• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CRE Solvability,Nonlocal Symmetry and Exact Interaction Solutions of the Fifth-Order Modi fied Korteweg-de Vries Equation?

    2017-05-12 08:52:52WenGuangCheng程文廣DeQinQiu邱德勤andBoYu余波
    Communications in Theoretical Physics 2017年6期
    關鍵詞:程文

    Wen-Guang Cheng(程文廣), De-Qin Qiu(邱德勤),and Bo Yu(余波)

    1 Introduction

    Over the last few decades,constructing exact solutions for nonlinear evolution equations(NLEEs)have become an attractive topic in nonlinear science.Up to now,many effective approaches have been established to obtain exact solutions of NLEEs.Some of them are respectively the inverse scattering transformation,[1]the Darboux and B?cklund transformations,[2?3]Hirota’s bilinear method,[4]Painlev′e analysis,[5]symmetry reductions,[6]the homogeneous balance method,[7]the tanh method[8]and the separated variable method,[9]and so on.However,these methods are insufficient to find interaction solutions among different nonlinear excitations.

    Recently,it is found that the residue of truncated Painlev′e expansion with respect to the singular manifold is just the nonlocal symmetry,which is called residual symmetry.[10?11]According to the novel results of the symmetry reduction with nonlocal symmetries,Lou[12]further proposed the consistent Riccati expansion(CRE)method.The CRE method can be used to identify CRE solvable systems and it is a more direct but much simpler method to find interaction solutions between a soliton and other nonlinear waves,such as the soliton-cnoidal waves,soliton-perodic waves,soliton-error function waves,and soliton-rational waves.[12?22]

    In this paper,we would like to consider the following fifth-order modi fied Korteweg-de Vries(fmKdV)equation

    which possesses a close connection with the known fifthorder KdV equation

    by the Miura transformation

    that will convert Eq.(2)to Eq.(1).It is well known that the known fifth-order KdV equation has wide application in Physics,so the study of Eq.(1)is being of potential application in Physics besides the academic interest.The fmKdV equation(1)is a higher-order equation of the mKdV hierarchy,the Lax pair and bi-Hamiltonian structure were studied in Ref.[23].In Ref.[24],a semidiscrete version for the fmKdV equation(1)was constructed from the three known semidiscrete mKdV fluxes.Kwak[25]proved the local well-posedness of the fmKdV equation(1)for low regularity Sobolev initial data via the energy method.

    The paper is organised as follows.In Sec.2,the CRE method is applied to prove the fmKdV equation is CRE solvable.In Sec.3,starting from the last consistent differential equation,three special form of interaction solutions between the soliton and the cnoidal periodic wave of this equation are presented both analytically and graphically.In Sec.4,the nonlocal symmetry related to the CTE and the nonlocal residual symmetry of the fmKdV equation are obtained.Also,the relationship between them is given.Then the corresponding finite transformation group is obtained by the localization of residual symmetry to the Lie point symmetry.The last section is a summary and discussion.

    2 CRE Solvability and CTE Solvability

    2.1 CRE Solvability

    In this section we apply the CRE method in Ref.[21]to Eq.(1).According to the leading order analysis,the solutionuis selected as the following ansatz(R≡R(w))

    whereu0,u1,andware functions of(x,t),andRis a solution of the Riccati equation

    which admits a solution tanh(w).

    Substituting Eq.(4)with Eq.(5)into Eq.(1)and vanishing all the coefficients ofRifor alli,we obtain seven overdetermined differential equations with only three undetermined functions.It is fortunate that these overdetermined equations are consistent.As a result,we have

    and the functionwsatisfies a generalization of the Schwarzian form of Eq.(1)

    where the notationsCandSare defined as

    From the definition in Ref.[12],we deduce that the fmKdV equation is CRE solvable.

    2.2 CTE Solvability

    We consider a special solution of the Riccati equation(5)as follows

    the truncated expansion expression(4)is converted to

    whereu0,u1,andware determined by Eqs.(6)and(7)witha0=1,a1=0,a2= ?1,andδ=4.Hence,we obtain

    andwneeds to satisfy

    From above,it shows that the fmKdV equation is consistent tanh expansion(CTE)solvable.It is obvious that a CRE solvable system must be consistent tanh expansion(CTE)solvable,and vice versa.

    In summary,we can establish the following nonauto-BT theorem for Eq.(1).

    Theorem 1Ifwis a solution of Eq.(12),then,

    is a solution of the fmKdV equation(1).

    3 Exact Solutions from Theorem 1

    By means of Theorem 1,we can derive some exact solutions of the fmKdV equation(1),in particularly the interaction solutions between one soliton and other kinds of complicated waves.Next,some special types of solutions are given.

    3.1 Soliton Solution

    A quite trivial straight line solution forwhas the form

    wherek1anddare the free constants,andω1is determined by the dispersion relation

    Substituting Eq.(14)into the CTE result(13)leads to one kink soliton solution

    3.2 Soliton-Cnoidal Wave Interaction Solutions

    To find out the soliton-cnoidal wave interaction solutions,we assumewin the form

    Substituting Eq.(17)into Eq.(12),we can find thatW1satis fies

    with

    while all the other constants remain free.Then the explicit solution of the fmKdV equation writes as

    It is known that the solutions of Eq.(18)can be expressed in terms of Jacobi elliptic functions.Thus,the solution(20)reveals the interactions between one soliton and cnoidal periodic waves.In the following we will list three nontrivial cases to obtain this kind of solution.

    Case 1The first simple solution of Eq.(18)is given by

    Substituting Eqs.(19)and(21)into Eq.(18)yields

    Then the exact soliton-cnoidal wave interaction solution can be derived as

    where{k2,m,n,λ}are arbitrary constants,ξ=(1/8)k2[8x+m4(3n4+2n2+43)t].Hereafter,S,CandDare the usual Jacobian elliptic functions sn,cn and dn with modulusn,respectively.

    Figure 1 plots one kink soliton in the cnoidal periodic wave background expressed by Eq.(23),and the parameters are fixed at

    Fig.1 The first special form of soliton-cnoidal wave interaction solution of u expressed by Eq.(23)with the parameters being fixed at Eq.(24).(a)The soliton-cnoidal wave structure at t=0;(b)The evolution of the soliton-cnoidal wave structure;(c)The density plot for the soliton-cnoidal wave structure.

    Case 2As the second example,we consider the solution of Eq.(18)as

    which leads to the soliton-cnoidal wave interaction solution of Eq.(1):

    where{k2,μ,n}are three independent constants,Eπ(ζ,μ,n)is the third type of incomplete elliptic integral,and

    Figure 2 shows the structure of the soliton-cnoidal wave interaction solution(26)with the parameters chosen ask2=μ=0.5 andn=1.3.

    Fig.2 The second special form of soliton-cnoidal wave interaction solution of u generated by Eq.(26)with the parameters chosen as k2=μ=0.5 and n=1.3.(a)The soliton-cnoidal wave structure at t=0;(b)The dynamical evolution of the soliton-cnoidal wave;(c)The density plot for time evolution.

    Case 3The third special solution of Eq.(18)is taken as the form

    in this case,the interaction solution for Eq.(1)is obtained as:

    wherek1andnare two arbitrary constants,and

    Figure 3 displays the third special form of soliton-cnoidal wave interaction solution for the fieldugiven by Eq.(29)with the parameters determined ask1=0.6 andn=1.5.

    Fig.3 The third special form of soliton-cnoidal wave interaction solution of u given by Eq.(29)with the parameters determined as k1=0.6 and n=1.5.(a)One-dimensional image at t=0;(b)The corresponding three-dimensional view;(c)The density plot for soliton-cnoidal wave u.

    In the ocean,there are some typical nonlinear waves such as soliton-cnoidal periodic wave.The interaction solutions may be useful for describing many more interesting physical phenomena,such as the Fermionic quantum plasma.[26]

    4 Nonlocal Symmetry and Its Localization

    4.1 Nonlocal Symmetry

    Symmetries,including nonlocal symmetries,play an important role in nonlinear mathematical physics.In this subsection,the nonlocal symmetries of the fmKdV equation(1)will be studied.To seek the nonlocal symmetry related to the CTE,a nonauto-BT theorem for the fmKdV equation(1)is given as

    Theorem 2Ifwis a solution to Eq.(12),then the fmKdV equation(1)has a solution

    ProofBy direct calculation for substituting Eq.(31)into the fmKdV equation(1)by using thewequation(12).□

    It is known that a symmetryσuof the fmKdV equa-tion(1)is defined as a solution of its linearized equation

    That means Eq.(1)is form invariant under the in finitesimal transformation

    with?being an infinitesimal parameter.

    Proposition 1The fmKdV equation(1)possesses a nonlocal symmetry

    wherewsatisfies Eq.(12).

    ProofBy direct calculation for substituting(34)into Eq.(32)by using the nonauto-BT(31)in Theorem 2 and thewEq.(12). □

    Now,we make the following transformation

    Substituting Eq.(35)into Eq.(34)leads to

    which is the residual symmetry of Eq.(1).

    Here we can derive the residual symmetry(36)from the truncated painlev′e expansion.For the fmKdV equation(1),we truncate the Laurent series as

    where?=?(x,t)is the singular manifold,and functionsu0andu1are determined from the requirement for solutionuto satisfy Eq.(1).

    Substituting Eq.(37)into Eq.(1)and comparing the coefficients of each powers of 1/?,we can simply find

    and the Schwarzian form of Eq.(1)

    with the Schwarzian derivative

    The Schwarzian form(39)is invariant under the M?bious transformation

    which means the function?possesses the Lie point symmetry in the form of

    with arbitrary constantsb0,b1,andb2.From the above standard truncated Painlev′e expansion,we have the following nonauto-BT theorem.

    Theorem 3If the field?is a solution of the Schwarzian equation(39),then

    is a solution of the fmKdV equation(1).

    ProofBy direct verification for substituting Eq.(43)into the fmKdV equation(1)with the help of the Schwarzian equation(39).

    Based on the definition of residual symmetry,[10]Eq.(36)is the residual symmetry of Eq.(1).The residual symmetry(36)can be also obtained by using Schwarzian form(39)and nonauto-BT(43)in Theorem 3.[20,27?29]

    It should be noted that the solution?of the Schwarzian equation(39)is just the spectral function related tou,therefore,Eq.(36)is also the spectral function symmetry of Eq.(1).It is straightforward to derive the Lax pair of Eq.(1)as follows:

    which is simpler than the result in Ref.[23].

    4.2 Localization of Residual Symmetry

    According to the Lie’s first theorem,the initial value problem related with the nonlocal residual symmetry(36)will be expressed as

    It is difficult to solve the initial value problem(45)due to the intrusion of the function??(ε)and its differentiation.[11]To eliminate the space derivative of the field?,the potential fieldfis defined as

    Now the nonlocal residual symmetry of Eq.(1)is localized to a Lie point symmetry

    for the related prolonged system

    with the Lie point symmetry vector

    The initial value problem(45)is correspondingly transformed

    The solution of the above initial value problem(50)leads to the following BT theorem for the prolonged system(48).

    Theorem 4If{u,f,?}is a solution of the prolonged system(48),so is{?u,?f,??}with

    It is worth noticing that the nonlocal residual symmetry(36)is just the infinitesimal form of the symmetry group transformation(51).Furthermore,if we set

    then the first equation of Eq.(51)is nothing but the truncated Painlev′e expansion(37)with Eq.(38).

    5 Summary and Discussion

    In summary,the fmKdV equation is proved to be CRE integrable and abundant interaction solution between the soliton and the cnoidal periodic waves including arbitrary constants are obtained.Meanwhile,for the fmKdV equation,the nonlocal symmetry related to the CTE is derived.Under the transformation?=1/(1? tanh(w)),this kind of nonlocal symmetry is changed as the residual symmetry which can be obtained obtained with the truncated Painlev′e method.We find that the residual symmetry is just the spectral function symmetry and derive the Lax pair of the fmKdV equation.To solve the initial value problem related by the residual symmetry,the residual symmetry is readily localized to Lie point symmetry by introducing multiple new dependent variables,the corresponding finite transformation group is found by solving the initial value problem of the Lie’s first principle.

    In addition,the CRE method is a powerful method for dealing with exact interaction solutions to NLEEs.The relationship between the CRE and the consistent sinecosine expansion is an interesting problem,and we hope to investigate it further in the future.

    Acknowledgments

    The authors are grateful to Profs.Y.Chen and B.Li for their helpful suggestions and fruitful discussion.

    References

    [1]C.S.Gardner,J.M.Green,M.D.Kruskal,and R.M.Miura,Phys.Rev.Lett.19(1967)1095.

    [2]V.B.Matveev and M.A.Salle,Darboux Transformations and Solitons,Springer,Berlin(1991).

    [3]C.Rogers and W.K.Schief,B?cklund and Darboux Transformations Geometry and Modern Applications in Soliton Theory,Cambridge University Press,Cambridge(2002).

    [4]R.Hirota,Phys.Rev.Lett.27(1971)1192.

    [5]J.Weiss,M.Taboe,and G.Carnevale,J.Math.Phys.24(1983)522.

    [6]S.Y.Lou,Phys.Lett.A 151(1990)133.

    [7]M.L.Wang,Y.B.Zhou,and Z.B.Li,Phys.Lett.A 216(1996)67.

    [8]W.Mal fliet and W.Hereman,Phys.Scr.54(1996)563.

    [9]X.Y.Tang,S.Y.Lou,and Y.Zhang,Phys.Rev.E 66(2002)046601.

    [10]S.Y.Lou,Residual Symmetries and B?cklund,Transformations,arXiv:1308.1140v1.

    [11]X.N.Gao,S.Y.Lou,and X.Y.Tang,J.High Energy Phys.05(2013)029.

    [12]S.Y.Lou,Stud.Appl.Math.134(2015)372.

    [13]S.Y.Lou,X.P.Cheng,and X.Y.Tang,Chin.Phys.Lett.31(2014)070201.

    [14]C.L.Chen and S.Y.Lou,Chin.Phys.Lett.30(2013)110202.

    [15]W.G.Cheng and B.Li,Z.Naturforsch.A.71(2016)351.

    [16]W.G.Cheng and B.Li,Adv.Math.Phys.2016(2016)4874392.

    [17]B.Ren,J.Yu,and X.Z.Liu,Commun.Theor.Phys.65(2016)341.

    [18]W.G.Cheng,B.Li,and Y.Chen,Commun.Theor.Phys.63(2015)549.

    [19]D.Yang,S.Y.Lou,and W.F.Yu,Commun.Theor.Phys.60(2013)387.

    [20]B.Ren,Phys.Scr.90(2015)065206.

    [21]Y.H.Wang,Appl.Math.Lett.38(2014)100.

    [22]X.R.Hu and Y.Q.Li,Appl.Math.Lett.51(2016)20.

    [23]A.Choudhuri,B.Talukdar,and U.Das,Z.Naturforsch.A.64(2009)171.

    [24]T.Zhou,Z.N.Zhu,and P.He,Sci.China Math.56(2013)123.

    [25]C.Kwak,J.Differential Equations 260(2016)7683.

    [26]A.J.Keane,A.Mushtaq,and M.S.Wheatland,Phys.Rev.E 83(2011)066407.

    [27]W.G.Cheng,B.Li,and Y.Chen,Commun.Nonlinear Sci.Numer.Simul.29(2015)198.

    [28]B.Ren,X.P.Cheng,and J.Lin,Nonlinear Dyn.86(2016)1855.

    [29]B.Ren,Commun.Nonlinear Sci.Numer.Simulat.42(2017)456.

    猜你喜歡
    程文
    為糖屈膝
    為糖屈膝
    《室內(nèi)空間設計》
    青年文學家(2022年2期)2022-03-17 21:57:14
    為糖屈膝
    湖北工程學院新技術學院教師程文娟作品
    獻給綠化合肥的圓夢者
    安徽園林(2018年3期)2018-10-09 05:36:24
    男子接連犯罪,只為離婚
    中外文摘(2016年5期)2016-10-21 10:08:14
    “軟男”的奇葩選擇,5次犯罪為離婚
    “軟男”的奇葩選擇,5次犯罪為離婚
    Mechanical Behavior of Bistable Bump Surface for Morphing Inlet
    av在线亚洲专区| 亚洲成人中文字幕在线播放| 少妇人妻一区二区三区视频| 国产精品一区二区三区四区久久| 久久天躁狠狠躁夜夜2o2o| 欧美中文日本在线观看视频| 内射极品少妇av片p| 又粗又爽又猛毛片免费看| 久久久久久伊人网av| 免费大片18禁| 一级黄片播放器| 久久久精品大字幕| 久久精品91蜜桃| 精华霜和精华液先用哪个| 国产精品爽爽va在线观看网站| 久久久久国内视频| 久久精品国产亚洲av天美| 久久精品国产亚洲av涩爱 | 国产日本99.免费观看| 免费在线观看日本一区| 日韩欧美 国产精品| 高清日韩中文字幕在线| 中亚洲国语对白在线视频| 蜜桃亚洲精品一区二区三区| 欧美日本视频| 波多野结衣高清无吗| 长腿黑丝高跟| 精品人妻熟女av久视频| 人人妻人人看人人澡| 免费在线观看影片大全网站| 亚洲无线观看免费| 精品久久久久久久久av| 永久网站在线| 可以在线观看毛片的网站| 中文字幕精品亚洲无线码一区| 欧美激情在线99| 国产精品免费一区二区三区在线| 国产高清视频在线播放一区| 成人精品一区二区免费| 亚洲av电影不卡..在线观看| 毛片女人毛片| 午夜福利视频1000在线观看| 夜夜爽天天搞| 欧美日韩乱码在线| 欧美成人性av电影在线观看| 亚洲欧美清纯卡通| 国产在视频线在精品| 亚洲国产精品合色在线| 亚洲国产精品sss在线观看| 俄罗斯特黄特色一大片| 老司机午夜福利在线观看视频| 久久久精品大字幕| 日韩国内少妇激情av| 极品教师在线视频| 久久99热6这里只有精品| 久久国内精品自在自线图片| 成年人黄色毛片网站| 听说在线观看完整版免费高清| 亚洲国产欧洲综合997久久,| 一进一出好大好爽视频| 国产不卡一卡二| 日本黄大片高清| av.在线天堂| 网址你懂的国产日韩在线| 亚洲va日本ⅴa欧美va伊人久久| 欧美+日韩+精品| 欧美高清成人免费视频www| 成人欧美大片| 两个人的视频大全免费| 亚洲最大成人av| 精品无人区乱码1区二区| 少妇的逼水好多| 97碰自拍视频| 国产精品自产拍在线观看55亚洲| 婷婷丁香在线五月| 国产精品1区2区在线观看.| 可以在线观看毛片的网站| 天堂网av新在线| 全区人妻精品视频| 天堂√8在线中文| 精品人妻熟女av久视频| 日韩国内少妇激情av| 黄片wwwwww| 国产高清有码在线观看视频| 又爽又黄a免费视频| 日韩精品中文字幕看吧| 精品国产三级普通话版| 午夜老司机福利剧场| 直男gayav资源| 欧美最新免费一区二区三区| 国产精品福利在线免费观看| av在线天堂中文字幕| 国产视频内射| 人妻制服诱惑在线中文字幕| 少妇丰满av| av视频在线观看入口| 两人在一起打扑克的视频| 欧美日韩国产亚洲二区| 男女做爰动态图高潮gif福利片| 男女视频在线观看网站免费| 亚洲在线自拍视频| 欧美一区二区精品小视频在线| 女生性感内裤真人,穿戴方法视频| 国产成人aa在线观看| 赤兔流量卡办理| 久久久午夜欧美精品| 极品教师在线免费播放| 又爽又黄a免费视频| 日本-黄色视频高清免费观看| 国产精品人妻久久久影院| 欧美成人一区二区免费高清观看| 最近最新中文字幕大全电影3| 精品一区二区三区视频在线观看免费| or卡值多少钱| 日韩欧美在线二视频| 精品不卡国产一区二区三区| 国产一区二区在线av高清观看| 国产麻豆成人av免费视频| 亚洲无线观看免费| 久久中文看片网| 简卡轻食公司| 91在线观看av| 两个人的视频大全免费| 麻豆一二三区av精品| 淫妇啪啪啪对白视频| 精品人妻熟女av久视频| 成年人黄色毛片网站| 成人性生交大片免费视频hd| 一级黄片播放器| 亚洲男人的天堂狠狠| 日本 欧美在线| 国产高清有码在线观看视频| 日韩欧美一区二区三区在线观看| 国产精品,欧美在线| 男人舔女人下体高潮全视频| 国产精品无大码| 亚洲欧美日韩无卡精品| 午夜福利欧美成人| 一级黄片播放器| 欧美精品国产亚洲| 国产蜜桃级精品一区二区三区| 亚洲精品日韩av片在线观看| 动漫黄色视频在线观看| 大型黄色视频在线免费观看| 国产高清不卡午夜福利| 免费无遮挡裸体视频| 国产主播在线观看一区二区| 午夜免费激情av| 又黄又爽又刺激的免费视频.| 两个人的视频大全免费| 久久久久久久精品吃奶| 免费人成在线观看视频色| 自拍偷自拍亚洲精品老妇| 91久久精品国产一区二区成人| 欧美国产日韩亚洲一区| 久久久久国产精品人妻aⅴ院| 精品一区二区三区视频在线观看免费| av中文乱码字幕在线| 国产真实伦视频高清在线观看 | 日韩大尺度精品在线看网址| 亚洲精品影视一区二区三区av| 亚洲欧美日韩无卡精品| 亚洲成人中文字幕在线播放| 中文字幕熟女人妻在线| 中国美女看黄片| 中出人妻视频一区二区| 国产淫片久久久久久久久| 午夜福利在线在线| 91在线精品国自产拍蜜月| 色哟哟哟哟哟哟| 黄色丝袜av网址大全| 一本一本综合久久| 亚洲av熟女| 国产一区二区激情短视频| 床上黄色一级片| eeuss影院久久| 亚洲经典国产精华液单| 午夜免费男女啪啪视频观看 | 中文字幕熟女人妻在线| 性插视频无遮挡在线免费观看| 久久久久久久久久久丰满 | 国产伦人伦偷精品视频| 男女边吃奶边做爰视频| 亚洲性夜色夜夜综合| 成年版毛片免费区| 亚洲性久久影院| 两个人的视频大全免费| 一级黄色大片毛片| 亚洲真实伦在线观看| 成人国产麻豆网| 99久久精品热视频| 88av欧美| 69人妻影院| 国模一区二区三区四区视频| 亚洲精品国产成人久久av| 丝袜美腿在线中文| 女生性感内裤真人,穿戴方法视频| 他把我摸到了高潮在线观看| 美女免费视频网站| 3wmmmm亚洲av在线观看| 一级a爱片免费观看的视频| 国产精品一区二区性色av| 一区二区三区激情视频| 日本免费一区二区三区高清不卡| 91av网一区二区| 精品午夜福利在线看| 亚洲狠狠婷婷综合久久图片| 一a级毛片在线观看| 神马国产精品三级电影在线观看| 国产视频一区二区在线看| 午夜视频国产福利| 中文资源天堂在线| 国产精品国产高清国产av| 免费观看在线日韩| 97碰自拍视频| 成人特级黄色片久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 99久久成人亚洲精品观看| 99久久精品国产国产毛片| 免费人成视频x8x8入口观看| 18禁在线播放成人免费| 国产高清视频在线观看网站| 九九久久精品国产亚洲av麻豆| av在线观看视频网站免费| 少妇被粗大猛烈的视频| 此物有八面人人有两片| 美女大奶头视频| 99国产极品粉嫩在线观看| 听说在线观看完整版免费高清| 久久精品国产鲁丝片午夜精品 | 亚洲精品久久国产高清桃花| 国产精品不卡视频一区二区| 99视频精品全部免费 在线| 国内精品一区二区在线观看| 久久亚洲真实| 色精品久久人妻99蜜桃| 夜夜爽天天搞| 亚洲av一区综合| 级片在线观看| 国产 一区精品| 免费观看的影片在线观看| netflix在线观看网站| 男女做爰动态图高潮gif福利片| 国产精品美女特级片免费视频播放器| 亚洲中文字幕日韩| 久久久久久久精品吃奶| 亚洲午夜理论影院| 久久人人爽人人爽人人片va| 高清在线国产一区| 成人三级黄色视频| 国产麻豆成人av免费视频| 亚洲色图av天堂| 国国产精品蜜臀av免费| 国产aⅴ精品一区二区三区波| 久久天躁狠狠躁夜夜2o2o| 看黄色毛片网站| 久久精品夜夜夜夜夜久久蜜豆| 成人av在线播放网站| 国产毛片a区久久久久| 国产一区二区激情短视频| 亚洲第一电影网av| 成人三级黄色视频| 99热这里只有是精品在线观看| 国产视频一区二区在线看| 超碰av人人做人人爽久久| 男女那种视频在线观看| 日本 av在线| 少妇人妻精品综合一区二区 | 成人性生交大片免费视频hd| 欧美日韩综合久久久久久 | 99精品在免费线老司机午夜| 久久久久久伊人网av| 在线看三级毛片| 亚洲中文字幕日韩| 午夜福利在线观看吧| 日韩欧美在线乱码| 男女边吃奶边做爰视频| 成人综合一区亚洲| 色综合亚洲欧美另类图片| 国产视频内射| 午夜福利高清视频| 真人一进一出gif抽搐免费| 日韩精品中文字幕看吧| 国产伦人伦偷精品视频| 亚洲无线观看免费| a级毛片免费高清观看在线播放| 老师上课跳d突然被开到最大视频| 欧美日本亚洲视频在线播放| 国产成人aa在线观看| 欧美区成人在线视频| 亚洲av一区综合| 免费一级毛片在线播放高清视频| 精品乱码久久久久久99久播| 亚洲图色成人| 黄片wwwwww| 午夜激情欧美在线| 在线观看av片永久免费下载| 亚洲av免费高清在线观看| 国产精品国产高清国产av| 俄罗斯特黄特色一大片| 看黄色毛片网站| 神马国产精品三级电影在线观看| a级毛片a级免费在线| 一级黄片播放器| 精品一区二区三区视频在线观看免费| 色精品久久人妻99蜜桃| 看十八女毛片水多多多| 日本爱情动作片www.在线观看 | 婷婷精品国产亚洲av在线| 久久九九热精品免费| 国产精品98久久久久久宅男小说| 91在线精品国自产拍蜜月| 免费av观看视频| 哪里可以看免费的av片| 精品久久久久久久久久免费视频| 日日撸夜夜添| 尤物成人国产欧美一区二区三区| 在线观看一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 欧美又色又爽又黄视频| 国产美女午夜福利| 大型黄色视频在线免费观看| 99在线视频只有这里精品首页| 国产老妇女一区| 亚洲国产精品成人综合色| 中文资源天堂在线| 美女xxoo啪啪120秒动态图| 欧美最黄视频在线播放免费| 亚洲18禁久久av| 一本精品99久久精品77| 我的女老师完整版在线观看| 国产 一区 欧美 日韩| 亚洲美女视频黄频| 精品久久久久久成人av| 成人国产麻豆网| 如何舔出高潮| 久久国产乱子免费精品| 国产中年淑女户外野战色| 国产女主播在线喷水免费视频网站 | 日韩欧美一区二区三区在线观看| 人妻久久中文字幕网| 国产男靠女视频免费网站| 人妻少妇偷人精品九色| 国产精品综合久久久久久久免费| 男人和女人高潮做爰伦理| 国产熟女欧美一区二区| 午夜老司机福利剧场| 成人国产综合亚洲| 毛片一级片免费看久久久久 | 琪琪午夜伦伦电影理论片6080| 日本一本二区三区精品| 久久久久久久久久黄片| 男女那种视频在线观看| 亚洲18禁久久av| 国产色爽女视频免费观看| 国产精品久久久久久精品电影| 精品日产1卡2卡| 日本色播在线视频| 中出人妻视频一区二区| 一a级毛片在线观看| 女的被弄到高潮叫床怎么办 | 国产大屁股一区二区在线视频| 少妇丰满av| 欧美极品一区二区三区四区| 久久精品国产自在天天线| 干丝袜人妻中文字幕| 免费看a级黄色片| 无人区码免费观看不卡| 男人舔奶头视频| 国产成人av教育| 91久久精品电影网| 午夜激情欧美在线| 欧美日本亚洲视频在线播放| 成年女人毛片免费观看观看9| 亚洲真实伦在线观看| 97超级碰碰碰精品色视频在线观看| 大型黄色视频在线免费观看| 在线看三级毛片| 国产av在哪里看| 久久久久性生活片| 2021天堂中文幕一二区在线观| 久久久国产成人免费| 亚洲一区二区三区色噜噜| 免费观看的影片在线观看| 亚洲电影在线观看av| 18禁裸乳无遮挡免费网站照片| 国产精品亚洲一级av第二区| 午夜免费激情av| 国产亚洲精品久久久久久毛片| 一区二区三区免费毛片| 欧美最新免费一区二区三区| 一边摸一边抽搐一进一小说| 国产亚洲精品久久久久久毛片| 久久久久九九精品影院| 成年女人看的毛片在线观看| 一本一本综合久久| 男女啪啪激烈高潮av片| 美女 人体艺术 gogo| 99国产极品粉嫩在线观看| 两人在一起打扑克的视频| 色在线成人网| 亚洲人成网站在线播| 少妇丰满av| 日本三级黄在线观看| www.色视频.com| 久久久久精品国产欧美久久久| 日韩精品有码人妻一区| 蜜桃久久精品国产亚洲av| 精品一区二区免费观看| 国产色爽女视频免费观看| 国产精品一区二区三区四区久久| 成人一区二区视频在线观看| 久久久久久久午夜电影| 中国美白少妇内射xxxbb| 最近视频中文字幕2019在线8| 亚洲成av人片在线播放无| 国产一区二区三区在线臀色熟女| 久久久久免费精品人妻一区二区| 岛国在线免费视频观看| av福利片在线观看| 真人一进一出gif抽搐免费| ponron亚洲| 亚洲国产色片| 日韩精品青青久久久久久| 国产日本99.免费观看| 国产真实伦视频高清在线观看 | 国产欧美日韩精品亚洲av| 免费一级毛片在线播放高清视频| 国内毛片毛片毛片毛片毛片| 成年版毛片免费区| 午夜福利视频1000在线观看| 欧美中文日本在线观看视频| 久久精品国产自在天天线| 日本在线视频免费播放| 久久久久久久久久黄片| 赤兔流量卡办理| 偷拍熟女少妇极品色| 搞女人的毛片| 欧美黑人巨大hd| 一区二区三区激情视频| 国产麻豆成人av免费视频| 欧美日本亚洲视频在线播放| 亚洲美女搞黄在线观看 | 99riav亚洲国产免费| 免费观看在线日韩| 99热6这里只有精品| 久久国产乱子免费精品| 国产在视频线在精品| 亚洲av免费在线观看| 日本欧美国产在线视频| 全区人妻精品视频| 51国产日韩欧美| 深夜a级毛片| 日本在线视频免费播放| 亚洲内射少妇av| 91狼人影院| 夜夜爽天天搞| 亚洲成人久久性| 亚洲人成伊人成综合网2020| 18禁黄网站禁片免费观看直播| 国产久久久一区二区三区| 亚洲一级一片aⅴ在线观看| 天堂av国产一区二区熟女人妻| 国产精品精品国产色婷婷| 国产探花极品一区二区| 嫁个100分男人电影在线观看| 三级国产精品欧美在线观看| 久久精品国产亚洲网站| 男人舔女人下体高潮全视频| 淫妇啪啪啪对白视频| 噜噜噜噜噜久久久久久91| 国产毛片a区久久久久| 午夜福利视频1000在线观看| 午夜免费成人在线视频| 国内久久婷婷六月综合欲色啪| 97超视频在线观看视频| 赤兔流量卡办理| av视频在线观看入口| 在线观看免费视频日本深夜| 国产成人aa在线观看| 一级a爱片免费观看的视频| 老师上课跳d突然被开到最大视频| 国产精品三级大全| 国产毛片a区久久久久| 禁无遮挡网站| 人人妻,人人澡人人爽秒播| 精品99又大又爽又粗少妇毛片 | 欧美人与善性xxx| 久久亚洲真实| 午夜福利高清视频| 欧美另类亚洲清纯唯美| 亚洲18禁久久av| 中国美白少妇内射xxxbb| 亚洲五月天丁香| 麻豆久久精品国产亚洲av| 国产日本99.免费观看| 国产伦精品一区二区三区视频9| 欧美最黄视频在线播放免费| 亚洲七黄色美女视频| 九九在线视频观看精品| 在线看三级毛片| 久久久成人免费电影| 精品国内亚洲2022精品成人| 日日干狠狠操夜夜爽| 永久网站在线| 成年女人毛片免费观看观看9| 精品乱码久久久久久99久播| av在线亚洲专区| 性色avwww在线观看| 日韩欧美国产一区二区入口| 久久久久久久久久久丰满 | 天堂网av新在线| av在线天堂中文字幕| 欧美最新免费一区二区三区| 热99re8久久精品国产| 午夜福利欧美成人| 亚洲三级黄色毛片| 亚洲av熟女| 国产高潮美女av| 又爽又黄无遮挡网站| 亚洲av免费在线观看| 国产成人一区二区在线| 日韩高清综合在线| 欧美日本亚洲视频在线播放| 真实男女啪啪啪动态图| 欧美性猛交╳xxx乱大交人| 亚洲性久久影院| 亚洲七黄色美女视频| 亚洲av成人精品一区久久| 三级男女做爰猛烈吃奶摸视频| 91久久精品国产一区二区成人| 欧美人与善性xxx| 免费观看人在逋| 国产探花极品一区二区| 精品免费久久久久久久清纯| 天天一区二区日本电影三级| 国产精品久久久久久av不卡| 又黄又爽又免费观看的视频| 日本 欧美在线| 波野结衣二区三区在线| 亚洲欧美日韩卡通动漫| 少妇熟女aⅴ在线视频| 国产高清有码在线观看视频| 伦理电影大哥的女人| 亚洲国产精品成人综合色| h日本视频在线播放| 91久久精品国产一区二区成人| 白带黄色成豆腐渣| 亚洲aⅴ乱码一区二区在线播放| 黄色一级大片看看| 亚洲aⅴ乱码一区二区在线播放| 欧美不卡视频在线免费观看| 中国美女看黄片| av天堂中文字幕网| 亚洲四区av| 不卡一级毛片| 午夜爱爱视频在线播放| 久久精品人妻少妇| 在线看三级毛片| 久久精品国产自在天天线| 国产av一区在线观看免费| 久久中文看片网| 国产色爽女视频免费观看| 天堂动漫精品| 日韩一区二区视频免费看| 国产黄a三级三级三级人| 99热精品在线国产| 听说在线观看完整版免费高清| 搞女人的毛片| 久久久久久久久大av| 国产精品嫩草影院av在线观看 | 久久这里只有精品中国| 99热这里只有是精品50| 欧美精品国产亚洲| 赤兔流量卡办理| 嫩草影院新地址| 伦理电影大哥的女人| 久久国内精品自在自线图片| av天堂在线播放| 欧美丝袜亚洲另类 | 午夜精品久久久久久毛片777| 日韩精品青青久久久久久| 91精品国产九色| 久久精品国产亚洲av香蕉五月| 国产精品一区二区免费欧美| 亚洲av美国av| 真人做人爱边吃奶动态| 美女xxoo啪啪120秒动态图| 日韩精品中文字幕看吧| 俺也久久电影网| 美女免费视频网站| 国产av麻豆久久久久久久| 欧美性猛交╳xxx乱大交人| 成人国产综合亚洲| 精品欧美国产一区二区三| 2021天堂中文幕一二区在线观| 国产色婷婷99| 亚洲黑人精品在线| 人人妻人人澡欧美一区二区| 啦啦啦观看免费观看视频高清| 亚洲五月天丁香| 亚洲成人精品中文字幕电影| 啦啦啦观看免费观看视频高清| 天天躁日日操中文字幕| av天堂在线播放| 大又大粗又爽又黄少妇毛片口| 啪啪无遮挡十八禁网站| av在线观看视频网站免费| 日韩大尺度精品在线看网址| 午夜福利在线观看吧| 91av网一区二区| 色综合婷婷激情| 亚洲欧美日韩高清专用| 精品国产三级普通话版| 亚洲国产日韩欧美精品在线观看|