• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum Coherence Quantifiers Based on R′enyi α-Relative Entropy?

    2017-05-12 08:52:51LianHeShao邵連合YongMingLi李永明YuLuo羅宇andZhengJunXi席政軍
    Communications in Theoretical Physics 2017年6期

    Lian-He Shao(邵連合),Yong-Ming Li(李永明), Yu Luo(羅宇),and Zheng-Jun Xi(席政軍)

    College of Computer Science,Shaanxi Normal University,Xi’an 710062,China

    1 Introduction

    Coherence arising from quantum superposition rule,is an important resources in quantum information theory.Coherence is discussed in the interference phenomena and it is know due to the role of phase coherence in optical phenomena.[1]A rigorous framework for quantifying coherence was proposed by Baumgratz et al.and they proposed several measures of coherence,which are based on information distance measures including relative entropy andl1norm.[2]The quantification framework of quantum coherence stimulated many further considerations,which include other coherence measures,[3?5]the operational interpretations of quantum coherence,[6?8]the relationship among quantum entanglement,quantum discord and quantum deficit,[9?13]quantification of coherence in in finite dimensional system,[14?15]the other properties are similar to quantum entanglement theory.[16?29]

    From the view point of the definition,one can straightforwardly quantify the coherence in a given basis by measuring the distance between the quantum stateρand its nearest incoherent state.Baumgratz et al.gave four necessary criteria,[2]which any quantity should fulfill them.Given a finite-dimensional Hilbert space H withd=dim(H).We note that I is the set of quantum states,which is called incoherent state that are diagonal in a fixed basis{Kn}is a set of Kraus operators,and sat-?I.Then any proper measure of the coherenceCmust satisfy the following conditions:

    (C1)C(ρ)≥ 0 for all quantum statesρ,andC(ρ)=0 if and only ifρ∈I.

    (C2a) Monotonicity under all the incoherent completely positive and trace preserving(ICPTP)maps Φ:C(ρ)≥C(Φ(ρ)),where Φ(ρ)= ∑nKnρ.

    (C2b)Monotonicity for average coherence under subselection based on measurements outcomes:

    The R′enyi entropy is important in quantum information theory. It can be used as a measure of entanglement.[30]In Ref.[31],Mosonyi and Hiai defined the R′enyiα-relative entropy,which can act as an information distance measure.In Ref.[32],Chitambar et al.proposed that the R′enyiα-relative entropy of coherence fulfills condition C1 and C2a forα∈ [0,2],then we call the R′enyiαrelative entropy of coherence is a coherence monotone.[34]As we know,the condition C2b is important as it allows for sub-selection based on measurement outcomes,a process available in well controlled quantum experiments and it is also difficult to verify.[2]A natural question arises immediately,is the condition C2b satisfied for the R′enyiα-relative entropy of coherence?

    In this paper,we will resolve the above question.In Sec.2,we review basic points for the R′enyiα-relative entropy of coherence.In Sec.3,we prove that the R′enyiα-relative entropy of coherence does’t fulfill the condition C2b and it also does not ful fill the extension condition C2b presented in Ref.[35].We give the trade offrelation between the R′enyiα-relative entropy of coherence and mixedness in Sec.4.The case of the R′enyiα-relative entropy of coherence for a single qubit is discussed in Sec.5.In Sec.6 we give the summary of results.

    2 The R′enyiα-Relative Entropy of Coherence

    In this section,we recall basic points of the R′enyiαrelative entropy of coherence present in Ref.[32].Forα∈ [0,∞]the R′enyiα-relative entropy of the statesρbyδis defined by[31]

    This quantity is contractive for allα∈[0,2]. Since the R′enyiα-relative entropy can act as an information distance measure.[31]Then,we can define the R′enyiαrelative entropy of coherence as:

    Note that in the limitα→ 1,Sα→1(ρ‖δ)gives the relative entropyS(ρ‖δ)= tr(ρlogρ) ? tr(ρlogδ). Letδ=∑

    iqi|i〉〈i|be some incoherent states,then the analytical expression ofCα(ρ)can be obtained as[32]

    Equation(3)can be further simplified as[32]

    In this paper,we do not consider the cases forα=0 and the limitα→ 1.Forα=0,the R′enyi relative entropy of coherence is always equal to 0.For the limitα→ 1,a detailed study for the standard relative entropy of coherence is presented in Ref.[2].

    3 The Monotoncity Property

    First we show thatCα(ρ)ful fills the condition C3 forα∈ [0,1).In Ref.[31],it is shown thatSα(ρ||δ)is convexity forα∈ [0,1).For any ensemble{pi,ρi},we assume the incoherent statesare closet with respect toρi,then we have

    where the second inequality using the convexity ofSα(ρ||δ).We conclude that forα∈ [0,1),Cα(ρ)cannot increase under mixing of quantum states,thenCα(ρ)ful fills the condition C3 forα∈ [0,1).Sα(ρ||δ)is not convexity anymore forα∈(1,2],[31]there may exist some cases,The condition C3 combined with C2b,implies C2a.In Ref.[32],Chitambar et al.studied the R′enyiα-relative entropy of coherence ful fills C2a for different kinds of incoherent operations.They do not consider whether the R′enyiα-relative entropy of coherence ful fills the condition C2b.This motivates us to study whether C2b is satis fied forCα(ρ).

    Now we use the example,which presented in Ref.[2]to show that condition C2b is violated.We choose

    are the prescribed orthonormal basis.The two Kraus operators are written as

    where the complex numbersaandbobey|a|2+|b|2=1.This condition guarantees that∑nKn=I.The density matrix is presented as

    After applying this channel to the density matrixρ,we obtain the output states:

    With the probabilities:

    By using Eq.(4),we obtain the R′enyiα-relative entropy of coherence forρas

    Note that the operatorK1makesCα(ρ1)=0,we only need to calculateCα(ρ2).

    We chooseb=1,substituting it into Eqs.(9)and(10),we then get

    The equality holding if and only ifα=1.Thus,forα∈(0,1)

    Fig.1 (Color online)Comparison between Cα(ρ)and p2Cα(ρ2)for b=1/2.The black line shows p2Cα(ρ2).The red line shows Cα(ρ).

    Recently,Yu et al.proposed an alternative framework for quantifying coherence,which is more flexible and convenient for applications than the original one.[33]Their framework can be expressed as follows.Any proper measure of the coherenceCmust satisfy the following three conditions:

    (B1)Nonnegativity:C(ρ)≥ 0 for all quantum statesρ,andC(ρ)=0 if and only ifρ∈ I.

    (B2)Monotonicity:C(ρ) ≥C(Φ(ρ)),where Φ(ρ)=is an incoherent operation.

    (B3) Additivity of coherence for subspace-independent states:C(p1ρ1⊕p2ρ2)=p1C(ρ1)+p2C(ρ2)for blockdiagonal statesρin the incoherent basis,where density operatorsρ1andρ2are defined on the two independent subspaces,p1andp2are two possibility coefficients withp1+p2=1 and

    The above three conditions(B1,B2,B3)are fulfilled by all the coherence measures based on the original four conditions(C1,C2a,C2b,C3). Thus,this framework provides us an alternative method to illustrate that the measure of coherence induced by R′enyiαrelative entropy must violate C2b.We consider a stateρ=p1ρ1⊕p2ρ2,withρ1=(1/2)(|0〉+|1〉)(〈0|+ 〈1|)andρ2=(1/3)(|2〉+|3〉+|4〉)(〈2|+ 〈3|+ 〈4|).[33]We choose the computational basis|i〉4i=0as the reference basis,then we have

    We plotCα(ρ)and(1/2)C(ρ1)+(1/2)C(ρ2)in Fig.2.It is shown that

    Cα(ρ)=Cα(p1ρ1⊕p2ρ2)/=p1Cα(ρ1)+p2Cα(ρ2).(18)We note that for the limitα→ 1,the R′enyiαrelative entropy of coherence will become the standard relative entropy of coherence,thus we haveCα→1(ρ)=p1Cα→1(ρ1)+p2Cα→1(ρ2). Therefore,the R′enyiαrelative entropy of coherence must violate C2b in general.

    Fig.2 (Color online)Comparison between Cα(ρ)and(1/2)C(ρ1)+(1/2)C(ρ2). The black solid line shows p2Cα(ρ2). The red dotted line shows(1/2)C(ρ1)+(1/2)C(ρ2).

    From the above examples,we then conclude that condition C2b,i.e.,Cα(ρ) ≥ ∑npnCα(ρn)is not generally true for the measure of coherence induced by R′enyiαrelative entropy.

    In Ref.[35],Rastegin studied the Tsallis relativeαentropies of coherence

    and give an extension of condition C2b.The extension of condition C2b can be represented as

    violates condition C2b.[5]Another related quantity is geometric coherenceCg(ρ)=1 ? maxδ∈IF(ρ,δ),ful fills conditions C1,C2a,C2b,and C3.[4]AlthoughCF(ρ)andCg(ρ)are different with the square root function,butCg(ρ)ful fills the conditions C2b andCF(ρ)does not fulfill condition C2b.Another question arises immediately,is the extension of condition C2b satis fied for the R′enyiα-relative entropy of coherenceCα(ρ)?

    We also use the above example to solve this problem.According to Ref.[32],when we use the R′enyiαrelative entropy to quantify coherence,the optimal incoherent state forρis

    With the corresponding probabilities:

    Compare Eq.(13)with Eq.(22),after some simple algebraic operation,we obtain

    The equality holding if and only ifα=1.Thus,forα∈(0,1)

    From the above example,we then conclude that the extension of condition C2b,i.e.,

    is not generally true for the measure of coherence induced by R′enyiα-relative entropy.

    4 The R′enyiα-Relative Entropy of Coherence and Mixedness

    In order to be a meaningful resource quantum quantifier for coherence,the minimal requirements are the conditions C1 and C2a for any quantityC.[34]We have proved that the R′enyiα-relative entropy of coherence does not fulfill the condition C2b and the extension of condition C2b,but the R′enyiα-relative entropy of coherence is satisfied the minimal requirements to be a coherence quantifier forα∈ [0,2],thus the R′enyiα-relative entropy of coherence can act as a coherence monotone quantifier,[34]An important problem for quantifying coherence is the relationship between quantum coherence quantities and mixedness.The trade-off between some quantities and mixedness have been discussed in Refs.[37–38].Here we focus on the trade-off between the R′enyiα-relative entropy of coherence and mixedness.

    Theorem 1For 0<α≤2 andα/=1,the upper bound of the R′enyiα-relative entropy of coherence is given by

    and the trade-off betweenCα(ρ)and mixedness can be expressed as

    whereM(ρ):=[d/(d?1)][1? tr(ρ2)].

    ProofWe only prove the case ofα∈ (0,1),α∈ (1,2]is completely analogous.Forα∈ (0,2]andα/=1,we chooseδis the completely mixed stateδ= ∑i(1/d)|i〉〈i|,then we can obtain

    T∑he inequation holding is that the completely mixed state(1/d)|i〉〈i|may not be the optimal incoherent state forAccording to Ref.[35],forα∈ (0,2]andα/=1,the functionε→εα?1/(α? 1)is concave,applying Jensen’s inequality,we then have

    Hereλiare the eigenvalues ofρand obey the normalization condition.Forα∈(0,1),α?1<0,then

    CombineM(ρ):=[d/(d?1)][1 ? tr(ρ2)]and the above inequation,we get

    Equation(25)provides an upper bound on R′enyiαrelative entropy of coherence in terms of the purity tr(ρ2).Equation(26)shows that when mixedness increases,an upper bound on R′enyiα-relative entropy of coherence decreases.

    5 The R′enyiα-Relative Entropy of Coherence for a Single Qubit

    Due to the analytical expression ofCα(ρ)for qubit is complicated,so we consider a simple case that we chooseα=2 for the coherence quantity.The qubit states can write as

    Fig.3 The values of ln2C(ρ)+M(ρ)and 22 as functions of a.

    6 Summary

    In this paper,we show that the R′enyiα-relative entropy of coherence does not satisfy condition C2b and extension of C2b forα∈(0,1)by presenting examples.Thus the measure of coherence induced by the R′enyiα-relative entropy can not be called coherence measure.[34]Due to the R′enyiα-relative entropy of coherence fulfill the condition C1 and C2a,so the R′enyiα-relative entropy of coherence can be called as a coherence monotone quantifier.The R′enyiα-relative entropy of coherence fulfills the minimal requirements to be a meaningful resource quantum quantifier for coherence,[34]then we examine the trade-offrelations between coherence and mixedness.Some properties are further exemplified with a single qubit forα=2.Our findings complement the results present in Ref.[32].

    References

    [1]L.Mandel and E.Wolf,Optical Coherence and Quantum Optics,Cambridge University Press,Cambridge,UK(1995).

    [2]T.Baumgratz,M.Cramer,and M.B.Plenio,Phys.Rev.Lett.113(2014)140401.

    [3]S.Rana,P.Parashar,and M.Lewenstein,Phys.Rev.A 93(2016)012110.

    [4]A.Streltsov,U.Singh,H.S.Dhar,M.N.Bera,and G.Adesso,Phys.Rev.Lett.115(2015)020403.

    [5]L.H.Shao,Z.Xi,H.Fan,and Y.Li,Phys.Rev.A 91(2015)042120.

    [6]C.Napoli,T.R.Bromley,M.Cianciaruso,M.Piani,N.Johnston,and G.Adesso,Phys.Rev.Lett.116(2016)150502.

    [7]U.Singh,M.N.Bera,A.Misra,and A.K.Pati,Erasing Quantum Coherence:An Operational Approach,arXiv:1506.08186[quant-ph](2015).

    [8]A.Winter and D.Yang,Phys.Rev.Lett.116(2016)120404.

    [9]Y.Peng,Y.R.Zhang,Z.Y.Fan,S.Liu,and H.Fan,Complementary Relation of Quantum Coherence and Quantum Correlations in Multiple Measurements,arXiv:1608.07950[quant-ph](2016).

    [10]Z.Xi,Y.Li,and H.Fan,Sci.Rep.5(2015)10922.

    [11]E.Chitambar and Min-Hsiu Hsieh,Phys.Rev.Lett.117(2016)020402.

    [12]Y.Yao,X.Xiao,L.Ge,and C.P.Sun,Phys.Rev.A 92(2015)022112.

    [13]J.Ma,B.Yadin,D.Girolami,V.Vedral,and M.Gu,Phys.Rev.Lett.116(2016)160407.

    [14]Y.R.Zhang,L.H.Shao,Y.Li,and H.Fan,Phys.Rev.A 93(2016)012334.

    [15]J.Xu,Phys.Rev.A 93(2016)032111.

    [16]C.L.Liu,X.D.Yu,G.F.Xu,and D.M.Tong,Quantum Inf.Process.15(2016)4189.

    [17]F.G.Zhang,L.H.Shao,Y.Luo,and Y.Li,Quantum Inf.Process.16(2017)31.

    [18]J.J.Chen,J.Cui,Y.R.Zhang,and H.Fan,Phys.Rev.A 94(2016)022112.

    [19]E.Chitambar,A.Streltsov,S.Rana,M.N.Bera,G.Adesso,and M.Lewenstein,Phys.Rev.Lett.116(2016)070402.

    [20]C.Radhakrishnan,M.Parthasarathy,S.Jambulingam,and T.Byrnes,Phys.Rev.Lett.116(2016)150504.

    [21]A.Mani and V.Karimipour,Phys.Rev.A 92(2015)032331.

    [22]Y.Peng,Y.Jiang,and H.Fan,Phys.Rev.A 93(2016)032326.

    [23]H.J.Zhang,B.Chen,M.Li,S.M.Fei,and G.L.Long,Commun.Theor.Phys.67(2017)166.

    [24]X.D.Yu,D.J.Zhang,C.L.Liu,and D.M.Tong,Phys.Rev.A 93(2016)060303.

    [25]K.Bu,U.Singh,and J.Wu,Phys.Rev.A 93(2016)042326.

    [26]J.Wang,Z.Tian,J.Jing,and H.Fan,Phys.Rev.A 93(2016)062105.

    [27]M.Piani,M.Cianciaruso,T.R.Bromley,C.Napoli,N.Johnston,and G.Adesso,Phys.Rev.A 93(2016)042107.

    [28]T.R.Bromley,M.Cianciaruso,and G.Adesso,Phys.Rev.Lett.114(2015)210401.

    [29]S.Du,Z.Bai,and Y.Guo,Phys.Rev.A 91(2015)052120.

    [30]Y.X.Wang,L.Z.Mu,V.Vedral,and H.Fan,Phys.Rev.A 93(2016)022324.

    [31]M.Mosonyi and F.Hiai,IEEE Trans.Inf.Theory 57(2011)2474.

    [32]E.Chitambar and G.Gour,Phys.Rev.A 94(2016)052336.

    [33]X.D.Yu,D.J.Zhang,G.F.Xu,and D.M.Tong,Phys.Rev.A 94(2016)060302.

    [34]A.Streltsov,G.Adesso,and M.B.Plenio,Quantum Coherence as a Resource,arXiv:1609.02439[quant-ph](2016).

    [35]A.E.Rastegin,Phys.Rev.A 93(2016)032136.

    [36]F.Hiai,M.Mosonyi,D.Petz,and C.Beny,Rev.Math.Phys.23(2011)691.

    [37]U.Singh,M.N.Bera,H.S.Dhar,and A.K.Pati,Phys.Rev.A 91(2015)052115.

    [38]S.Cheng and M.J.W.Hall,Phys.Rev.A 92(2015)042101.

    天天躁夜夜躁狠狠久久av| 亚洲四区av| 午夜免费鲁丝| 国产一区亚洲一区在线观看| 成人毛片60女人毛片免费| 91精品三级在线观看| 黄色 视频免费看| 狂野欧美激情性bbbbbb| 黄色怎么调成土黄色| 日日撸夜夜添| 久久免费观看电影| 国产一区二区激情短视频 | 老司机亚洲免费影院| 伦理电影免费视频| 欧美亚洲 丝袜 人妻 在线| 看免费成人av毛片| a级片在线免费高清观看视频| 中文字幕亚洲精品专区| 丰满少妇做爰视频| 美女大奶头黄色视频| 日韩在线高清观看一区二区三区| 伊人久久国产一区二区| 丰满饥渴人妻一区二区三| av电影中文网址| 久久综合国产亚洲精品| 免费不卡的大黄色大毛片视频在线观看| 成人毛片60女人毛片免费| 看十八女毛片水多多多| 丁香六月天网| 国产精品久久久久久久久免| 国产精品免费视频内射| 黄色怎么调成土黄色| av一本久久久久| 麻豆av在线久日| 最近中文字幕2019免费版| 亚洲,欧美,日韩| 国产xxxxx性猛交| 国产深夜福利视频在线观看| 最近的中文字幕免费完整| 人人妻人人添人人爽欧美一区卜| 国产男人的电影天堂91| 有码 亚洲区| 免费观看a级毛片全部| 欧美日韩一区二区视频在线观看视频在线| 国产午夜精品一二区理论片| 久久精品国产鲁丝片午夜精品| 在现免费观看毛片| 亚洲伊人久久精品综合| 欧美人与善性xxx| 亚洲综合色网址| 欧美人与性动交α欧美精品济南到 | 人人妻人人澡人人看| 色94色欧美一区二区| 久热这里只有精品99| 男女午夜视频在线观看| 亚洲国产色片| 天堂8中文在线网| 日韩大片免费观看网站| 超色免费av| 91精品三级在线观看| 国产精品香港三级国产av潘金莲 | 久久久久久久久久久免费av| 久久精品aⅴ一区二区三区四区 | 国产野战对白在线观看| 国产老妇伦熟女老妇高清| av卡一久久| 中文字幕最新亚洲高清| 日韩制服骚丝袜av| 国产精品无大码| 纵有疾风起免费观看全集完整版| 国产伦理片在线播放av一区| 日本欧美视频一区| 自线自在国产av| 免费黄色在线免费观看| 午夜福利影视在线免费观看| 黄色毛片三级朝国网站| 久久人人爽av亚洲精品天堂| 大码成人一级视频| 七月丁香在线播放| 免费在线观看黄色视频的| 亚洲人成电影观看| 国产女主播在线喷水免费视频网站| 成年人免费黄色播放视频| 日韩电影二区| 如何舔出高潮| 999精品在线视频| 精品国产超薄肉色丝袜足j| av女优亚洲男人天堂| 我要看黄色一级片免费的| 国语对白做爰xxxⅹ性视频网站| 国产成人av激情在线播放| 多毛熟女@视频| 久久综合国产亚洲精品| 黑人欧美特级aaaaaa片| 国产精品女同一区二区软件| 国产高清国产精品国产三级| 夫妻午夜视频| 啦啦啦在线观看免费高清www| 女人精品久久久久毛片| 亚洲伊人久久精品综合| 成人国产av品久久久| 国产精品嫩草影院av在线观看| 国产精品三级大全| 有码 亚洲区| av一本久久久久| 女人精品久久久久毛片| 中文精品一卡2卡3卡4更新| 欧美少妇被猛烈插入视频| 欧美中文综合在线视频| 国产男女内射视频| 日韩中文字幕视频在线看片| 免费久久久久久久精品成人欧美视频| 精品午夜福利在线看| av又黄又爽大尺度在线免费看| av免费在线看不卡| 国产亚洲欧美精品永久| 777米奇影视久久| 国产片内射在线| 亚洲精品国产色婷婷电影| 成人18禁高潮啪啪吃奶动态图| 亚洲av电影在线观看一区二区三区| 亚洲内射少妇av| 91久久精品国产一区二区三区| 看免费av毛片| 日韩成人av中文字幕在线观看| 婷婷色综合www| 校园人妻丝袜中文字幕| 欧美精品国产亚洲| 777米奇影视久久| 亚洲欧洲日产国产| 久久久精品94久久精品| av又黄又爽大尺度在线免费看| 亚洲精品国产色婷婷电影| 国产精品女同一区二区软件| 91精品伊人久久大香线蕉| 午夜日韩欧美国产| 国产成人a∨麻豆精品| 亚洲欧美一区二区三区久久| 亚洲国产最新在线播放| 我要看黄色一级片免费的| www日本在线高清视频| 亚洲国产色片| 国产精品一二三区在线看| 999久久久国产精品视频| 老女人水多毛片| 欧美变态另类bdsm刘玥| 久久亚洲国产成人精品v| 精品人妻熟女毛片av久久网站| 成人亚洲精品一区在线观看| 久久女婷五月综合色啪小说| av有码第一页| 午夜福利网站1000一区二区三区| 男女边摸边吃奶| 国产精品一国产av| 久久久久精品久久久久真实原创| 观看av在线不卡| 日韩三级伦理在线观看| 有码 亚洲区| 青青草视频在线视频观看| 久久青草综合色| 国产免费视频播放在线视频| 久久精品国产综合久久久| 777久久人妻少妇嫩草av网站| 妹子高潮喷水视频| 国产一级毛片在线| 午夜精品国产一区二区电影| 巨乳人妻的诱惑在线观看| 国产午夜精品一二区理论片| 欧美激情极品国产一区二区三区| 欧美激情高清一区二区三区 | 波野结衣二区三区在线| 久久精品国产亚洲av高清一级| 精品人妻偷拍中文字幕| 国产黄频视频在线观看| 日本色播在线视频| 日韩制服骚丝袜av| 激情五月婷婷亚洲| videossex国产| 亚洲三区欧美一区| 国产在线一区二区三区精| 久久久a久久爽久久v久久| 欧美97在线视频| 亚洲精品美女久久久久99蜜臀 | 王馨瑶露胸无遮挡在线观看| av不卡在线播放| 丝袜在线中文字幕| 老女人水多毛片| 赤兔流量卡办理| 波野结衣二区三区在线| 男的添女的下面高潮视频| 中文字幕人妻熟女乱码| 亚洲国产欧美在线一区| 欧美另类一区| 免费观看性生交大片5| 好男人视频免费观看在线| 成年人午夜在线观看视频| 晚上一个人看的免费电影| 亚洲图色成人| 久久精品aⅴ一区二区三区四区 | 母亲3免费完整高清在线观看 | 人成视频在线观看免费观看| 国产精品不卡视频一区二区| 叶爱在线成人免费视频播放| av在线观看视频网站免费| 国产一区二区在线观看av| 欧美另类一区| 日本av手机在线免费观看| 亚洲精品国产av成人精品| 老汉色∧v一级毛片| av在线老鸭窝| 欧美+日韩+精品| 中文字幕另类日韩欧美亚洲嫩草| 香蕉国产在线看| 亚洲伊人久久精品综合| 国产高清国产精品国产三级| 精品国产国语对白av| 国产精品免费视频内射| 久久久久久人人人人人| 美女中出高潮动态图| 欧美日本中文国产一区发布| 精品国产一区二区三区久久久樱花| 久久人妻熟女aⅴ| 国产精品国产三级专区第一集| 成人国产麻豆网| 制服人妻中文乱码| 日韩免费高清中文字幕av| 亚洲欧美日韩另类电影网站| 18禁动态无遮挡网站| 成年女人在线观看亚洲视频| 色网站视频免费| 你懂的网址亚洲精品在线观看| 中文字幕另类日韩欧美亚洲嫩草| 成人毛片a级毛片在线播放| 91国产中文字幕| 精品一区二区免费观看| av天堂久久9| 午夜老司机福利剧场| 黄网站色视频无遮挡免费观看| 涩涩av久久男人的天堂| 国产毛片在线视频| 精品国产乱码久久久久久男人| 一区在线观看完整版| 色哟哟·www| 精品卡一卡二卡四卡免费| 欧美国产精品va在线观看不卡| 男人舔女人的私密视频| 亚洲,欧美,日韩| 国产成人精品久久久久久| 日韩中字成人| 国产日韩一区二区三区精品不卡| 一二三四在线观看免费中文在| 十八禁高潮呻吟视频| av有码第一页| 亚洲精品,欧美精品| 亚洲综合色网址| 午夜91福利影院| 中文字幕制服av| 人人妻人人爽人人添夜夜欢视频| 最近最新中文字幕大全免费视频 | 999精品在线视频| 18+在线观看网站| 久久免费观看电影| 免费久久久久久久精品成人欧美视频| 国产精品熟女久久久久浪| 久久精品国产鲁丝片午夜精品| 亚洲国产日韩一区二区| 黄片无遮挡物在线观看| www.熟女人妻精品国产| 日本欧美国产在线视频| 久久久国产欧美日韩av| 丝袜美腿诱惑在线| 一区二区av电影网| 亚洲,一卡二卡三卡| 三级国产精品片| 1024香蕉在线观看| 亚洲一区二区三区欧美精品| 亚洲av福利一区| 欧美人与性动交α欧美软件| 国产亚洲精品第一综合不卡| 成人亚洲欧美一区二区av| 日韩中字成人| 亚洲情色 制服丝袜| 婷婷色av中文字幕| 国产精品国产av在线观看| 母亲3免费完整高清在线观看 | 午夜福利视频精品| 亚洲精品中文字幕在线视频| 精品一品国产午夜福利视频| 国产福利在线免费观看视频| 成人国语在线视频| av电影中文网址| 天天影视国产精品| 美女脱内裤让男人舔精品视频| 少妇被粗大猛烈的视频| 美女xxoo啪啪120秒动态图| 另类精品久久| 亚洲,欧美精品.| 男的添女的下面高潮视频| 多毛熟女@视频| 亚洲欧美日韩另类电影网站| 80岁老熟妇乱子伦牲交| 91午夜精品亚洲一区二区三区| 一级毛片电影观看| 欧美 亚洲 国产 日韩一| 亚洲国产毛片av蜜桃av| 在线天堂最新版资源| 七月丁香在线播放| 人妻人人澡人人爽人人| av线在线观看网站| 99精国产麻豆久久婷婷| 欧美日韩一级在线毛片| 一区二区三区四区激情视频| 亚洲国产成人一精品久久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人精品久久久久久| 国产一区亚洲一区在线观看| 欧美 亚洲 国产 日韩一| 国产日韩欧美在线精品| 免费高清在线观看日韩| 丝袜人妻中文字幕| 毛片一级片免费看久久久久| 极品少妇高潮喷水抽搐| 男的添女的下面高潮视频| 丰满迷人的少妇在线观看| 麻豆精品久久久久久蜜桃| 国产精品不卡视频一区二区| 成人毛片a级毛片在线播放| 中文字幕av电影在线播放| 巨乳人妻的诱惑在线观看| 亚洲人成电影观看| 人人妻人人添人人爽欧美一区卜| 免费黄网站久久成人精品| 国产精品.久久久| 一本—道久久a久久精品蜜桃钙片| 五月天丁香电影| 欧美激情 高清一区二区三区| 成人黄色视频免费在线看| 最近中文字幕高清免费大全6| 国产精品久久久av美女十八| 大香蕉久久成人网| 狂野欧美激情性bbbbbb| 交换朋友夫妻互换小说| 国产黄色视频一区二区在线观看| 日韩一本色道免费dvd| 亚洲欧美中文字幕日韩二区| 交换朋友夫妻互换小说| 一级a爱视频在线免费观看| av网站免费在线观看视频| 国产片特级美女逼逼视频| 久久精品国产亚洲av高清一级| 春色校园在线视频观看| 在线看a的网站| 不卡av一区二区三区| 99精国产麻豆久久婷婷| 又黄又粗又硬又大视频| 大话2 男鬼变身卡| 国产 精品1| 欧美精品一区二区大全| 久久精品夜色国产| 在线观看免费日韩欧美大片| 婷婷成人精品国产| 亚洲激情五月婷婷啪啪| 最近的中文字幕免费完整| 天天躁夜夜躁狠狠久久av| 日韩 亚洲 欧美在线| 日韩一本色道免费dvd| 亚洲欧美一区二区三区国产| 日韩av不卡免费在线播放| 国产黄色视频一区二区在线观看| 2022亚洲国产成人精品| 日韩中文字幕欧美一区二区 | 欧美激情高清一区二区三区 | 亚洲第一av免费看| 国产亚洲欧美精品永久| 亚洲人成网站在线观看播放| 国产日韩一区二区三区精品不卡| 国产av一区二区精品久久| 国产男女内射视频| 1024香蕉在线观看| 校园人妻丝袜中文字幕| 女性生殖器流出的白浆| 美国免费a级毛片| 在线天堂最新版资源| 99久久精品国产国产毛片| 国产成人精品久久久久久| 女性被躁到高潮视频| 人成视频在线观看免费观看| 亚洲精品成人av观看孕妇| 免费高清在线观看视频在线观看| 美女视频免费永久观看网站| 精品国产一区二区久久| 涩涩av久久男人的天堂| av网站在线播放免费| 日韩一区二区视频免费看| 一级毛片电影观看| 99re6热这里在线精品视频| 日本爱情动作片www.在线观看| 99re6热这里在线精品视频| 啦啦啦中文免费视频观看日本| 黄色一级大片看看| 日韩欧美精品免费久久| 久久99一区二区三区| 人妻少妇偷人精品九色| 亚洲精品,欧美精品| 蜜桃国产av成人99| 国产极品粉嫩免费观看在线| 国产亚洲av片在线观看秒播厂| 女人精品久久久久毛片| 日韩精品免费视频一区二区三区| 搡老乐熟女国产| 久久亚洲国产成人精品v| 观看美女的网站| 国产在线免费精品| 午夜福利影视在线免费观看| 欧美精品一区二区大全| 性色av一级| 如日韩欧美国产精品一区二区三区| 晚上一个人看的免费电影| 精品国产一区二区久久| 日本欧美视频一区| 欧美精品av麻豆av| 黄色配什么色好看| 亚洲精品国产av成人精品| 在线看a的网站| 最近2019中文字幕mv第一页| 久久99精品国语久久久| 女人被躁到高潮嗷嗷叫费观| 桃花免费在线播放| 午夜免费观看性视频| 国产精品三级大全| 99re6热这里在线精品视频| 少妇猛男粗大的猛烈进出视频| 精品国产一区二区三区久久久樱花| 亚洲四区av| 日韩av不卡免费在线播放| 性色av一级| 久久久久精品久久久久真实原创| 老女人水多毛片| 国产男女内射视频| 国产精品二区激情视频| 色播在线永久视频| 国产免费福利视频在线观看| 麻豆乱淫一区二区| 看非洲黑人一级黄片| 极品少妇高潮喷水抽搐| 夫妻午夜视频| 捣出白浆h1v1| av国产久精品久网站免费入址| 你懂的网址亚洲精品在线观看| 久久久国产精品麻豆| 王馨瑶露胸无遮挡在线观看| 男女下面插进去视频免费观看| 久久人人爽人人片av| 美女主播在线视频| av在线app专区| 熟女少妇亚洲综合色aaa.| 欧美老熟妇乱子伦牲交| 在线观看免费高清a一片| 最近中文字幕2019免费版| 国产精品久久久久久精品电影小说| 日韩av在线免费看完整版不卡| 蜜桃国产av成人99| 桃花免费在线播放| 久久久欧美国产精品| 亚洲 欧美一区二区三区| 精品国产一区二区三区久久久樱花| a级毛片黄视频| 国产精品偷伦视频观看了| 国产精品蜜桃在线观看| 女人精品久久久久毛片| 少妇被粗大的猛进出69影院| 天美传媒精品一区二区| 波野结衣二区三区在线| 午夜激情av网站| 男人操女人黄网站| av在线老鸭窝| 搡老乐熟女国产| 女性生殖器流出的白浆| 男人爽女人下面视频在线观看| 一区二区三区精品91| 中文字幕制服av| 成年女人毛片免费观看观看9 | 国产日韩欧美视频二区| 久久久精品国产亚洲av高清涩受| 成年动漫av网址| 国产一区二区 视频在线| 国产精品一区二区在线观看99| 在现免费观看毛片| 日本av免费视频播放| 亚洲美女搞黄在线观看| 午夜久久久在线观看| 不卡视频在线观看欧美| 2021少妇久久久久久久久久久| 最新的欧美精品一区二区| 久久久久久人妻| 一级片'在线观看视频| 熟女av电影| 免费观看无遮挡的男女| 成人亚洲欧美一区二区av| 亚洲国产精品成人久久小说| 69精品国产乱码久久久| tube8黄色片| 成人漫画全彩无遮挡| 国产高清不卡午夜福利| 亚洲精品成人av观看孕妇| 人人妻人人澡人人看| 国产淫语在线视频| 久久影院123| 免费高清在线观看日韩| 侵犯人妻中文字幕一二三四区| 日本色播在线视频| 午夜影院在线不卡| 日韩成人av中文字幕在线观看| 在线天堂最新版资源| 三级国产精品片| 亚洲综合色惰| 日韩在线高清观看一区二区三区| 99九九在线精品视频| 欧美精品人与动牲交sv欧美| 精品国产超薄肉色丝袜足j| 亚洲av.av天堂| 国产不卡av网站在线观看| 国产成人av激情在线播放| 大陆偷拍与自拍| 亚洲欧美一区二区三区国产| 亚洲av成人精品一二三区| 午夜免费观看性视频| 久久 成人 亚洲| 男女免费视频国产| 亚洲成人一二三区av| 久久久久视频综合| 国产成人一区二区在线| 久久国内精品自在自线图片| 久久精品亚洲av国产电影网| 波多野结衣av一区二区av| 久久综合国产亚洲精品| 日本-黄色视频高清免费观看| 久久久久久免费高清国产稀缺| 日本vs欧美在线观看视频| 久久毛片免费看一区二区三区| 嫩草影院入口| 18在线观看网站| 女人高潮潮喷娇喘18禁视频| 精品第一国产精品| 亚洲人成77777在线视频| 亚洲欧美日韩另类电影网站| 91国产中文字幕| 在线亚洲精品国产二区图片欧美| 久久久精品国产亚洲av高清涩受| 婷婷色综合大香蕉| 777久久人妻少妇嫩草av网站| 久久99一区二区三区| av国产精品久久久久影院| 久久久久精品人妻al黑| 久久午夜福利片| av网站免费在线观看视频| 久热久热在线精品观看| 国产极品粉嫩免费观看在线| 亚洲美女搞黄在线观看| 可以免费在线观看a视频的电影网站 | 亚洲国产欧美在线一区| 另类亚洲欧美激情| 国产成人免费无遮挡视频| 美女高潮到喷水免费观看| 国语对白做爰xxxⅹ性视频网站| 免费观看av网站的网址| 国产精品嫩草影院av在线观看| 日韩av不卡免费在线播放| 女的被弄到高潮叫床怎么办| 最近最新中文字幕免费大全7| 国产精品国产av在线观看| 久久ye,这里只有精品| 大香蕉久久网| 中文字幕精品免费在线观看视频| 国产成人精品久久久久久| 日韩一区二区三区影片| 美女主播在线视频| 丝袜喷水一区| 国产精品 欧美亚洲| 九草在线视频观看| 国产精品久久久久成人av| 午夜日本视频在线| 韩国精品一区二区三区| av片东京热男人的天堂| 午夜免费观看性视频| 日本av手机在线免费观看| 熟女电影av网| 99热全是精品| 又大又黄又爽视频免费| 精品视频人人做人人爽| 人人妻人人添人人爽欧美一区卜| 中文字幕人妻丝袜制服| 欧美精品亚洲一区二区| 日韩中字成人| 青春草视频在线免费观看| xxxhd国产人妻xxx| 女性生殖器流出的白浆| 国产精品久久久久久精品电影小说| 亚洲美女黄色视频免费看| av在线app专区| 国产高清国产精品国产三级| 国产精品.久久久| 人妻少妇偷人精品九色| 这个男人来自地球电影免费观看 | 性色av一级| 日本vs欧美在线观看视频| 国产淫语在线视频| 日韩成人av中文字幕在线观看| 欧美最新免费一区二区三区| 人妻少妇偷人精品九色| 久久精品国产自在天天线| 高清在线视频一区二区三区| 男女边吃奶边做爰视频| 美女高潮到喷水免费观看| 久久久久网色|