• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Quantum Watermarking Based on Quantum Wavelet Transforms?

    2017-05-12 08:53:18ShahrokhHeidariMosayebNaseriRezaGheibiMasoudBaghfalakiMohammadRasoulPourarianandAhmedFarouk
    Communications in Theoretical Physics 2017年6期

    Shahrokh Heidari,Mosayeb Naseri,Reza Gheibi,Masoud Baghfalaki,Mohammad Rasoul Pourarian, and Ahmed Farouk

    1Young Researchers and Elite Club,Kermanshah Branch,Islamic Azad University,Kermanshah,Iran

    2Department of Physics,Kermanshah Branch,Islamic Azad University,Kermanshah,Iran

    3Department of Computer,Technical and Engineering College,Kermanshah Branch,Islamic Azad University,Kermanshah,Iran

    4Department of Mathematics,Kermanshah Branch,Islamic Azad University,Kermanshah,Iran

    5Computer Science Department,Faculty of Computers and Information,Mansoura University,Mansoura,Egypt

    6University of Science and Technology at Zewail City,Giza 12588,Egypt

    1 Introduction

    Since the introduction of the first quantum key distribution protocol,[1]many researchers have contributed to treat the representation and processing of classical media quantum mechanically.[2?23]

    Quantum information hiding including digital watermarking and steganography are efficient tools in secure digital information transmission and processing.

    In 2010,Qu et al.[24]proposed a quantum steganography protocol using the entanglement swapping of Bell states,in which the secret messages are transmitted in a hidden channel.Later,Shaw et al.proposed two types of quantum steganography protocols with noisy quantum channels.[25]In the first protocol the secure quantum information was locally stored in the codeword.In the later protocols the hidden information was embedded in the space of error syndromes.In 2012,using entanglement swapping a secure quantum watermarking scheme was proposed by Fatahi,and Naseri.[26]Afterwards,a quantum method for images watermarking based on the flexible representation for quantum images(FRQI)was proposed in in 2013.[27]Very recently we proposed a novel LSB-based quantum watermarking protocol,where the NEQR method of quantum images representation is employed to represent the quantum images.[28]

    In 2013,using the flexible representation of quantum image,[29]a quantum watermarking scheme based on quantum wavelet transform(QWT)was proposed by Song et al.,[30]where,to control the embedding strength a dynamic vector was used.In this scheme,the wavelet coefficients are extracted by executing QWT on quantum image.However,Yang et al.in 2014 analyzed the protocol and showed that the protocol proposed by Song et al.is not as applicable as the authors claimed.[31]Then they presented a simple improvement on the original protocol of dynamic watermarking scheme based on quantum wavelet transform.

    Needles to say that there are two key properties that are required of a quantum data hiding scheme for an application,the invisibility and the robustness.However,to watermark,where the main purpose is copyright protection,the resistance against attacks,robustness is more important than the invisibility characteristics of the scheme.Unfortunately,in most of the proposed quantum watermarking schemes the authors only analyze the invisibility of their protocol.

    In this contribution,a new quantum wavelet transforms based watermarking is proposed.By simulation analysis not only the invisibility but also the robustness of the proposed scheme is confirmed.The paper is organized as follows:

    The next section presents a general preliminaries,which are used in the scheme.The quantum wavelet transform watermarking protocol is presented in Sec.3.The software simulation of the protocol and analysis are given in the fourth section.Finally,short conclusions are drawn in the last section.

    2 Preliminaries

    2.1 A Novel Enhanced Quantum Representation of Digital Images

    A novel enhanced quantum representation of digital images(NEQR)was introduced by Zhang et al.in 2013.[32]Based on NEQR scheme,a 2n×2nsize quantum image is given as follows:

    where|ci〉and|i〉indicate the color and the corresponding positions,respectively.And,|i〉includes two parts:the vertical and the horizontal part.

    The firstn-qubit |yn?1〉,|yn?2〉,...,|y0〉 are encoded along the vertical location and the secondn-qubit|xn?1〉,|xn?2〉,...,|x0〉are encoded along the horizontal axis.Therefore,the NEQR model needsq+2nqubits to represent a 2n×2nsize gray scale image with gray range 2q.

    Figure 1 illustrates a 2×2 image and its NEQR representation,where 8 qubits are employed to represent the color information of gray scale range of possible values from 0 to 255.

    Fig.1 A simple image example and it’s NEQR representation.

    2.2 Quantum Plain Adder and Subtracter

    A quantum circuit for plain adding includes of quantum logic gates with time synchronized computational steps,[33]where the digital binaries are encoded in the quantum basis which are often called quantum registers.The addition of two quantum registers|a〉and|b〉is written as|a,b〉→ |a,a+b〉.The operation of the quantum plain adder is illustrated in Fig.2.

    Fig.2 Quantum plain adder and subtracter.

    By reversing the quantum plain adder circuit,the quantum circuit for subtracting is resulted.The output of quantum subtracter with the input(a,b)is(a,a?b)whena>b.Whena<b,the output is(a,2n+1?(b?a)),wheren+1 indicates the size of the second register.[33]

    2.3 Quantum Xoring

    A circuit for quantum Xoring of two qubits is illustrated in Fig.3,where,the symbols“?”,“?”,and “⊕”,represent zero control,one control and NOT operations,respectively.Needles to say that|a〉,|b〉are the input qubit and|c〉is the output of the corresponding state.The operation of this circuit is shown in Table 1.

    Fig.3 Two qubit Xoring circuit,the symbols“?”,“?”,and“⊕”,represent zero control,one control,and NOT operations,respectively.

    Table 1 Procedure for the Xing.

    2.4 Quantum Wavelet Transform

    Fourier transform is a useful and powerful tool in many area of science.However,there is another kind of unitary transforms,the wavelet transforms,which are as useful as the Fourier transform and can be used to expose the multi-scale structure of a signal and very useful for image processing and data compression.

    To analyze continuous waves,a mathematical representation is used.Therefore it is needed to transform continuous waves into a digital signal and analyze it.There are three kind of transformation,Fourier transform,short time Fourier transform,and wavelets transform.

    In definition,a wavelet is a small wave that start and stop.The energy of a wavelet which is concentrated in time is used to analyze transient,non-stationary,or timevarying phenomena.

    Two class of useful wavelets in signal processing are Haar and Daubechies wavelets. Quantum Haar and Daubechies wavelets circuits are proposed in Ref.[34],The whole quantum circuit of Daubechies fourth-order wavelet kernel is illustrated in Fig.4,where a complete gate-level implementation ofis presented.[35]

    Fig.4 Quantum circuit of Daubechies fourth-order wavelet kernel.[35]

    3 Quantum Wavelet Transform Watermarking

    In this section,our method for quantum watermarking based on QWT is presented,in which a 2n×2nsized binary image is embedded 2n×2nsized gray scale image.The proposed scheme includes three steps,scrambling,embedding,and extracting.

    3.1 Quantum Scrambling

    The scrambling methods are considered as preprocessing tasks in most of the image processing algorithms,where an image is transformed into another disordered one.In the proposed watermarking scheme,to increase the security of the proposed methods,a simple scrambling method is employed.[28]

    Consider a binary 2n×2nsized watermark image.Using the NEQR representation,the watermark image is:

    where,|wi〉is color information in position|i〉.

    For the aim of scrambling,two 2n-bit keysM=M(1),M(2),...,M(2n)andN=N(1),N(2),...,N(2n)are generated randomly by the copyright owner.

    The scrambling task is accomplished as follows:

    ?IfM(i)⊕N(j)=1 then:

    TheIoperation is applied to the color value at position(i,j)of the watermark image.

    ?Otherwise,

    TheXoperation is applied to the color value at position(i,j)of watermark image,

    where,

    To sum up,prior to embedding process watermark image|W〉is scrambled to|W′〉.The quantum scrambling circuit is shown in Fig.5.

    Fig.5 Quantum circuit for scrambling.[28]

    3.2 Embedding Procedure

    Consider a 2n×2nsized gray scale carrier image.Using NEQR model the carrier image is represented as:

    For embedding purpose, the LSB XORing technique[36]and Quantum Wavelet Transform on carrier image are employed.The outline of the proposed embedding method is given in Fig.6,where,the procedure can be done as follows:

    Step 1At first,an empty binary imageTis defined.This image is used in the process of valuation of the QWT of carrier image.

    Step 2Using the quantum Xoring circuit in Fig.3,the Xoring circuit is applied to the two LSBs qubits of carrier image(|〉and〉),i.e.,here,an XOR operation is applied on the first two LSBs and then,according to the result of XOR operation and the message bit to be embedded,the binary imageTis modified or kept unchanged.The procedure is represented in Table 2.

    Table 2 Procedure for the LSB XORing technique.

    Fig.6 Outline of embedding procedure.

    As shown in Table 2,

    When the value ofti(ti=0)has to be set to 1,the following unitary transformation is applied to the empty image|T〉;

    where

    It is worth pointing out that the above unitary transform is a CNOT gate and it is required to initialize the empty image|T〉;

    by considering on Table 2 one can find that:

    then;

    Also when the value ofti(ti=0)is not to be changed,the following unitary transform is used:

    By applying the operationthe scrambled watermark image|w′〉is copied to the initially empty image|T〉.

    Step 3Quantum Wavelet Transform on carrier image|C〉is defined as follows;

    In this step,the embedder embeds the scrambled quantum watermark image|W′〉into the wavelet coefficient|WC〉:

    where,(0<φ<1)is determined by the embedder and it will be not changed during the process of embedding and extracting.A quantum circuit for embedding procedure is shown in Fig.7.

    3.3 Extracting Procedure

    To extract the watermark image from embedded image,the original carrier image,its quantum wavelet transform,the proportionφand the scrambling key sequences for In-scrambling procedure are needed.The procedure is as follows:

    Step 1In the first step,the scrambled watermark image is extracted from the embedded image.For the aim of extracting,a QWT is applied on both original carrier image|C〉and watermarked image|Wout〉as below:

    To extract watermark image,a unitary transformationχiis defined as follows:

    Afterwards,by applying the unitary transform(χi)to the empty binary imageWex,the extracted watermark bits are embedded onWex.The procedure is as follows:

    Fig.7 Quantum circuit of embedding procedure.

    Considering on Table.2,one can find that:

    then

    By applying the operationto the image|Wex〉,the scrambled watermark image is extracted.

    Step 3As soon as the first step is completed,the scrambled watermark image is extracted.Therefore,to obtain the original watermark image,an inverse scrambling(Inscrambling)procedure has to be applied to the extracted image.It is clear that using keysMandNintroduced in Sec.3,by applying the circuit illustrated in Fig.5 in reverse order,the copyright owner can simply achieve his watermark copyright image.

    The details of the extracting procedure are shown in Table 3,and the outline of the extracting procedure is as shown in Fig.8.

    Table 3 Procedure for extracting.

    Fig.8 Outline of extracting procedure.

    4 Simulation and Analysis

    There are two key properties to be analyzed here,invisibility and robustness.Since the present state-of-theart quantum hardware currently cannot go beyond proof of principle outcomes,to analyze these two properties,using a computer with Intel(R)Core(TM)i7-4500u CPU 2.40 GHz,8.00 GB Ram equipped with the MATLAB R2015a environment,the proposed scheme is simulated.The carrier images and the watermark images employed in the simulations are given in Fig.9.

    4.1 Invisibility

    Invisibility represents the similarity between the original covers and the watermarked image.To analyze the invisibility of the proposed scheme two analyze methods are:taken into account the peak-signal-to-noise ratio(PSNR)analysis and the histogram analysis.

    (i)The peak-signal-to-noise ratio(PSNR)

    To compare the fidelity of a watermarked image with its original version,the peak-signal-to-noise ratio(PSNR)is often used.The PSNR is defined as follows:

    where MAXCis the maximum pixel value of imageCand(MSE)is the mean squared error.For twom×nmonochrome images it is defined as follows:

    whereCrepresents the carrier image and CW indicates watermarked image.

    Fig.9 The carrier images((a)-(f))and the watermark images((g)-(i))used in the simulations.

    Table 4 The calculated PSNR for different images in our simulations.

    The results of the PSNR calculation in our simulation are given in Table 4.Based on Table 4,one can see that the proposed scheme indicates an acceptable PSNR.

    The visual effects of the proposed watermarking procedure are illustrated in Fig.10.

    (ii)Histogram

    The images histogram analysis is an important method to evaluate the fidelity of a watermarked image with the carrier image.The histogram graph,indicates the frequency of pixels intensity values,where,thexaxis refers to the gray level intensities and theyaxis refers to the frequency of these intensities.Using the histogram analyzing one can judge if the images are match or not.

    The histogram graphs of the three carrier images and the histogram graphs of their corresponded watermarked images where the watermark 1.is considered as a watermark image are given in Fig.10.Based on Fig.11 the histogram graphs of the watermarked images and of the original images are in good agreement.

    Fig.10 The original carrier images are given in the first row,and the watermarked images are presented in the second row.Watermark image in all of second image is the watermark 1.

    4.2 Robustness

    Robustness refers to the ability of message to survive in attacks.[37]The Bit Error Rate(BER)and the Correlation Two-Dimensional(Corr2?D)are two most useful quantities used in robustness analysis.

    (i)The Bit Error Rate(BER)

    This Bit Error Rate(BER)is defined as the inverse of PSNR:

    The BER determines the portion of the original image’s bits,which are changed during the watermarking procedure.For example,if the PSNR is 50 db,the BER would be 0.02,i.e.,%2 of bits have been changed during the watermarking.The result of the BER values calculated in our simulation are given in Table 5.

    (ii)Correlation Two-Dimensional(Corr 2–D)

    Table 5 All the images’BER in our simulations.

    The Correlation Two-Dimensional,i.e.,Corr 2–D,determines the correlation rate between two images,sayAandB,which is calculated as follow:

    whereandcorrespond to the average pixel values inAandB,respectively.

    The Corr 2–D is a real number in the range of[-1,1].The positive or negative sign means the two input images have positive or negative correlation respectively.Notice that the output Corr 2?D=1 means the two images are exactly the same.

    In our simulation,to analyze the algorithm’s resistance against attacks,we consider 6 different types of attacks which are exerted on the watermarked image.The watermarked image,after attack,is extracted and corresponded Corr 2–D is calculated.i.e.,the correlation between original and extracted watermark image is achieved.The results are given in Table 6 and Fig.12.

    Fig.11 The histogram graphs of the tree original images and the histogram graphs of their corresponded watermarked images(“Watermark 1” is watermarked).

    Fig.12 The correlation rate of extracted watermarks after attacks.

    Fig.13 Visual display of extracted watermark after attacks.

    Considering the results,which are presented in Table 6 and Fig.12,one can judge that the proposed watermarking scheme indicates good resistance against the considered attacks.Figure 13 shows the visual display of the extracted watermark after attacks.As seen,the watermark image is recognizable and the proposed algorithm shows good resist against the attacks.

    Table 6 The correlation rate of extracted watermarks after attacks.

    5 Conclusion

    Any applicable protocol of watermarking has to satisfy two key properties,invisibility and robustness.Invisibility means that there is an acceptable similarity between the original covers image and the watermarked image.Robustness refers to the resistance of the scheme against attacks.Here we have introduced a novel robust quantum watermarking protocol exhibits acceptable invisibility performance.In the proposed scheme,employing quantum wavelet transformation,a binary 2n×2nsized image is embedded in the 2n×2nsized gray scale image.To obtain better security,prior to the embedding procedure the watermark image is scrambled.Then an LSB XORing technique and quantum wavelet transform on carrier image are employed to embed the watermark image in the carrier one.It has been shown that by reversing the embedding and the scrambling procedures,the copyright owner can simply extract the watermark image.To evaluate the performances of the proposed scheme,the scheme is simulated,where by calculating PSNR and analyzing histogram graphs the invisibility characteristics of the protocol is confirmed.Furthermore,by examining the Bit Error Rate(BER)quantity and the Correlation Two-Dimensional(Corr 2–D),the robustness of the scheme is proved.To summarize,when compared with previous watermarking schemes,the advantages and effectiveness of the proposed scheme can be summarized into five points.First,by introducing a scrambling method,the watermark image is converted into a scrambled image,which guarantees that the original watermark image will not be recovered by any attacker,even when he extracts the scrambled binary image.Second,as compared with the previous protocols,our scheme satisfies not only the invisibility performance but also its good robustness.

    Acknowledgement

    It is our pleasure to thank Dr.Alimorad Ahmadi for the final edition of the paper.M.Naseri would like to thank Soheila Gholipour,Yasna Naseri and Viana Naseri for their interests in this work.

    References

    [1]C.H.Bennett and G.Brassard,inProceedings of the IEEE International Conference on Computers,Systems and Signal Processing,Bangalore,India,IEEE,New York(1984)p.175.

    [2]S.E.Venegas Andraca and S.Bose,Storing,Processing and Retrieving an Image Using Quantum Mechanics,in AeroSense 2003,pp.137–147.International Scociety for Optic and Photonics(2003).

    [3]S.E.Venegas Andraca and J.L.Ball,Quantum Inf.Process 9(2010)1.

    [4]P.Q.Le,A.M.Iliyasu,F.Dong,and K.Hirota,Int.J.Appl.Math.40(2010)113.

    [5]P.Q.Le,F.Doyng,and K.Hirota,Quantum Inf.Process 10(2011)631784.

    [6]Y.Zhang,K.Lu,Y.H.Gao,and M.Wang,Quantum Inf.Process 12(2013)2833.

    [7]X.H.Song,S.Wang,S.Liu,A.A.Abd El-Latif,and X.M.Niu,Quantum Inf.Process 12(2013)3689.

    [8]S.Yuan,X.Mao,L.Chen,and Y.Xue,Optik 124(2013)6386.

    [9]X.H.Song,S.Wang,S.Liu,A.A.Abd El-Latif,and X.M.Niu,Multimedia Systems 20(2014)379.

    [10]Y.Zhang,K.Lu,Y.H.Gao,and Q.Sobel,Science China Information Sciences 58(2014)1.

    [11]X.B.Chen,G.Xu,Y.Su,and Y.X.Yang,Quantum Inf.Comput.14(2014)0589.

    [12]X.B.Chen,Y.Su,X.X.Niu,and Y.X.Yang,Quantum Inf.Process 13(2014)101.

    [13]X.B.Chen,Z.Dou,G.Xu,C.Wang,and Y.X.Yang,Quantum Inf.Process 13(2014)85.

    [14]N.Jiang,L.Wang,and W.Y.Wu,Int.J.Theor.Phys.53(2014)2463.

    [15]R.G.Zhou,Y.J.Sun,and P.Fan,Quantum Inf.Process 4(2015)1717.

    [16]N.R.Zhou,T.X.Hua,L.H.Gong,D.J.Pei,and Q.H.Liao,Quantum Inf.Process 14(2015)1193.

    [17]T.Hua,J.Chen,D.Pei,W.Zhang,and N.R.Zhou,Int.J.Theor.Phys.54(2015)526.

    [18]Y.Zhang,K.Lu,K.Xu,Y.Gao,and R.Wilson,Quantum Inf.Process 14(2015)1573.

    [19]R.G.Zhou and Y.J.Sun,Quantum Inf.Process 14(2015)1605.

    [20]M.Naseri,et al.,International Journal for Light and Electron Optics(2016).

    [21]Z.Xia,X.Wang,X.Sun,and Q.Wang,IEEE Transactions on Parallel and Distributed Systems 27(2016)340.

    [22]Z.Fu,K.Ren,J.Shu,X.Sun,and F.Huang,IEEE Transactions on Parallel and Distributed Systems 27(2016)2546.

    [23]Zh.J.Fu,et al.,IEICE Transactions on Communications E98-B(2015)190.

    [24]Z.G.Qu,X.B.Chen,X.J.Zhou,X.X.Niu,and Y.X.Yang,Opt.Commun.283(2010)4782.

    [25]B.A.Shaw and T.A.Brun,Phys.Rev.A 83(2011)022310.

    [26]N.Fatahi and M.Naseri,Int.J.Theor.Phys.51(2012)2094.

    [27]W.W.Zhang,F.Gao,B.Liu,H.Y Jia,Q.Y.Wen,and H.Chen,Int.J.Theor.Phys.52(2013)504.

    [28]S.Heidari and M.Naseri,Int.J.Theor.Phys.55(10)(2016)4205.

    [29]P.Q.Le,F.Y.Dong,and K.Hirota,Quantum Inf.Process 10(2011)63.

    [30]X.H.Song,S.Wang,S.Liu,A.A.Abd El-Latif,and X.M.Niu,Quantum Inf.Process 12(2013)3689.

    [31]Y.G.Yang,et al.,Quantum Inf.Process 13(2014)1931.

    [32]Y.Zhang,K.Lu,Y.H.Gao,and M.Wang,Quantum Inf.Process 12(2013)2833.

    [33]V.Vedral,A.Barenco,and A.Ekert,Phys.Rev.A 54(1996)1.

    [34]A.Fijany and C.P.Williams,Quantum Wavelet Transform:Fast Algorithm and Complete Circuit,Quantum Computing and Quantum Communications,Springer Berlin,Heidelberg(1999)pp.10–33.

    [35]Y.Zhang,K.Lu,Y.H.Gao,and M.Wang,Quantum Inf.Process 12(2013)2833.

    [36]H.B.Kekre and A.A.Archana,Int.J.Cryp.Secu.1(2008)1.

    [37]N.Jiang,N.Zhao,and L.Wang,Int.J.Theor.Phys.55(2016)107.

    久久午夜福利片| 亚洲av电影在线观看一区二区三区 | 日韩中字成人| 日韩av免费高清视频| 国产免费视频播放在线视频 | 亚洲怡红院男人天堂| 校园人妻丝袜中文字幕| 秋霞在线观看毛片| 少妇的逼水好多| 1000部很黄的大片| 热99在线观看视频| 啦啦啦中文免费视频观看日本| 国产美女午夜福利| 亚洲精品一二三| 亚洲精品aⅴ在线观看| 久久久久久久久大av| or卡值多少钱| 国模一区二区三区四区视频| 中文乱码字字幕精品一区二区三区 | 精品久久久久久成人av| 天堂网av新在线| 亚洲丝袜综合中文字幕| 久久这里有精品视频免费| 伦精品一区二区三区| 久久久久久久久久人人人人人人| 亚洲欧美精品自产自拍| 1000部很黄的大片| 纵有疾风起免费观看全集完整版 | av在线天堂中文字幕| 亚洲国产精品成人综合色| 亚洲精品国产av成人精品| 国产成人aa在线观看| 美女高潮的动态| av线在线观看网站| 啦啦啦韩国在线观看视频| 不卡视频在线观看欧美| h日本视频在线播放| 人妻夜夜爽99麻豆av| 美女主播在线视频| 午夜激情久久久久久久| 91在线精品国自产拍蜜月| 啦啦啦啦在线视频资源| 国产毛片a区久久久久| av国产免费在线观看| 超碰av人人做人人爽久久| 久久精品夜色国产| 国产伦在线观看视频一区| 亚洲真实伦在线观看| 日韩强制内射视频| 晚上一个人看的免费电影| 人妻一区二区av| 人人妻人人澡欧美一区二区| 99九九线精品视频在线观看视频| 国产精品伦人一区二区| 一个人看的www免费观看视频| 亚洲欧洲国产日韩| 亚洲va在线va天堂va国产| 天堂影院成人在线观看| 成人毛片a级毛片在线播放| 又粗又硬又长又爽又黄的视频| 免费观看的影片在线观看| 午夜久久久久精精品| 久久久久久久久久人人人人人人| 色播亚洲综合网| 国产精品久久久久久久久免| 免费大片黄手机在线观看| 中文欧美无线码| av又黄又爽大尺度在线免费看| 一个人免费在线观看电影| 男插女下体视频免费在线播放| 极品教师在线视频| 精品久久久久久久人妻蜜臀av| 伦理电影大哥的女人| 欧美精品一区二区大全| 国产黄频视频在线观看| 久久久久久伊人网av| 噜噜噜噜噜久久久久久91| 亚洲欧美清纯卡通| 熟妇人妻不卡中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲色图av天堂| 日韩av在线免费看完整版不卡| 99热网站在线观看| 偷拍熟女少妇极品色| 人妻少妇偷人精品九色| 国产免费又黄又爽又色| 国产午夜精品论理片| 日韩欧美 国产精品| 欧美日韩在线观看h| 国产黄a三级三级三级人| 日韩av在线大香蕉| 亚洲精品中文字幕在线视频 | 夜夜爽夜夜爽视频| 看十八女毛片水多多多| 国产 一区精品| 国产一区亚洲一区在线观看| 日日撸夜夜添| 美女内射精品一级片tv| 极品教师在线视频| 亚洲最大成人av| 国产精品久久视频播放| 如何舔出高潮| 成人午夜精彩视频在线观看| 波野结衣二区三区在线| 国产av码专区亚洲av| 亚洲精品久久久久久婷婷小说| 亚洲综合色惰| 一级二级三级毛片免费看| 国产在视频线精品| 久久草成人影院| 国产探花在线观看一区二区| 亚洲成色77777| 汤姆久久久久久久影院中文字幕 | 国产一区亚洲一区在线观看| 日本免费a在线| 久久久色成人| 国产精品伦人一区二区| 99热这里只有是精品50| 黄色一级大片看看| 国产精品福利在线免费观看| 国产av不卡久久| 两个人视频免费观看高清| 国产精品一区www在线观看| 国产v大片淫在线免费观看| 波多野结衣巨乳人妻| 免费观看av网站的网址| 亚洲美女视频黄频| 亚洲av电影在线观看一区二区三区 | 视频中文字幕在线观看| 禁无遮挡网站| 美女高潮的动态| 99久久精品一区二区三区| 老司机影院毛片| 久久99精品国语久久久| 久久久精品94久久精品| 日本欧美国产在线视频| 亚洲精品一区蜜桃| 亚洲av成人精品一区久久| 特级一级黄色大片| 身体一侧抽搐| 3wmmmm亚洲av在线观看| 少妇的逼好多水| 国产高清有码在线观看视频| 午夜激情欧美在线| 国产 一区 欧美 日韩| 成人高潮视频无遮挡免费网站| 久久久亚洲精品成人影院| 男女下面进入的视频免费午夜| 久久久久久久午夜电影| 六月丁香七月| 极品教师在线视频| 中文字幕av在线有码专区| 亚洲av日韩在线播放| 99久久精品热视频| 日韩av在线大香蕉| 欧美日韩亚洲高清精品| 人人妻人人看人人澡| 亚洲精品aⅴ在线观看| 免费av毛片视频| 丝袜美腿在线中文| 久热久热在线精品观看| 人妻一区二区av| 国产av码专区亚洲av| av女优亚洲男人天堂| 99热这里只有精品一区| 成人亚洲精品一区在线观看 | 美女内射精品一级片tv| av黄色大香蕉| 看黄色毛片网站| 蜜臀久久99精品久久宅男| 久久99热这里只频精品6学生| 女人被狂操c到高潮| 特级一级黄色大片| 亚洲成人中文字幕在线播放| 免费观看性生交大片5| 亚洲成人一二三区av| 国产伦一二天堂av在线观看| 日韩中字成人| 少妇猛男粗大的猛烈进出视频 | 日韩欧美国产在线观看| 国产精品99久久久久久久久| 久久久亚洲精品成人影院| 乱人视频在线观看| 国产免费又黄又爽又色| 日韩不卡一区二区三区视频在线| 免费黄色在线免费观看| 成人高潮视频无遮挡免费网站| 亚洲自偷自拍三级| 中文字幕制服av| 国产一级毛片七仙女欲春2| 欧美一区二区亚洲| 久久精品熟女亚洲av麻豆精品 | 麻豆乱淫一区二区| 亚洲欧美精品自产自拍| 欧美成人a在线观看| 亚洲av中文字字幕乱码综合| 我的女老师完整版在线观看| 亚洲成人一二三区av| av.在线天堂| 一级二级三级毛片免费看| 老师上课跳d突然被开到最大视频| 久久久亚洲精品成人影院| 少妇猛男粗大的猛烈进出视频 | freevideosex欧美| 欧美日韩国产mv在线观看视频 | 国产成人精品一,二区| 亚洲欧美精品专区久久| 男女视频在线观看网站免费| 丝瓜视频免费看黄片| 99久久九九国产精品国产免费| av国产免费在线观看| 欧美日韩视频高清一区二区三区二| 秋霞在线观看毛片| 国产精品人妻久久久久久| 国产爱豆传媒在线观看| 噜噜噜噜噜久久久久久91| 直男gayav资源| 亚洲精品视频女| 国产成人a∨麻豆精品| 赤兔流量卡办理| 美女国产视频在线观看| 午夜福利成人在线免费观看| 亚洲精品久久久久久婷婷小说| 一级毛片我不卡| 尾随美女入室| 男女边吃奶边做爰视频| 蜜桃久久精品国产亚洲av| 久久久亚洲精品成人影院| 精品久久久久久久末码| 内射极品少妇av片p| 爱豆传媒免费全集在线观看| 丝瓜视频免费看黄片| 午夜日本视频在线| 亚洲av免费高清在线观看| 尾随美女入室| 美女大奶头视频| 一个人免费在线观看电影| 男人狂女人下面高潮的视频| 亚洲最大成人中文| 91av网一区二区| 亚洲精品久久午夜乱码| 国产91av在线免费观看| 波野结衣二区三区在线| 热99在线观看视频| 亚洲精品国产av成人精品| 在线观看人妻少妇| 纵有疾风起免费观看全集完整版 | 亚洲人成网站在线观看播放| 国产成人91sexporn| 97精品久久久久久久久久精品| av天堂中文字幕网| 久久精品久久精品一区二区三区| 亚洲国产日韩欧美精品在线观看| 九色成人免费人妻av| 高清毛片免费看| 亚洲av国产av综合av卡| 亚洲四区av| 女人久久www免费人成看片| 国产精品日韩av在线免费观看| av线在线观看网站| 哪个播放器可以免费观看大片| 熟女人妻精品中文字幕| 日本黄大片高清| 午夜福利视频精品| 国产伦在线观看视频一区| 国产成人福利小说| 观看免费一级毛片| 精品国产三级普通话版| 国产精品久久久久久久久免| 日本与韩国留学比较| 国产精品嫩草影院av在线观看| 大香蕉久久网| 最近中文字幕高清免费大全6| 成人美女网站在线观看视频| 大话2 男鬼变身卡| 搡老乐熟女国产| 蜜桃久久精品国产亚洲av| 永久网站在线| 麻豆国产97在线/欧美| 男人和女人高潮做爰伦理| 大又大粗又爽又黄少妇毛片口| 国产精品福利在线免费观看| 最后的刺客免费高清国语| 欧美97在线视频| 男女边摸边吃奶| 免费观看性生交大片5| 天堂网av新在线| 亚洲欧美成人综合另类久久久| 国产淫片久久久久久久久| 欧美高清成人免费视频www| 日本与韩国留学比较| 18禁在线无遮挡免费观看视频| 麻豆成人av视频| 国产成人福利小说| 亚洲av不卡在线观看| 身体一侧抽搐| 舔av片在线| 国产单亲对白刺激| 国产毛片a区久久久久| 亚洲18禁久久av| 日本黄色片子视频| 午夜福利在线在线| 亚洲成人久久爱视频| 永久网站在线| 一本一本综合久久| 亚洲第一区二区三区不卡| 日日摸夜夜添夜夜爱| 国产亚洲精品av在线| 日韩av免费高清视频| 男女那种视频在线观看| av在线观看视频网站免费| 听说在线观看完整版免费高清| 精品一区二区免费观看| 欧美成人一区二区免费高清观看| 如何舔出高潮| 深夜a级毛片| 毛片女人毛片| 中国美白少妇内射xxxbb| 精品一区二区免费观看| 国产精品熟女久久久久浪| 成人综合一区亚洲| 日韩av不卡免费在线播放| 久久6这里有精品| 午夜免费男女啪啪视频观看| 久久人人爽人人爽人人片va| 亚洲在线观看片| 国产精品一及| 亚洲精品国产av蜜桃| 亚洲第一区二区三区不卡| 天美传媒精品一区二区| 人妻制服诱惑在线中文字幕| 国产高清有码在线观看视频| 国产精品一区二区三区四区免费观看| 国产精品日韩av在线免费观看| 国产一级毛片在线| 少妇人妻一区二区三区视频| 99热6这里只有精品| 99久久九九国产精品国产免费| 丰满乱子伦码专区| 精品久久久久久久人妻蜜臀av| 日韩av免费高清视频| 午夜精品一区二区三区免费看| 美女黄网站色视频| 精品久久久噜噜| 国产精品人妻久久久影院| 老女人水多毛片| 国产成人91sexporn| 久久精品国产亚洲av天美| 亚洲精品成人久久久久久| 婷婷色av中文字幕| 亚洲精品成人久久久久久| 国产一级毛片在线| 日韩精品有码人妻一区| 又爽又黄a免费视频| 日本wwww免费看| 狠狠精品人妻久久久久久综合| 免费观看a级毛片全部| 女人被狂操c到高潮| 久久99蜜桃精品久久| 天堂俺去俺来也www色官网 | 超碰av人人做人人爽久久| 中文资源天堂在线| 欧美一区二区亚洲| 看免费成人av毛片| 性插视频无遮挡在线免费观看| 大香蕉久久网| 好男人视频免费观看在线| 看十八女毛片水多多多| 亚洲精品影视一区二区三区av| 国产白丝娇喘喷水9色精品| 亚洲aⅴ乱码一区二区在线播放| 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| 成人高潮视频无遮挡免费网站| 两个人视频免费观看高清| 亚洲最大成人中文| 亚洲婷婷狠狠爱综合网| 你懂的网址亚洲精品在线观看| 插阴视频在线观看视频| 精品国产露脸久久av麻豆 | 大香蕉久久网| 成人无遮挡网站| 欧美最新免费一区二区三区| 99久久精品国产国产毛片| 永久网站在线| 最近2019中文字幕mv第一页| 只有这里有精品99| 特大巨黑吊av在线直播| 久久这里只有精品中国| 国产色爽女视频免费观看| 国产精品人妻久久久影院| 亚洲三级黄色毛片| 久久精品综合一区二区三区| 国产伦一二天堂av在线观看| 免费观看无遮挡的男女| 伦理电影大哥的女人| 亚洲高清免费不卡视频| 成年女人看的毛片在线观看| 国产精品美女特级片免费视频播放器| 午夜福利在线在线| 欧美日韩亚洲高清精品| 免费av毛片视频| 国产色爽女视频免费观看| 亚洲国产欧美在线一区| 国产激情偷乱视频一区二区| 成人漫画全彩无遮挡| kizo精华| 国产高清有码在线观看视频| 色网站视频免费| 春色校园在线视频观看| 中文天堂在线官网| 99热这里只有是精品在线观看| 少妇人妻一区二区三区视频| 久久草成人影院| 免费看a级黄色片| 51国产日韩欧美| 1000部很黄的大片| 亚洲aⅴ乱码一区二区在线播放| 成年女人在线观看亚洲视频 | 国产欧美另类精品又又久久亚洲欧美| 中文字幕制服av| 亚洲自拍偷在线| 女的被弄到高潮叫床怎么办| 菩萨蛮人人尽说江南好唐韦庄| 精品人妻一区二区三区麻豆| 一边亲一边摸免费视频| 国产伦理片在线播放av一区| 日韩av在线大香蕉| 日本-黄色视频高清免费观看| 国产精品久久久久久精品电影小说 | 极品教师在线视频| 99热网站在线观看| 秋霞伦理黄片| 国产黄色小视频在线观看| 亚洲色图av天堂| 亚洲欧美清纯卡通| 午夜日本视频在线| 如何舔出高潮| 亚洲一级一片aⅴ在线观看| 国产淫语在线视频| 国产综合精华液| 黄色一级大片看看| 毛片女人毛片| 免费高清在线观看视频在线观看| 亚洲av电影不卡..在线观看| 国产成人免费观看mmmm| 一级毛片aaaaaa免费看小| 日韩强制内射视频| 少妇高潮的动态图| 禁无遮挡网站| 汤姆久久久久久久影院中文字幕 | 久久热精品热| 国产精品久久久久久久久免| 99久久中文字幕三级久久日本| 亚洲在线观看片| 国产视频首页在线观看| 色综合色国产| 毛片女人毛片| 亚洲真实伦在线观看| 午夜福利成人在线免费观看| 日韩三级伦理在线观看| 国产伦一二天堂av在线观看| 最近最新中文字幕大全电影3| 日本色播在线视频| 少妇熟女欧美另类| 永久网站在线| 日韩亚洲欧美综合| 国产一区二区三区综合在线观看 | 久久韩国三级中文字幕| 欧美日本视频| 五月玫瑰六月丁香| av在线老鸭窝| 国产成人免费观看mmmm| 亚洲图色成人| 亚洲美女视频黄频| 九九爱精品视频在线观看| 日韩欧美三级三区| 国产亚洲精品av在线| 卡戴珊不雅视频在线播放| 天堂中文最新版在线下载 | 欧美3d第一页| 菩萨蛮人人尽说江南好唐韦庄| 亚洲在线自拍视频| 色综合站精品国产| 女人久久www免费人成看片| 亚洲四区av| 国内少妇人妻偷人精品xxx网站| 一级av片app| 国产 亚洲一区二区三区 | 成人美女网站在线观看视频| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久精品电影小说 | 老师上课跳d突然被开到最大视频| 国产亚洲午夜精品一区二区久久 | 国产真实伦视频高清在线观看| 午夜精品国产一区二区电影 | 精品一区在线观看国产| 免费无遮挡裸体视频| 18禁在线无遮挡免费观看视频| 人人妻人人澡人人爽人人夜夜 | 亚洲av中文字字幕乱码综合| 免费观看无遮挡的男女| 国产高潮美女av| 国产单亲对白刺激| 精品午夜福利在线看| 日韩成人伦理影院| 亚洲综合精品二区| 国产精品福利在线免费观看| 老女人水多毛片| 舔av片在线| 三级男女做爰猛烈吃奶摸视频| 成人av在线播放网站| 亚洲欧美日韩无卡精品| 国产色爽女视频免费观看| 青春草亚洲视频在线观看| av天堂中文字幕网| 麻豆乱淫一区二区| 色吧在线观看| 国产伦在线观看视频一区| 18禁裸乳无遮挡免费网站照片| 亚洲精品亚洲一区二区| 久久久久久久久久久丰满| 成人特级av手机在线观看| 网址你懂的国产日韩在线| 成人性生交大片免费视频hd| 欧美日韩在线观看h| 又黄又爽又刺激的免费视频.| 国产精品精品国产色婷婷| 波野结衣二区三区在线| 一级黄片播放器| 婷婷六月久久综合丁香| 日韩一区二区视频免费看| 少妇猛男粗大的猛烈进出视频 | 激情 狠狠 欧美| 黄色日韩在线| 午夜激情福利司机影院| 精品久久久久久电影网| 日韩一区二区视频免费看| 两个人视频免费观看高清| 永久免费av网站大全| 中文字幕制服av| 精品久久久久久久久av| 亚洲色图av天堂| 久久精品夜色国产| 亚洲综合色惰| 国产成人一区二区在线| 久久久色成人| 久久精品久久久久久噜噜老黄| 99久久精品一区二区三区| 天天躁日日操中文字幕| 午夜福利在线在线| 久久久a久久爽久久v久久| 国产综合精华液| 寂寞人妻少妇视频99o| 晚上一个人看的免费电影| 九色成人免费人妻av| 国产白丝娇喘喷水9色精品| 午夜激情欧美在线| av免费在线看不卡| 免费看不卡的av| 亚洲va在线va天堂va国产| av播播在线观看一区| 老女人水多毛片| 一夜夜www| 国产精品综合久久久久久久免费| 国产91av在线免费观看| 国产亚洲最大av| 国产熟女欧美一区二区| 亚洲精品456在线播放app| 国产成人精品婷婷| 看十八女毛片水多多多| 三级国产精品片| 日韩三级伦理在线观看| 国产毛片a区久久久久| 久久精品夜色国产| 日韩大片免费观看网站| 99re6热这里在线精品视频| 亚洲国产精品成人久久小说| 日本wwww免费看| 尾随美女入室| 在线 av 中文字幕| 国产精品av视频在线免费观看| 久久亚洲国产成人精品v| 国内精品宾馆在线| 免费播放大片免费观看视频在线观看| 欧美高清成人免费视频www| 99久久精品国产国产毛片| 国产一区二区在线观看日韩| 国产成人精品一,二区| 日韩av在线大香蕉| 91午夜精品亚洲一区二区三区| 精品人妻一区二区三区麻豆| 日本av手机在线免费观看| 久久热精品热| 老女人水多毛片| 久久6这里有精品| 久久久午夜欧美精品| 亚洲在线观看片| 久久韩国三级中文字幕| 人人妻人人澡欧美一区二区| 免费观看精品视频网站| 久久午夜福利片| 国产 一区精品| 波多野结衣巨乳人妻| 精品久久久精品久久久| 亚洲成人精品中文字幕电影| 亚洲丝袜综合中文字幕| 日韩欧美精品免费久久| 五月伊人婷婷丁香| 欧美高清成人免费视频www| 一本一本综合久久| 亚洲怡红院男人天堂| 亚洲在久久综合| 亚洲欧美一区二区三区国产| 亚洲精品乱久久久久久|