Z.A.Husseny,and A.I.Abdellateef,App.Bion.Biomech.8(2011)1.

    [21]T.Hayat,S.Farooq,B.Ahmad,and A.Alsaedi,Int.J.Heat Mass Transf.106(2017)244.

    [22]M.Sheikholeslami and R.Ellahi,Int.J.Heat Mass Transf.89(2015)799.

    [23]S.Nadeem and I.Shahzadi,AIP Advances 6(2015)015110.

    [24]M.M.Bhatti,R.Ellahi,and A.Zeeshan,J.Mol.Liq.222(2016)101.

    [25]A.Zeeshan,A.Majeed,and R.Ellahi,J.Mol.Liq.215(2016)549.

    [26]T.Hayat,S.Farooq,B.Ahmad,and A.Alsaedi,J.Mol.Liq.223(2016)469.

    [27]I.Shahzadi and S.Nadeem,J.Mol.Liq.225(2017)365.

    [28]T.Hayat,S.Farooq,B.Ahmad,and A.Alsaedi,Results in Physics doi:org/10.1016/j.rinp.2016.12.048.

    [29]Kh.S.Mekheimer and Y.Abd Elmaboud,Appl.Bionics Biomech.5(2008)13.

    色播亚洲综合网| 毛片一级片免费看久久久久| 日韩一区二区视频免费看| 三级毛片av免费| 观看美女的网站| 日本色播在线视频| 精品不卡国产一区二区三区| 99热这里只有是精品50| 麻豆av噜噜一区二区三区| 少妇裸体淫交视频免费看高清| 最新中文字幕久久久久| 色哟哟哟哟哟哟| 久久久久久久久中文| 极品教师在线视频| 18禁裸乳无遮挡免费网站照片| 国产私拍福利视频在线观看| 悠悠久久av| h日本视频在线播放| 啦啦啦观看免费观看视频高清| 午夜爱爱视频在线播放| 日本免费a在线| 免费观看人在逋| 久久韩国三级中文字幕| 日韩亚洲欧美综合| 最近2019中文字幕mv第一页| 简卡轻食公司| 国产日本99.免费观看| 欧美另类亚洲清纯唯美| 国产色爽女视频免费观看| 精品国内亚洲2022精品成人| av专区在线播放| 最近最新中文字幕大全电影3| 日本一本二区三区精品| av专区在线播放| 少妇的逼水好多| 欧美激情国产日韩精品一区| 亚洲在久久综合| 亚洲无线观看免费| 成人综合一区亚洲| 99热精品在线国产| 欧美变态另类bdsm刘玥| 精品人妻一区二区三区麻豆| 欧美丝袜亚洲另类| 亚洲av免费高清在线观看| 久久久久网色| 色视频www国产| 欧美成人免费av一区二区三区| 最近的中文字幕免费完整| 国产淫片久久久久久久久| 久久久久网色| 插阴视频在线观看视频| 99久国产av精品国产电影| 国产成人影院久久av| 欧美xxxx黑人xx丫x性爽| 国产精品日韩av在线免费观看| 日韩制服骚丝袜av| 99久久精品热视频| 午夜福利在线在线| 成人毛片60女人毛片免费| 国产伦理片在线播放av一区 | 岛国在线免费视频观看| 欧美性猛交╳xxx乱大交人| 亚洲18禁久久av| 2022亚洲国产成人精品| 美女脱内裤让男人舔精品视频 | av天堂中文字幕网| 欧美日本视频| 国产高清三级在线| 成人二区视频| 在现免费观看毛片| 狠狠狠狠99中文字幕| 又粗又硬又长又爽又黄的视频 | 九九久久精品国产亚洲av麻豆| 日韩欧美 国产精品| 精品少妇黑人巨大在线播放 | 亚洲成a人片在线一区二区| 午夜亚洲福利在线播放| 亚洲av成人av| 看黄色毛片网站| 人妻少妇偷人精品九色| 国产av不卡久久| 欧美精品国产亚洲| 国产国拍精品亚洲av在线观看| 国产一区二区亚洲精品在线观看| 久久久久久久午夜电影| www日本黄色视频网| 亚洲欧美精品专区久久| 久久热精品热| 2022亚洲国产成人精品| 天堂中文最新版在线下载 | 美女内射精品一级片tv| 午夜亚洲福利在线播放| 美女xxoo啪啪120秒动态图| 久久久精品欧美日韩精品| 国产一区二区亚洲精品在线观看| 久久久成人免费电影| 精品国产三级普通话版| 男女下面进入的视频免费午夜| 1000部很黄的大片| 日韩欧美 国产精品| 欧美又色又爽又黄视频| 亚洲国产精品sss在线观看| 大香蕉久久网| 成人综合一区亚洲| 天堂影院成人在线观看| 老司机福利观看| 亚洲经典国产精华液单| 久久久欧美国产精品| 黄色欧美视频在线观看| 精品人妻一区二区三区麻豆| 中出人妻视频一区二区| 蜜桃久久精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩高清专用| av女优亚洲男人天堂| 麻豆精品久久久久久蜜桃| 一级av片app| 国产久久久一区二区三区| 欧美最黄视频在线播放免费| 免费黄网站久久成人精品| 亚洲欧美清纯卡通| 久久九九热精品免费| 中文字幕精品亚洲无线码一区| 国产视频内射| 美女 人体艺术 gogo| 禁无遮挡网站| 亚洲va在线va天堂va国产| 狠狠狠狠99中文字幕| 亚洲av熟女| 亚洲精品粉嫩美女一区| 天堂√8在线中文| 亚洲无线在线观看| 亚洲熟妇中文字幕五十中出| 国产精品一区二区三区四区久久| 哪里可以看免费的av片| 国产精品爽爽va在线观看网站| 国产精品国产三级国产av玫瑰| 亚洲精品日韩av片在线观看| 久久久午夜欧美精品| av天堂中文字幕网| 在线播放无遮挡| 99精品在免费线老司机午夜| 中文在线观看免费www的网站| 欧洲精品卡2卡3卡4卡5卡区| 欧美极品一区二区三区四区| 精品日产1卡2卡| 人妻系列 视频| 最近2019中文字幕mv第一页| 精品人妻熟女av久视频| 久久久色成人| 国内精品宾馆在线| 国产亚洲av嫩草精品影院| 春色校园在线视频观看| 春色校园在线视频观看| 高清毛片免费观看视频网站| 六月丁香七月| 免费人成视频x8x8入口观看| а√天堂www在线а√下载| 我要搜黄色片| 偷拍熟女少妇极品色| 中文字幕熟女人妻在线| 欧美性猛交╳xxx乱大交人| 国产精品精品国产色婷婷| av在线天堂中文字幕| 久久综合国产亚洲精品| 我要搜黄色片| 美女xxoo啪啪120秒动态图| 国产精品精品国产色婷婷| 天天躁日日操中文字幕| 精品欧美国产一区二区三| 美女高潮的动态| 久久久精品大字幕| 国产免费男女视频| 欧美精品一区二区大全| 麻豆久久精品国产亚洲av| 久久久久久九九精品二区国产| 99国产极品粉嫩在线观看| 91麻豆精品激情在线观看国产| 一级毛片电影观看 | 久久精品国产亚洲av涩爱 | 亚洲七黄色美女视频| 男插女下体视频免费在线播放| 在现免费观看毛片| 麻豆成人午夜福利视频| 特大巨黑吊av在线直播| 国产久久久一区二区三区| 亚洲三级黄色毛片| 人妻制服诱惑在线中文字幕| 伦理电影大哥的女人| 久久久久久九九精品二区国产| eeuss影院久久| 久久人人爽人人爽人人片va| 午夜亚洲福利在线播放| 深爱激情五月婷婷| 久久6这里有精品| 97热精品久久久久久| 亚洲最大成人手机在线| 亚洲欧美日韩高清专用| 国产美女午夜福利| 欧美色欧美亚洲另类二区| 国产精品一二三区在线看| 成人二区视频| 国产久久久一区二区三区| 真实男女啪啪啪动态图| 青春草视频在线免费观看| 国内精品宾馆在线| 亚洲国产色片| 国产精品一二三区在线看| 亚洲一区高清亚洲精品| 精品久久久久久久久久免费视频| 熟妇人妻久久中文字幕3abv| 寂寞人妻少妇视频99o| 精品久久久久久久久亚洲| 99在线人妻在线中文字幕| 久久韩国三级中文字幕| 欧美3d第一页| 人妻久久中文字幕网| 国产激情偷乱视频一区二区| 99久久九九国产精品国产免费| 日韩精品青青久久久久久| 色吧在线观看| 99九九线精品视频在线观看视频| 18禁裸乳无遮挡免费网站照片| 人妻系列 视频| 男女那种视频在线观看| 日韩成人伦理影院| 国产午夜福利久久久久久| 久久精品久久久久久噜噜老黄 | 91午夜精品亚洲一区二区三区| 国产一区二区在线观看日韩| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美最新免费一区二区三区| 三级男女做爰猛烈吃奶摸视频| 午夜福利在线观看免费完整高清在 | 欧美一级a爱片免费观看看| 少妇的逼水好多| 老熟妇乱子伦视频在线观看| 国产一级毛片七仙女欲春2| 亚洲激情五月婷婷啪啪| 97人妻精品一区二区三区麻豆| 免费av毛片视频| 床上黄色一级片| 免费大片18禁| 一边摸一边抽搐一进一小说| 国产精品一区www在线观看| 啦啦啦啦在线视频资源| 尤物成人国产欧美一区二区三区| 亚洲三级黄色毛片| 免费看光身美女| 永久网站在线| 亚洲欧美精品专区久久| 久久精品国产清高在天天线| 色哟哟·www| 亚洲av熟女| 国产精品久久久久久精品电影小说 | 国产日韩欧美在线精品| 欧美日本视频| 在线观看免费视频日本深夜| 日日啪夜夜撸| 久久99热这里只有精品18| 国产精品日韩av在线免费观看| 美女内射精品一级片tv| 久久久色成人| 午夜福利成人在线免费观看| 欧美高清成人免费视频www| 一进一出抽搐gif免费好疼| 精品午夜福利在线看| 国产成人影院久久av| 色尼玛亚洲综合影院| 九草在线视频观看| 成人三级黄色视频| 久久久久久久久大av| 天美传媒精品一区二区| 一本一本综合久久| 久久人妻av系列| av专区在线播放| 熟妇人妻久久中文字幕3abv| 亚洲最大成人中文| 夜夜看夜夜爽夜夜摸| 免费av毛片视频| 精品免费久久久久久久清纯| 可以在线观看的亚洲视频| 午夜久久久久精精品| 亚洲在久久综合| 亚洲精品乱码久久久久久按摩| 日韩欧美三级三区| 卡戴珊不雅视频在线播放| 蜜桃亚洲精品一区二区三区| 久久这里有精品视频免费| 99久久九九国产精品国产免费| 成人三级黄色视频| 久久综合国产亚洲精品| 女人被狂操c到高潮| 亚洲精华国产精华液的使用体验 | 菩萨蛮人人尽说江南好唐韦庄 | 亚洲中文字幕一区二区三区有码在线看| 中文欧美无线码| 亚洲精品色激情综合| 高清毛片免费观看视频网站| 蜜桃亚洲精品一区二区三区| 免费人成在线观看视频色| 夫妻性生交免费视频一级片| 亚洲欧美成人综合另类久久久 | 97在线视频观看| 国产真实乱freesex| 欧美变态另类bdsm刘玥| 亚洲人成网站在线播放欧美日韩| 少妇人妻一区二区三区视频| 美女黄网站色视频| 插阴视频在线观看视频| 内地一区二区视频在线| 国产亚洲精品av在线| 午夜福利在线观看免费完整高清在 | 国产伦精品一区二区三区视频9| 乱人视频在线观看| 能在线免费观看的黄片| 最近最新中文字幕大全电影3| 国产亚洲精品久久久久久毛片| www日本黄色视频网| 69av精品久久久久久| 久久精品国产99精品国产亚洲性色| 麻豆一二三区av精品| 亚洲一区二区三区色噜噜| 国产黄a三级三级三级人| 午夜精品在线福利| 精品久久久久久久久久免费视频| 99视频精品全部免费 在线| 亚洲欧美日韩无卡精品| 久久久久久国产a免费观看| 亚洲精品久久国产高清桃花| 午夜福利成人在线免费观看| 中国美白少妇内射xxxbb| 国产爱豆传媒在线观看| 久久久久久久久久黄片| 天天躁日日操中文字幕| 极品教师在线视频| 久久亚洲国产成人精品v| 男的添女的下面高潮视频| 97超视频在线观看视频| 久久午夜福利片| 欧美另类亚洲清纯唯美| 内射极品少妇av片p| 神马国产精品三级电影在线观看| 久久精品影院6| 国产亚洲av嫩草精品影院| 国产av一区在线观看免费| 成年版毛片免费区| 婷婷色综合大香蕉| 日韩成人av中文字幕在线观看| 99热全是精品| 成人午夜精彩视频在线观看| 国产成人精品久久久久久| 免费av毛片视频| 18禁在线无遮挡免费观看视频| 欧美成人精品欧美一级黄| 麻豆成人av视频| 波多野结衣高清无吗| 久久久久久大精品| 能在线免费观看的黄片| 天堂网av新在线| 日韩欧美 国产精品| 美女xxoo啪啪120秒动态图| 欧美另类亚洲清纯唯美| 精品熟女少妇av免费看| 亚洲欧洲日产国产| 亚洲成a人片在线一区二区| 久久久久国产网址| 99久久精品热视频| 69人妻影院| 性欧美人与动物交配| 国产午夜精品论理片| 亚洲欧洲国产日韩| 亚洲va在线va天堂va国产| 亚洲欧美日韩高清在线视频| 日韩欧美 国产精品| 亚洲精品色激情综合| 精品一区二区三区视频在线| 少妇的逼水好多| 日本与韩国留学比较| 日韩成人av中文字幕在线观看| 如何舔出高潮| 婷婷精品国产亚洲av| 亚州av有码| 久久久国产成人免费| 国产激情偷乱视频一区二区| 欧美日韩在线观看h| 成人午夜高清在线视频| 色尼玛亚洲综合影院| 国产高潮美女av| 青春草亚洲视频在线观看| 欧美另类亚洲清纯唯美| 国产亚洲精品久久久久久毛片| 国产男人的电影天堂91| 亚洲国产色片| 天堂av国产一区二区熟女人妻| 男的添女的下面高潮视频| 丰满乱子伦码专区| 国产麻豆成人av免费视频| 看片在线看免费视频| 久久99蜜桃精品久久| 亚洲最大成人av| 午夜激情福利司机影院| 日韩,欧美,国产一区二区三区 | 国产亚洲5aaaaa淫片| 亚洲欧美日韩卡通动漫| 国产亚洲av片在线观看秒播厂 | 99热只有精品国产| 免费观看的影片在线观看| 赤兔流量卡办理| 国产蜜桃级精品一区二区三区| 亚洲高清免费不卡视频| 国产色婷婷99| 亚洲成人精品中文字幕电影| 欧美xxxx黑人xx丫x性爽| 国产伦精品一区二区三区四那| www日本黄色视频网| 亚洲欧美清纯卡通| 国产精品电影一区二区三区| 两个人的视频大全免费| 免费观看人在逋| 九九爱精品视频在线观看| 午夜福利在线观看免费完整高清在 | 在线观看美女被高潮喷水网站| 一级av片app| 高清午夜精品一区二区三区 | 国产在视频线在精品| 国产午夜福利久久久久久| 噜噜噜噜噜久久久久久91| 国产一级毛片在线| 亚洲人成网站在线播放欧美日韩| 亚洲精品国产成人久久av| 一卡2卡三卡四卡精品乱码亚洲| 国产探花极品一区二区| 黄片wwwwww| 美女内射精品一级片tv| 男女那种视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧洲日产国产| 一级av片app| 精品不卡国产一区二区三区| 亚洲国产精品成人久久小说 | 99久久精品热视频| 亚洲av免费高清在线观看| kizo精华| 国产高清激情床上av| 国产老妇伦熟女老妇高清| 久久亚洲国产成人精品v| 日韩精品有码人妻一区| 亚洲最大成人手机在线| 伦精品一区二区三区| 国产成人91sexporn| 午夜激情福利司机影院| av福利片在线观看| 中国国产av一级| 欧美bdsm另类| 一个人免费在线观看电影| 国产av一区在线观看免费| 久久热精品热| 亚洲五月天丁香| 亚洲人成网站在线观看播放| 国产高清激情床上av| 亚洲国产精品成人久久小说 | 99久久中文字幕三级久久日本| 成年免费大片在线观看| 亚洲在久久综合| 亚洲av.av天堂| 人妻系列 视频| 在线天堂最新版资源| 99九九线精品视频在线观看视频| 国内久久婷婷六月综合欲色啪| 日日啪夜夜撸| 午夜老司机福利剧场| 国产成人午夜福利电影在线观看| 亚洲国产精品sss在线观看| 久久国内精品自在自线图片| 小蜜桃在线观看免费完整版高清| 日本免费一区二区三区高清不卡| 国产高清有码在线观看视频| 国产成人精品一,二区 | 精品欧美国产一区二区三| 搞女人的毛片| av又黄又爽大尺度在线免费看 | 亚洲国产欧美人成| 亚洲久久久久久中文字幕| 一区二区三区高清视频在线| 午夜福利在线观看吧| 久久精品国产亚洲av涩爱 | 少妇熟女欧美另类| 国产老妇女一区| 青春草亚洲视频在线观看| 又黄又爽又刺激的免费视频.| av国产免费在线观看| 国产精品一区www在线观看| 久久久久久久久久久免费av| 久久精品影院6| 亚洲天堂国产精品一区在线| 久久精品久久久久久噜噜老黄 | 成人无遮挡网站| kizo精华| 中文精品一卡2卡3卡4更新| 女的被弄到高潮叫床怎么办| 我的老师免费观看完整版| 日日干狠狠操夜夜爽| 国产精品电影一区二区三区| 99久久精品热视频| 欧美3d第一页| 中文字幕av成人在线电影| 亚洲va在线va天堂va国产| 亚洲无线观看免费| 床上黄色一级片| 国产乱人偷精品视频| 欧美bdsm另类| 成人鲁丝片一二三区免费| 亚洲一区二区三区色噜噜| 两个人视频免费观看高清| 亚洲精华国产精华液的使用体验 | 欧美色欧美亚洲另类二区| 日本-黄色视频高清免费观看| 卡戴珊不雅视频在线播放| 特级一级黄色大片| a级毛片免费高清观看在线播放| 丝袜喷水一区| 久久99热这里只有精品18| 男人狂女人下面高潮的视频| 91久久精品电影网| 国产精品久久视频播放| 特级一级黄色大片| 一级毛片电影观看 | 欧美成人a在线观看| 亚洲性久久影院| a级毛片a级免费在线| 久久久a久久爽久久v久久| 国产精品av视频在线免费观看| 性欧美人与动物交配| 久久久午夜欧美精品| 能在线免费观看的黄片| 精品一区二区三区人妻视频| 男人的好看免费观看在线视频| 欧美不卡视频在线免费观看| 午夜亚洲福利在线播放| 国产成人一区二区在线| 激情 狠狠 欧美| 久久久久免费精品人妻一区二区| 99九九线精品视频在线观看视频| 看片在线看免费视频| a级毛片a级免费在线| 国内精品久久久久精免费| 国产蜜桃级精品一区二区三区| 免费看日本二区| 91aial.com中文字幕在线观看| 午夜激情欧美在线| 午夜福利高清视频| 亚洲四区av| 夜夜看夜夜爽夜夜摸| 一级毛片我不卡| 精品不卡国产一区二区三区| 少妇猛男粗大的猛烈进出视频 | 中文字幕人妻熟人妻熟丝袜美| 色噜噜av男人的天堂激情| 欧美3d第一页| 中文欧美无线码| 麻豆av噜噜一区二区三区| av天堂在线播放| 日韩 亚洲 欧美在线| av.在线天堂| 一本久久精品| 欧美区成人在线视频| 卡戴珊不雅视频在线播放| 亚洲性久久影院| 乱人视频在线观看| 91精品一卡2卡3卡4卡| 激情 狠狠 欧美| 中国美白少妇内射xxxbb| 成人漫画全彩无遮挡| 中文资源天堂在线| 噜噜噜噜噜久久久久久91| 欧美变态另类bdsm刘玥| 精品久久国产蜜桃| 99热精品在线国产| 99热网站在线观看| 性欧美人与动物交配| 国产精品福利在线免费观看| 性色avwww在线观看| www.av在线官网国产| 69人妻影院| 久久久久免费精品人妻一区二区| 综合色av麻豆| 国产精品野战在线观看| 亚洲精品粉嫩美女一区| 天堂网av新在线| 免费av毛片视频| 亚洲久久久久久中文字幕| 一区福利在线观看| 一卡2卡三卡四卡精品乱码亚洲| 2021天堂中文幕一二区在线观| 秋霞在线观看毛片| 99国产极品粉嫩在线观看| 一进一出抽搐动态| 亚洲精品自拍成人| 人妻系列 视频| 亚洲乱码一区二区免费版| 99热全是精品| 自拍偷自拍亚洲精品老妇| 久久人人爽人人片av| 国产亚洲5aaaaa淫片| 少妇熟女欧美另类| 最好的美女福利视频网| 欧美丝袜亚洲另类| 国产高潮美女av| 人妻少妇偷人精品九色| 亚洲精品乱码久久久久久按摩| 亚洲人与动物交配视频| 神马国产精品三级电影在线观看| 三级毛片av免费| 日本与韩国留学比较|