• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Variable Thermal Conductivity and Non-linear Thermal Radiation Past an Eyring Powell Nano fluid Flow with Chemical Reaction?

    2017-05-12 08:53:16RamzanBilalShamsaKanwalandJaeDongChung
    Communications in Theoretical Physics 2017年6期

    M.Ramzan,M.Bilal,Shamsa Kanwal,and Jae Dong Chung

    1Department of Computer Science,Bahria University,Islamabad Campus,Islamabad 44000,Pakistan

    2Department of Mathematics,Faculty of Computing,Capital University of Science and Technology,Islamabad 44000,Pakistan

    3Department of Mathematical Sciences,Fatima Jinnah Women University,Rawalpindi,Pakistan

    4Department of Mechanical Engineering,Sejong University,Seoul 143-747,Korea

    It is generally an accepted fact that non-Newtonian lfuids are more industry oriented as compared to Newtonian fluids.Glue,coal water,custard,ketchup,inks,cosmetics,toothpaste and jellies are some examples of non-Newtonian fluids.Unlike Newtonian fluids,no single relation can be predicted for non-Newtonian fluids as each non-Newtonian fluid possesses varying properties of viscosity and elasticity,which makes the mathematical modeling of these fluids more complicated as compared to Newtonian fluids.Many researchers are involved in exploring the new dimensions in this area.[1?5]Each non-Newtonian fluid model holds different features to exhibit a physical phenomenon.Eyring Powell fluid model[6?8]is one such model that can be extracted from kinetic theory of gases instead of Power law model.However,at low and high sheer rates,it exhibits the Newtonian behavior rather than pseudo-plastic systems’behavior.At different polymer concentrations,Eyring Powell model is considered to be more precise and reliable in estimating the fluid time scale.[9]

    In the present era of industrial revolution,Choi’s pioneering work[10]in nano fluids characterized by their ability to upsurge the thermal conductivity of base liquid,has opened the gates for followers to work in new dimensions.Choi found that heat transfer rate can be doubled by adding a small amount of nano particles.The novel characteristics of thermophoresis and Brownian motion of

    1 Introduction

    such fluids also make them potentially practical.Applications of nano fluids include cooling of micro chips,nanodrug delivery,and cancer therapy.Many researchers are exploring new dimensions and adding valuable contributions toward nano fluids.Some of these include exploration by Sohail and Saleem[11]that explores a time dependent f l ow on a rotating cone of Eyring Powell nano fluid under the impact of mixed convection.Waqar et al.[12]studied three-dimensional heat generation/absorption flow of an Oldroyd-B nano fluid.Khan et al.[13]focused 3D nano fluid f l ow in lateral directions over a nonlinearly stretched sheet.Jalilpour et al.[14]focused MHD stagnation point nano fluid flow in the presence of prescribed heat flux and heat generation/absorption past a porous stretching sheet.In recent literature,various dimensions have been explored in the presence of nano fluids.[15?20]

    In general,four heating processes are available in the literature namely(i)prescribed surface heat flux,(ii)prescribed wall temperature,(iii)Newtonian heating,and(iv)conjugate/convective boundary conditions.In today’s modern world,demand for compact and light weight devices for technological and engineering machinery urge researchers to explore more avenues in heat transfer equipment with enhanced efficiency.Due to this increasing demand of small and light weight units,researchers have been focusing on effects on interface between axial wall conduction and thermal boundary layers in fluids that directly influence the heat exchange performances.Convec-tive boundary condition is the generalized concept of prescribed surface temperature and prescribed heat flux conditions.Convective boundary condition is derived from the amalgamation of Newton’s law of cooling and Fourier’s law of heat conduction.It can be reduced to both prescribed surface temperature and heat flux conditions by making Biot number tends to infinity and zero respectively.Many researchers are exploring new mathematical models involving convective heat condition.To mention few amongst these,the study by Ibrahim[21]who examined the magnetohydrodynamic flow of nano fluid near the stagnation point under the influence of convective boundary condition.Ibanez[22]studied MHD flow past a channel with permeable walls in attendance of convective and hydrodynamic slip boundary conditions.Mustafa et al.[23]addressed the radiative Maxwell fluid flow with impact of convective condition.Recently,a variety of alluring problems highlighting effects of convective boundary condition are discussed,see Refs.[24–27].

    In above referred studies,none of these have disused combined effects of non-linear thermal radiation and variable thermal conductivity with amalgamation of chemical reaction.This has motivated us to study the problem of Eyring Powell nano fluid flow in presence of heat and mass convective boundary conditions past a continuously moving surface.No such study has been carried out till now in the literature as far as our knowledge is concerned.Series solutions have been obtained using famed Homotopy Analysis method(HAM).[28?31]Partial differential equations with high nonlinearity are changed into nonlinear ordinary differential equations using appropriate transformation.Graphs of Skin friction coefficient,local Nusselt and Sherwood numbers with mandatory conversation versus various parameters are also added.

    2 Mathematical Formulation

    Fig.1 Flow diagram.

    We assume 2D steady flow of an incompressible Eyring Powell nano fluid past a surface moving with constant velocityuw.Both constant velocityuwand uniform free stream velocityu∞have the same direction.Wall temperatureTwand free stream temperatureT∞are constant with the assumptionTw>T∞in attendance of convective heat and mass boundary conditions(See Fig.1).

    The Cauchy stress tensor in an Eyring–Powell model[6]is governed by the relation:

    whereμandβ,care dynamic viscosity and material fluid constants of Eyring Powell fluid model.Considering

    the continuity,momentum,energy and concentration equations yield

    with the boundary conditions

    whereuandvdenote the velocity components in thexandydirections,respectively.ν=μ/ρ,ρ,τ,DB,C,T,Tf,T∞,Cf,andC∞are the kinematic viscosity,density,ratio of effective heat capacity of nanoparticles to the heat capacity of the fluid,Brownian motion coefficient,concentration of species, fluid temperature,the convective fluid temperature below the moving sheet,ambient temperature,concentration below the moving sheet and concentration far away from the sheet,respectively.k,cp,DT,hfandhcare the thermal conductivity,specific heat at constant pressure,thermophoretic diffusion coefficient,convective heat transfer coefficient and convective mass transfer coefficient respectively.Using the transformations

    Considering variable thermal conductivityk=ka(1+αθ(η))withα=(k?ka)/kaas defined in Ref.[32].The nonlinear radiative heat fluxqrvia Rosseland’s approximation is

    withσ?andk?are Stefan–Boltzmann constant and the mean absorption coefficient respectively.Equation(3)is identically satis fied while Eqs.(4)to(7)are reduced to

    whereλ,?andδ,θw,α,Rd,Pr,Nt,Rc,Le,Nb,γ1andγ2are constant parameter, fluid parameters,the temperature ratio parameter,thermal conductivity parameter,thermal radiation parameter,Prandtl number,thermo phores is parameter,Chemical reaction parameter,Lewis number,Brownian motion parameter,heat transfer and mass transfer Biot numbers respectively.The values of these parameters are given below:

    The caseλ=0 relates to the flow over an immobile surface because of free stream velocity.However,λ=1 points out the moving plate in the fluid.The flow of fluid and plate moving in the same direction is represented by the case 0<λ<1.Here,we consider the caseλ≤1.

    The skin friction coefficient Cf,local Nusselt numberNux,and Sherwood numberShxcan be written as:

    In non-dimensional forms Skin friction,local Nusselt and Sherwood numbers are

    withRex=Ux/νis the local Reynolds number.

    3 Homotopic Solutions

    Liao[36]suggested Homotopy Analysis method in 1992 for the construction of series solutions of differential equations with high nonlinearity.This method has advantages over the contemporary methods because of the following reasons:

    (i) This method is independent of selection of large or small parameters.

    (ii) Convergence of series solution in this method is guaranteed.

    (iii) Ample choice for the selection of base functions and linear operatos is available in this method.

    Initial guess estimates(f0,θ0,?0)required for series solutions in Homotopy analysis method are defined as:

    with auxiliary linear operators(Lf,Lθ,L?)given by

    with ensuing characteristics

    whereGi(i=1?7)are the arbitrary constants.

    3.1 Zeroth-Order Problem

    The problem at zeroth order is assembled as

    with nonlinear operators Nf,Nθ,and N?are given by

    Here,non-zero auxiliary parameters are ?f, ?θ,and ??,withpis an embedding parameter such thatp ?[0,1].Having valuesp=0 andp=1,we get

    If we changepfrom 0 to 1,the values of the functionsf(η,p),θ(η,p)and?(η,p)will fluctuate from initial guessesf0(η),θ0(η),?0(η)to the final solutionsf(η),θ(η),?(η)respectively.With the help of Taylor’s series,Eqs.(26)to(28)take the form

    The value of auxiliary parameters ?f,?θ,and ??are selected in such a manner that the series(29)–(31)converge atp=1,i.e.,

    3.2 m-th Order Deformation Problems

    Them-th order deformation problem is obtained by taking successive derivativesmtimes of Eqs.(19)to(22)w.r.t p,and division bym!and at the end usingp=0,we get

    The general solutions in the form of special solutions

    Here,constantsGi(i=1–7)through boundary conditions(38)are appended as

    The problems comprise of Eqs.(35)–(41)are solved by employing Mathematica software,assumingm=1,2,3,...

    4 Convergence Analysis

    Series solution requires convergence region.Auxiliary parameters ?f,?θ,and ??play a key role in achieving this goal.To find this region,Fig.2 is drawn to show ?-curves when?=0.4,δ=0.4,γ1=γ2=0.1,λ=0.4,Pr=1,Nt=0.8,Nb=0.2,Rd=0.4,Rc=0.3,θw=1.3,α=0.2,andLe=1.0.The endurable ranges of the auxiliary parameters ?f,?θand ??are ?1.4 ≤ ?f≤ ?0.3,?1.4≤ ?θ≤ ?0.3,and?1.4≤ ??≤ ?0.3 respectively.Table 1 shows the convergence of HAM solution.It is observed that 29thorder of approximation is good enough for convergent series solution.The values obtained in the Table are consistent with the tolerable ranges in the graph.

    Fig.2 ?-curves of f,θ,and ?.

    Table 1 Series solutions’convergence for varied order of approximations when ?=0.4,δ=0.4,λ =0.4,Nb=0.2,Le=1.0, γ1= γ2=0.1,Nt=0.8,Pr=1.0,Rd=0.4,Rc=0.3,θw=1.3,α =0.2,?f= ?0.7, ?θ= ?0.7,and ??= ?0.7.

    5 Results and Discussion

    This segment emphasis on the discussion of graphical illustrations of different emerging parameters on all dimensionless distributions.

    Fig.3 Impact of ? on f′(η)when λ =1.0.

    Fig.5 Impact of α on θ(η).

    Fig.7 Impact of γ2on ?(η).

    Fig.9 Impact of Nb on θ(η).

    Fig.4 Impact of ? on f′(η)when λ =0.4.

    Fig.6 Impact of γ1on θ(η).

    Fig.8 Impact of Pr on θ(η).

    Fig.10 Impact of Nt on θ(η).

    Figures 3 and 4 illustrate the impact of fluid parameter?on the velocity field for two separate values ofλ.It is clear from Fig.3 that velocity and momentum boundary layer thickness escalate with growing values of?,whenλ=1(Sakiadis flow).[32]However,the velocity decreases with increase in value of?forλ=0.4.The impact of variable thermal conductivity parameterαon temperature field is displayed in Fig.5.It is clear from the figure that temperature distribution shows increasing tendency when value ofαis increased.This is because of an accepted fact that liquids with higher thermal conductivity possesses higher temperature.The effects of Biot numbersγ1andγ2with(0<γ1,γ2<1),on temperature and concentration distributions have been portrayed in Figs.6 and 7.Here,it is observed that temperature increases rapidly forγ1=0.1,0.2 but a low increment is witnessed forγ1=0.3,0.4.It means that for smaller values of heat transfer Biot numbersγ1,temperature profile increases rapidly but for larger values ofγ1,the temperature pro file increases slowly.Similar behavior in case of mass transfer Biot numberγ2is witnessed in Fig.7.Figure 8 is drawn to illustrate the consequence of Prandtl numberPron temperature distribution.From the definition of Prandtl numberPr=μct/k=v/α,we see that for higher Prandtl number,thermal diffusivity must have a smaller value.So,a gradual upsurge in Prandtl number results in reduction in boundary layer thickness and temperature pro file.From Fig.9,it is obvious that an increase in Brownian motion parameterNb,enhances collision of particles and thus boosts the temperature pro file and its related boundary layer thickness.Effect of thermo phoresis parameterNton temperature field is shown in Fig.10.It is observed that an upsurge in values ofNtleads to an increase in the temperature pro file and its allied boundary layer thickness.

    Fig.11 Impact of Rd on θ(η).

    Fig.13 Impact of ? and δ on CfRe?1/2x .

    Fig.12 Impact of Rc on ?(η).

    Fig.14 Impact of Nb and Nt on NuxRe?1/2x .

    Fig.15 Impact of Le and Pr on ShxRe?1/2x .

    From Fig.11,it is evident that temperature pro file is growing function of non-linear thermal radiation parameterRd.Actually,increasing values ofRdboosts the thermal boundary thickness.This is due to the fact that increase in thermal radiation parameter results in decrease in mean absorption coefficient,which eventually upsurges the divergence of the radiative heat flux.That is why the fluid’s temperature increases due to increase in rate of radiative heat transfer.Figure 12 is portrayed to show the effects of chemical reaction parameterRcvarying from non-destructive(Rc<0)to destructive(Rc>0)on concentration distribution.The solute concentration diminishes because of destructive chemical reaction;this eventually decreases the solutal boundary layer thickness by a small amount and the negative wall slope of the concentration distribution.An opposing impact is observed in case of non-destructive chemical reaction.

    Figure 13 depicts the effects of fluid parametersδand?of Skin friction coefficient.Observations show that Skin friction coefficient escalates for higher values of?.However,opposite behavior is witnessed in case ofδ.The influence of thermophoresis parameterNtand Brownian motion parameterNbon Nusselt number is displayed in Fig.14.For growing values of bothNbandNt,decrease in Nusselt number is perceived.For growing values of Lewis numberLeand Prandtl numberPr,Sherwood number shows an increasing tendency.This effect is shown in Fig.15.

    Table 2 Comparison of values for ?θ′(0)with those of Hayat et al.[35]and Aziz[36]for different values γ1= γ2in absence of nano fluid and ?=0.

    Table 2 depicts the comparison of existing series solutions with Hayat et al.[35]and Aziz[36]in limiting case.An outstanding agreement is found amongst the three solutions.

    6 Final Remarks

    Effects of convective boundary conditions on time independent boundary layer Eyring Powell nano fluid flow past a constantly moving surface in attendance of free stream velocity is discussed.Effects of non linear thermal radiation,chemical reaction,and variable thermal conductivity are also taken into account.Series solution for the said problem is obtained using Homotopy Analysis method(HAM).The prominent outcomes of this problem are:

    ?Temperature field is declining function ofPr.

    ?Temperature distribution is growing function ofNbandNt.

    ?Chemical reaction parameterRcis a dwindling function of concentration pro file.

    ?Temperature distribution shows increasing tendency when values of thermal conductivity parameterαis increased.

    ?Temperature distribution is growing function ofRd.

    ?Values of Sherwood number are increased when the values ofLeandPrare larger.

    Competing Interests:

    The authors declare no competing interests.

    References

    [1]M.Ramzan and M.Bilal,Journal of Molecular Liquids 215(2016)212.

    [2]T.Hayat,M.Awais,and S.Asghar,Journal of the Egyptian Mathematical Society 21(2013)379.

    [3]M.Ramzan,M.Bilal,U.Farooq,and J.D.Chung,Results in Physics 6(2016)796.

    [4]M.Ramzan,M.Farooq,A.Alsaedi,and T.Hayat,The European Physical Journal Plus 128(2013)49.

    [5]M.Ramzan,M.Bilal,and J.D.Chung,Journal of Molecular Liquids 223(2016)1284.

    [6]R.E.Powell,and H.Eyring,Nature(London)154(1944)427.

    [7]N.S.Akbar,A.Ebaid,and Z.H.Khan,Journal of Magnetism and Magnetic Materials 382(2015)355.

    [8]T.Hayat,M.Waqas,S.A.Shehzad,and A.Alsaedi,Journal of Aerospace Engineering 10.1061/(ASCE)AS.1943-5525.0000674(2016)04016077.

    [9]M.Patel and M.G.Timol,Applied Numerical Mathematics 59(2009)2584.

    [10]S.U.S.Choi,Enhancing Thermal Conductivity of Fluids with Nanoparticles,Developments and Applications ofNon-Newtonian,American Society of Mechanical Engineers,New York(1995)99.

    [11]S.Nadeem and S.Saleem,Indian Journal of Pure&Applied Physics 52(2014)725.

    [12]W.A.Khan,M.Khan,and R.Malik,PLoS ONE 9(2014)e105107.

    [13]J.A.Khan,M.Mustafa,T.Hayat,and A.Alsaedi,International Journal of Heat and Mass Transfer 86(2015)158.

    [14]B.Jalilpour,S.Jafarmadar,D.D.Ganji,A.B.Shotorban,and H.Taghavifar,Journal of Molecular Liquids 95(2014)194.

    [15]M.Ramzan,M.Bilal,J.D.Chung,and U.Farooq,Results in Physics 6(2016)1072.

    [16]M.Ramzan,F.Yousaf,M.Farooq,and J.D.Chung,Commun.Theor.Phys.66(2016)133.

    [17]U.Khan,N.Ahmed,S.T.Mohyud-Din,and B.B.Mohsin,Neural Computing and Applications(2016)1;DOI 10.1007/s00521-016-2187-x.

    [18]M.Sheikholeslami,M.M.Rashidi,T.Hayat,and D.D.Ganji,Journal of Molecular Liquids 218(2016)393.

    [19]J.A.Khan, M.Mustafa, T.Hayat, and Alsaedi,Neural Computing and Applications(2016)1;DOI:10.1007/s00521-016-2743-4.

    [20]T.Hayat,T.Muhammad,A.Alsaedi,and B.Ahmad,Results in Physics 6(2016)897.

    [21]W.Ibrahim,The Effect of Induced Magnetic Field and Convective Boundary Condition on MHD Stagnation Point Flow and Heat Transfer of Nano fluid Over a Stretching Sheet,Nanotechnology,IEEE Transactions on,14(2015)178.

    [22]G.Ib′a?nez,International Journal of Heat and Mass Transfer 80(2015)274.

    [23]M.Mustafa,J.A.Khan,T.Hayat,and A.Alsaedi,AIP Advances 5(2015)e027106.

    [24]Q.Hussain,S.Asghar,T.Hayat,and A.Alsaedi,Journal of Central South University 22(2015)392.

    [25]T.Hussain,S.A.Shehzad,A.Alsaedi,T.Hayat,and M.Ramzan,Journal of Central South University 22(2015)1132.

    [26]M.B.Ashraf,T.Hayat,S.A.Shehzad,and A.Alsaedi,AIP Advances 5(2015)027134.

    [27]M.Ramzan,M.Farooq,T.Hayat,and J.D.Chung,Journal of Molecular Liquids 221(2016)394.

    [28]M.Ramzan M,Farooq M,S.Alhothuali,H.M.Malaikah,W.Cui,and T.Hayat,International Journal of Numerical Methods for Heat&Fluid Flow 25(2015)68.

    [29]S.A.Shehzad,T.Hussain,T.Hayat,M.Ramzan,and A.Alsaedi,Journal of Central South University 22(2015)360.

    [30]M.Ramzan,M.Farooq,T.Hayat,A.Alsaedi,and J.Cao,Journal of Central South University 22(2015)707.

    [31]M.Ramzan,PLoS ONE 10(2015)e0124699.

    [32]H.Zargartalebi,M.Ghalambaz,A.Noghrehabadi,and A.Chamkha,Advanced Powder Technology 26(2015)819.

    [33]S.J.Liao,Beyond Perturbation,Chapman&Hall/CRC Press,Boca,Raton(2003).

    [34]B.C.Sakiadis,AIChE J.7(1961)221.

    [35]T.Hayat,Z.Iqbal,M.Qasim,and S.Obaidat,International Journal of Heat and Mass Transfer 55(2012)181.

    [36]A.Aziz,Commun.Nonlinear Science and Numerical Simulation 14(2009)1064.

    色视频在线一区二区三区| videosex国产| 国产亚洲欧美在线一区二区| 桃红色精品国产亚洲av| 免费看十八禁软件| www.精华液| 性少妇av在线| 狂野欧美激情性xxxx| 色综合欧美亚洲国产小说| 欧美一级毛片孕妇| 久久综合国产亚洲精品| 在线观看www视频免费| 国产主播在线观看一区二区| av超薄肉色丝袜交足视频| a在线观看视频网站| 久久这里只有精品19| 色精品久久人妻99蜜桃| 欧美日韩国产mv在线观看视频| 精品免费久久久久久久清纯 | 久久精品成人免费网站| 另类亚洲欧美激情| 国产不卡av网站在线观看| av欧美777| 午夜影院在线不卡| a级片在线免费高清观看视频| 日韩,欧美,国产一区二区三区| 18禁国产床啪视频网站| 日韩欧美国产一区二区入口| 少妇 在线观看| 欧美日韩av久久| 黄色a级毛片大全视频| 久久ye,这里只有精品| 亚洲精品乱久久久久久| 日本一区二区免费在线视频| 国产成人免费无遮挡视频| 天堂俺去俺来也www色官网| 亚洲少妇的诱惑av| 久久人妻福利社区极品人妻图片| 男人操女人黄网站| 啦啦啦中文免费视频观看日本| 久久久久网色| 少妇精品久久久久久久| 色94色欧美一区二区| 国产熟女午夜一区二区三区| 亚洲精品久久午夜乱码| 男人舔女人的私密视频| 欧美日韩亚洲综合一区二区三区_| 午夜老司机福利片| 丝袜美足系列| tube8黄色片| 久久中文字幕一级| 亚洲国产欧美在线一区| 国产亚洲精品一区二区www | 久久精品亚洲熟妇少妇任你| 大片免费播放器 马上看| 丝袜在线中文字幕| 91精品三级在线观看| 久久性视频一级片| 午夜免费鲁丝| 少妇粗大呻吟视频| av有码第一页| 精品国产一区二区久久| 久久国产亚洲av麻豆专区| 久久久久久人人人人人| 国产有黄有色有爽视频| 操美女的视频在线观看| 男人爽女人下面视频在线观看| 午夜影院在线不卡| 丝袜人妻中文字幕| 久久人人爽av亚洲精品天堂| 18禁观看日本| 亚洲成av片中文字幕在线观看| 在线永久观看黄色视频| 香蕉丝袜av| 免费女性裸体啪啪无遮挡网站| 99久久国产精品久久久| 亚洲av片天天在线观看| 欧美97在线视频| 男女免费视频国产| 久久ye,这里只有精品| 国产精品国产三级国产专区5o| 国产91精品成人一区二区三区 | 美女扒开内裤让男人捅视频| av免费在线观看网站| 另类亚洲欧美激情| 国产欧美日韩综合在线一区二区| 人妻人人澡人人爽人人| 国产淫语在线视频| 国产色视频综合| 人人妻人人添人人爽欧美一区卜| 女人被躁到高潮嗷嗷叫费观| 日韩视频一区二区在线观看| 法律面前人人平等表现在哪些方面 | 国产无遮挡羞羞视频在线观看| 午夜福利乱码中文字幕| 日韩大码丰满熟妇| 亚洲 欧美一区二区三区| 亚洲精品中文字幕在线视频| 90打野战视频偷拍视频| 亚洲第一欧美日韩一区二区三区 | 咕卡用的链子| 好男人电影高清在线观看| 亚洲精品粉嫩美女一区| 99久久精品国产亚洲精品| 久久久久久久久免费视频了| www.自偷自拍.com| 黄频高清免费视频| 欧美国产精品一级二级三级| 在线十欧美十亚洲十日本专区| av欧美777| 亚洲av国产av综合av卡| 欧美久久黑人一区二区| 91字幕亚洲| 99精国产麻豆久久婷婷| 2018国产大陆天天弄谢| 国产亚洲av高清不卡| 高清视频免费观看一区二区| 久久香蕉激情| 久久青草综合色| 欧美 日韩 精品 国产| 99国产精品免费福利视频| 国产av又大| 午夜免费鲁丝| 99国产极品粉嫩在线观看| 久久国产精品大桥未久av| 欧美黄色淫秽网站| 一二三四在线观看免费中文在| 欧美97在线视频| 男女之事视频高清在线观看| 国产高清videossex| 蜜桃国产av成人99| 狠狠婷婷综合久久久久久88av| 99热网站在线观看| 天天躁日日躁夜夜躁夜夜| av天堂在线播放| 免费观看人在逋| 在线av久久热| 两性午夜刺激爽爽歪歪视频在线观看 | 国产又色又爽无遮挡免| 国产一区二区三区av在线| 久久99热这里只频精品6学生| 久久久精品区二区三区| 国产精品.久久久| 国产成人一区二区三区免费视频网站| 国产免费一区二区三区四区乱码| 人人妻,人人澡人人爽秒播| 美女高潮到喷水免费观看| 成年人黄色毛片网站| 免费av中文字幕在线| 中文字幕精品免费在线观看视频| 美女中出高潮动态图| 永久免费av网站大全| 婷婷丁香在线五月| 亚洲欧美精品综合一区二区三区| 欧美午夜高清在线| 国产一区二区三区av在线| 一级毛片电影观看| 久久国产亚洲av麻豆专区| netflix在线观看网站| 一区二区三区激情视频| 97在线人人人人妻| 日本欧美视频一区| 亚洲成人国产一区在线观看| 日韩熟女老妇一区二区性免费视频| 欧美在线一区亚洲| 少妇人妻久久综合中文| 久久人人爽av亚洲精品天堂| 老司机影院成人| 午夜视频精品福利| 国产精品久久久av美女十八| 91精品三级在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一码二码三码区别大吗| 伊人亚洲综合成人网| 国产国语露脸激情在线看| 中文精品一卡2卡3卡4更新| 欧美中文综合在线视频| 淫妇啪啪啪对白视频 | 超碰97精品在线观看| 女人高潮潮喷娇喘18禁视频| 国产又爽黄色视频| 精品人妻熟女毛片av久久网站| 电影成人av| 桃红色精品国产亚洲av| 18禁裸乳无遮挡动漫免费视频| 亚洲欧洲精品一区二区精品久久久| 国产精品亚洲av一区麻豆| 久久久久视频综合| 日韩大码丰满熟妇| 这个男人来自地球电影免费观看| 一本—道久久a久久精品蜜桃钙片| 国产99久久九九免费精品| 下体分泌物呈黄色| 久久人人爽人人片av| 91成人精品电影| 欧美日韩中文字幕国产精品一区二区三区 | 欧美在线一区亚洲| 久久精品久久久久久噜噜老黄| www.精华液| 两性午夜刺激爽爽歪歪视频在线观看 | 永久免费av网站大全| 亚洲欧美成人综合另类久久久| 少妇猛男粗大的猛烈进出视频| 亚洲全国av大片| 美女脱内裤让男人舔精品视频| 亚洲精品自拍成人| 久久久久国内视频| 丝袜人妻中文字幕| 免费在线观看黄色视频的| 麻豆av在线久日| 国产黄色免费在线视频| 亚洲精品国产色婷婷电影| 老司机深夜福利视频在线观看 | 久久免费观看电影| 丝袜美足系列| 亚洲成人国产一区在线观看| 亚洲免费av在线视频| 97人妻天天添夜夜摸| 亚洲精品粉嫩美女一区| 欧美国产精品一级二级三级| 天天躁狠狠躁夜夜躁狠狠躁| 日韩有码中文字幕| 亚洲精品成人av观看孕妇| 国产一区二区三区在线臀色熟女 | 啦啦啦 在线观看视频| 亚洲国产av新网站| 国产高清国产精品国产三级| 国产三级黄色录像| 久久99一区二区三区| 精品一区二区三区四区五区乱码| 淫妇啪啪啪对白视频 | 三上悠亚av全集在线观看| 亚洲中文av在线| 久久久国产成人免费| 亚洲精品国产色婷婷电影| 国产免费一区二区三区四区乱码| 欧美+亚洲+日韩+国产| 国产精品久久久人人做人人爽| 老司机影院毛片| 最近最新中文字幕大全免费视频| 免费高清在线观看视频在线观看| 亚洲伊人久久精品综合| svipshipincom国产片| 男女国产视频网站| 亚洲欧洲精品一区二区精品久久久| 久久99热这里只频精品6学生| xxxhd国产人妻xxx| 岛国在线观看网站| 少妇精品久久久久久久| 国产成人精品在线电影| 中文欧美无线码| 国产亚洲精品一区二区www | 18禁国产床啪视频网站| 中文精品一卡2卡3卡4更新| 午夜视频精品福利| 亚洲五月婷婷丁香| 国产精品99久久99久久久不卡| 成人免费观看视频高清| 黄色怎么调成土黄色| 亚洲国产看品久久| av片东京热男人的天堂| 韩国精品一区二区三区| 午夜精品久久久久久毛片777| 老司机影院成人| 亚洲av电影在线进入| 成人18禁高潮啪啪吃奶动态图| 一个人免费看片子| 菩萨蛮人人尽说江南好唐韦庄| 亚洲熟女毛片儿| 国产福利在线免费观看视频| 女人爽到高潮嗷嗷叫在线视频| 在线精品无人区一区二区三| 欧美久久黑人一区二区| 1024香蕉在线观看| 欧美精品av麻豆av| 人妻 亚洲 视频| 一本—道久久a久久精品蜜桃钙片| 在线亚洲精品国产二区图片欧美| 日本av免费视频播放| 欧美激情久久久久久爽电影 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品国产区一区二| 久久九九热精品免费| 九色亚洲精品在线播放| 国产成人精品久久二区二区91| 男男h啪啪无遮挡| 美女高潮喷水抽搐中文字幕| www.熟女人妻精品国产| 午夜福利一区二区在线看| 首页视频小说图片口味搜索| 新久久久久国产一级毛片| 精品熟女少妇八av免费久了| 美女视频免费永久观看网站| 亚洲熟女精品中文字幕| 国产精品久久久久久精品古装| 亚洲精华国产精华精| 两性午夜刺激爽爽歪歪视频在线观看 | 夫妻午夜视频| 久久精品熟女亚洲av麻豆精品| 国产成人免费观看mmmm| 国产高清视频在线播放一区 | 国产老妇伦熟女老妇高清| 99国产精品99久久久久| 男女国产视频网站| 国产一区二区 视频在线| 丰满少妇做爰视频| 亚洲avbb在线观看| 99精品欧美一区二区三区四区| 久久av网站| 久久国产精品男人的天堂亚洲| 久久久欧美国产精品| 国产亚洲欧美在线一区二区| 美女大奶头黄色视频| 久久九九热精品免费| 国产一区二区三区在线臀色熟女 | 国产精品国产三级国产专区5o| 国产精品久久久av美女十八| 久久狼人影院| 宅男免费午夜| 亚洲人成电影观看| 18禁裸乳无遮挡动漫免费视频| 国产成人免费无遮挡视频| 成人国产一区最新在线观看| 日本a在线网址| 丝袜美足系列| 亚洲,欧美精品.| 多毛熟女@视频| 欧美日韩亚洲高清精品| 久久性视频一级片| 国产精品一二三区在线看| 电影成人av| 91精品伊人久久大香线蕉| 日本精品一区二区三区蜜桃| 亚洲国产中文字幕在线视频| 好男人电影高清在线观看| 69精品国产乱码久久久| 高清欧美精品videossex| 国产在线视频一区二区| 久久青草综合色| 青春草视频在线免费观看| 欧美亚洲 丝袜 人妻 在线| a 毛片基地| 久久女婷五月综合色啪小说| 免费av中文字幕在线| 久久精品熟女亚洲av麻豆精品| 日韩有码中文字幕| 啦啦啦啦在线视频资源| 精品免费久久久久久久清纯 | 久久久国产成人免费| 午夜激情av网站| 国产精品自产拍在线观看55亚洲 | 国产欧美日韩精品亚洲av| 各种免费的搞黄视频| 国产日韩欧美亚洲二区| 亚洲熟女精品中文字幕| 久久人人爽人人片av| a级毛片在线看网站| 搡老熟女国产l中国老女人| 人人妻人人爽人人添夜夜欢视频| 一级毛片电影观看| 欧美精品亚洲一区二区| 91老司机精品| 成人影院久久| 两性午夜刺激爽爽歪歪视频在线观看 | 国产激情久久老熟女| 自线自在国产av| 又大又爽又粗| 亚洲欧美激情在线| 午夜福利在线观看吧| 成年人午夜在线观看视频| 大香蕉久久网| 久久热在线av| 一区二区日韩欧美中文字幕| 男女高潮啪啪啪动态图| 日韩 欧美 亚洲 中文字幕| 日本wwww免费看| 亚洲 国产 在线| 欧美日韩成人在线一区二区| 欧美激情久久久久久爽电影 | 午夜免费鲁丝| 另类精品久久| 在线精品无人区一区二区三| cao死你这个sao货| 色综合欧美亚洲国产小说| 丰满少妇做爰视频| 一级a爱视频在线免费观看| 亚洲中文字幕日韩| 久久天堂一区二区三区四区| 色精品久久人妻99蜜桃| 青春草亚洲视频在线观看| 少妇精品久久久久久久| 精品久久蜜臀av无| 亚洲伊人色综图| 制服诱惑二区| 每晚都被弄得嗷嗷叫到高潮| 日韩大码丰满熟妇| 午夜激情av网站| 久久久久国内视频| 欧美日韩av久久| 性高湖久久久久久久久免费观看| 国产成人免费无遮挡视频| 亚洲国产精品999| 色综合欧美亚洲国产小说| av欧美777| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产av蜜桃| 午夜精品久久久久久毛片777| 亚洲熟女毛片儿| 天天操日日干夜夜撸| 丝袜脚勾引网站| 亚洲精品中文字幕一二三四区 | 麻豆乱淫一区二区| 亚洲欧美精品自产自拍| a级毛片黄视频| 少妇裸体淫交视频免费看高清 | 欧美日韩av久久| 国产有黄有色有爽视频| 在线 av 中文字幕| 在线看a的网站| www日本在线高清视频| 亚洲性夜色夜夜综合| 女人爽到高潮嗷嗷叫在线视频| 黄色视频不卡| 久久久久久久精品精品| 亚洲人成77777在线视频| 国产99久久九九免费精品| 一个人免费在线观看的高清视频 | 美女视频免费永久观看网站| bbb黄色大片| 国产亚洲一区二区精品| 免费看十八禁软件| 老汉色∧v一级毛片| 亚洲五月婷婷丁香| 亚洲熟女毛片儿| 99精品久久久久人妻精品| 国产精品国产三级国产专区5o| 伊人亚洲综合成人网| 一区二区三区激情视频| 国产黄色免费在线视频| 亚洲专区国产一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美亚洲日本最大视频资源| 久久久久久久久免费视频了| 亚洲国产日韩一区二区| 中文字幕av电影在线播放| 午夜福利在线免费观看网站| 一级毛片精品| 久久久水蜜桃国产精品网| 国产免费一区二区三区四区乱码| 啦啦啦 在线观看视频| netflix在线观看网站| 国产精品.久久久| 日日爽夜夜爽网站| 国内毛片毛片毛片毛片毛片| 美国免费a级毛片| 黑丝袜美女国产一区| 免费日韩欧美在线观看| 狠狠婷婷综合久久久久久88av| 不卡av一区二区三区| 国产亚洲精品久久久久5区| av电影中文网址| 一级片免费观看大全| 9热在线视频观看99| 欧美日韩视频精品一区| 亚洲欧美日韩另类电影网站| 欧美亚洲 丝袜 人妻 在线| 午夜精品国产一区二区电影| 69精品国产乱码久久久| 久热爱精品视频在线9| 大香蕉久久成人网| 国产精品国产三级国产专区5o| 国产极品粉嫩免费观看在线| 亚洲国产欧美日韩在线播放| 免费在线观看黄色视频的| 亚洲精品国产av蜜桃| 麻豆国产av国片精品| 精品国产超薄肉色丝袜足j| 亚洲av日韩在线播放| 岛国在线观看网站| 香蕉国产在线看| 伊人久久大香线蕉亚洲五| 在线观看免费午夜福利视频| 少妇粗大呻吟视频| 91麻豆av在线| 免费少妇av软件| 亚洲第一欧美日韩一区二区三区 | 老汉色∧v一级毛片| 日本撒尿小便嘘嘘汇集6| 久久久久久久国产电影| 日本一区二区免费在线视频| 国产真人三级小视频在线观看| 最新在线观看一区二区三区| 精品视频人人做人人爽| 正在播放国产对白刺激| 中文字幕人妻丝袜一区二区| 亚洲国产欧美网| 91成年电影在线观看| 国产av国产精品国产| 亚洲精品中文字幕一二三四区 | 亚洲国产欧美日韩在线播放| 国产av又大| 日本91视频免费播放| 夜夜夜夜夜久久久久| 人妻 亚洲 视频| www.熟女人妻精品国产| 宅男免费午夜| 人妻人人澡人人爽人人| 亚洲av日韩在线播放| 欧美亚洲日本最大视频资源| 国产欧美日韩综合在线一区二区| 成年动漫av网址| 男女国产视频网站| 人妻一区二区av| 国产在视频线精品| 中文字幕人妻丝袜制服| 国产视频一区二区在线看| 免费高清在线观看视频在线观看| 黄网站色视频无遮挡免费观看| 99热网站在线观看| 国产又爽黄色视频| 久久99热这里只频精品6学生| 日本黄色日本黄色录像| 精品第一国产精品| 男女床上黄色一级片免费看| 2018国产大陆天天弄谢| 大香蕉久久网| 日韩免费高清中文字幕av| 久久久久国内视频| 亚洲熟女毛片儿| 亚洲av欧美aⅴ国产| 亚洲国产欧美日韩在线播放| 久久精品久久久久久噜噜老黄| 久久精品熟女亚洲av麻豆精品| 亚洲欧洲日产国产| 亚洲av美国av| 免费在线观看视频国产中文字幕亚洲 | 日本wwww免费看| 国产精品影院久久| 久久影院123| 亚洲国产日韩一区二区| 9热在线视频观看99| 欧美亚洲 丝袜 人妻 在线| 欧美+亚洲+日韩+国产| 性少妇av在线| 精品国产一区二区三区四区第35| 久久青草综合色| 老司机影院毛片| 男人爽女人下面视频在线观看| 亚洲精华国产精华精| 国产视频一区二区在线看| 夜夜夜夜夜久久久久| 亚洲国产看品久久| 国产97色在线日韩免费| www.999成人在线观看| 亚洲av成人一区二区三| 中国美女看黄片| 国产精品国产三级国产专区5o| 十八禁人妻一区二区| 国产亚洲精品第一综合不卡| 婷婷丁香在线五月| 精品一区二区三卡| 午夜久久久在线观看| 国产一卡二卡三卡精品| 丁香六月欧美| 亚洲av电影在线进入| 黑人操中国人逼视频| 久久精品成人免费网站| 老汉色∧v一级毛片| 18禁黄网站禁片午夜丰满| 日韩欧美一区视频在线观看| 91大片在线观看| 中文字幕人妻丝袜制服| 亚洲五月色婷婷综合| 久久性视频一级片| 亚洲国产看品久久| 9色porny在线观看| 亚洲精品国产精品久久久不卡| 精品国内亚洲2022精品成人 | 热re99久久国产66热| 欧美激情高清一区二区三区| 亚洲国产欧美日韩在线播放| 首页视频小说图片口味搜索| 欧美黑人欧美精品刺激| 亚洲av片天天在线观看| 国产伦人伦偷精品视频| 狠狠精品人妻久久久久久综合| 亚洲av男天堂| 日本黄色日本黄色录像| 丰满少妇做爰视频| 国产熟女午夜一区二区三区| 日韩精品免费视频一区二区三区| 中国国产av一级| 国产精品.久久久| 黄色a级毛片大全视频| 自线自在国产av| 日韩视频在线欧美| 午夜老司机福利片| 国产亚洲av高清不卡| 男女下面插进去视频免费观看| 老司机影院成人| 一区二区三区精品91| 动漫黄色视频在线观看| cao死你这个sao货| 国产精品一区二区在线不卡| 十八禁网站网址无遮挡| 黄色a级毛片大全视频| 捣出白浆h1v1| 久久久久久久精品精品| 1024香蕉在线观看| √禁漫天堂资源中文www| 日本91视频免费播放| 久久久精品国产亚洲av高清涩受| 99热全是精品| 精品熟女少妇八av免费久了| 国产野战对白在线观看|