• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-Body Local-Momentum Approximation of Spinless Particles Scattered by a(1+1)-D Woods–Saxon Barrier Potential

    2017-05-12 08:52:48KarlErikThylwe
    Communications in Theoretical Physics 2017年6期
    關(guān)鍵詞:海區(qū)航海海域

    Karl-Erik Thylwe

    KTH-Mechanics,Royal Institute of Technology,S-10044 Stockholm,Sweden

    1 Introduction

    Recent research on relativistic two-body effects[1?5]apply a semi-relativistic(SRQ)quantum approximation.With a related approximate approach by Ikdair&Sever,[1]two-body phenomena of bound and scattering states can be estimated with methods of non-relativistic quantum mechanics.Two-body effects appear as bound-state level shifts as well as scattering resonance shifts.Such twobody shifts are primarily due to special relativity.Shifts due to particle spins are ignored in the present semirelativistic approach.

    The approximation of the Bethe–Salpeter equation due to Ikdair&Sever[1]is a continuation of earlier ideas by Nickisch et al.,[6]leading to a Schr?dinger-like equation.It has been questioned by Lucha et al.[2]for non-rigorous applications to bound-state calculations.Later research explains that the basic semi-relativistic quantum equation has exact solutions for step-like barriers to compare with,and that the approximation by Ikdair&Sever accurately predicts transmission and reflection coefficients for(1+1)-D dynamics.[5]

    The idea by Ikdair&Sever is different from other approaches,like those in Refs.[7–9].Ikdair&Sever directly quantize the energy-momentum invariant of special relativity.Required methods with this approach are familiar in non-relativistic quantum mechanics,as is obvious in recent applications assuming that relativistic contributions are small.[3?4]Most of these applications focus on bound states in(1+1)dimensions(D)and in(1+3)-D.A couple of applications are related to scattering problems,see Refs.[4–5]for(1+1)-D barrier-type interaction potentials.However,early applications to bound and scattering states do not discuss two-body effects,but rather analytic solution methods for specific potential shapes.The present local momentum(LM)approximation of the SRQ approach,also leading to a Schr?dinger-like equation,is related to the exact SRQ treatment in Ref.[5],where a rectangular barrier was studied by matching linear plane-wave solutions.

    One can think of the LM-approximation as an“adiabatic”approximation of a quantum-mechanical theory starting from a classical Hamiltonian from the special relativity.Such a semi-relativistic quantum theory presently ignores particle spin.The basic SRQ equation is still diffi-cult to approach by standard numerical methods based on second-order ordinary differential equations(ODE).The main mathematical obstacle is the presence of squareroot operators in the basic SRQ formulations.In subsequent sections the basic SRQ equation is simpli fied by further(adiabatic)approximations resulting in a secondorder ODE.Once the Schr?dinger-like equations are obtained,one can apply any standard numerical method of quantum mechanics.Here,the Milne’s numerical method is used,as explained elsewhere.[11?13]

    Two potential models are considered:The rectangular barrier,which allows exact numerical SRQ comparisons,is given by

    Note that Alhaidari et al.[14]studied transmission properties for a single fermion mass with scalar/vector-type rectangular barriers using Dirac theory.

    The second model is an inverted Woods–Saxon poten-tial,a Woods–Saxon barrier,is given by

    whereV0represents the potential strength,dis a length representing the “surface thickness” of nuclei,andarepresents the effective size of nuclei.The parametersaanddare varied in the present study.Note that Thomson[16]also studied transmission properties for a single fermion mass with scalar/vector-type Woods–Saxon barriers using Dirac theory.

    From an earlier study of the rectangular(1+1)Dbarrier model,[5]it became clear that the approximation by Ikhdair&Sever,[1]here called the generalized Schr?dinger(GS)approximation,is accurate with weak relativistic conditions on potential parameters.A critical parameter is the barrier strengthV0,which causes extraordinary transmission behaviors forV0larger thanm2c2,wherem2is the smaller of the two masses.For such values it is not obvious that the GS-and the LM approximations would agree for rectangular barriers,and even less obvious for smooth barriers like the Woods–Saxon barrier.

    Section 2 describes the basic equations of the semirelativistic quantum approach.The amplitude-phase approach is presented in Sec.3.The particular LM approach is discussed in Sec.4.Various approximations of the LM approach is presented in the same section,in particular the approximation of Ikhdair&Sever and the non-relativistic(Schr?dinger)limit.Numerical and graphical results are shown in Sec.5,and a conclusion is in Sec.6.

    2 Semi-Relativistic(SRQ)Two-Body Quantum Equation

    The SRQ differential equation in the center-of-mass frame for relative motion of the massesm1andm2is linear,and given by[5]

    where?is the dynamical energy(total energy minus restmass energies).The operator L,including a relativistic(time-like)vector-type potentialV,is given by

    The operator L is linear,and far away from the interaction the solutions are plane waves(ψ±k=e±ikx)with an asymptotic wave numberk.The plane waves satisfy Eq.(3),

    wherem=m1+m2is the total mass.An explicit relation between the wave numberkand the energy?is

    which reduces to the non-relativistic(NR)expression

    asc→+∞.The symbolμis the reduced mass

    In the presence of a potential that vanishes as|x|→∞the boundary conditions for the scattering wave function Ψ can be written as

    wheretandrare the transmission and reflection amplitudes,respectively.Expressions for the transmission and reflection coefficients are:

    These quantities are computed with the aid of Secs.3 and 4 for the rectangular and the Woods–Saxon potentials by the amplitude-phase method.Results are presented in Sec.5 and further discussed in Sec.6.

    3 Schr?dinger-Like Equations and the Amplitude-Phase Method

    In this study the relevant approximations of the SRQ equation(3)are defined by Schr?dinger-like equations;see the subsequent sections.Hence,the approximate solutions are obtained from

    with a variable coefficient functionK2(x),and one can apply standard numerical method of quantum mechanics to solve the barrier problem.In the present study the amplitude-phase method is applied.[11?12]It is based on two amplitude-phase representations,left(L)-and right(R)representations,of fundamental solutions satisfying Eq.(13).These are

    where Eq.(15)is an auxiliary relation ensuring the Wronskian determinant of the two(±)-solutions(14)being constant.This condition can be imposed since the number of symbols is doubled.Inserting Eq.(14)into the Schr?dinger-like equation(13),one obtains a nonlinear Milne equation[12]

    From the twoL,R-representations(14)and(15)one defines fundamental matrix solutions

    where a prime,′,indicates a derivative with respect tox.The fundamental solutions are matched at the originx=0 as described in Ref.[11].The resultingL,R-connection is

    In the present case the barrier is symmetric with respect tox=0,and one can use amplitude solutions of Eq.(16)satisfying

    Hence,the matrix(19)can be written directly in terms of amplitude values,i.e.

    The transmission-and reflection coefficients are obtained as

    and by direct evaluations of the M-matrix elements the resulting expressions become

    The reflection symmetry of the present potential implies that Eq.(26)can be used.Hence,only one of the amplitude functions,sayAR(x),is to be integrated.For scattering solutions the Milne equation(16)is integrated from initial conditions at anyxinit?a,whereais the range parameter,with

    The constantK(+∞)>0 is the relevant asymptotic wave number.The integration terminates atx=0 and the valuesAR(0),(0)are inserted into Eq.(26).Results depend very little on position ofxinit?aif the tail of the potential vanishes exponentially.For the Woods–Saxon potentialxinit≈10ais used.The numerical tolerance of the integrator is≈ 10?7.

    The initial(boundary)conditions(27)are taken from an exact constant solution of the nonlinear equation(16)asx→+∞.The exact wave number in Eq.(6)is the relevant one for the local-momentum(LM)approximation presented in the subsequent section.

    4 Local-Momentum(LM)Approximation

    The aim of the LM-approximation is to obtain a Schr?dinger-type differential equation instead of Eq.(3),and,thereby revealing a relation to the generalized Schr?dinger(GS)approximation of Ikhdair&Severe.[1]

    The key observation motivating a“l(fā)ocal-momentum”approximation is this:the plane-wave solutionsψ±k=e±ikxsatisfy the original SRQ equation(3)as well as the second-order ODE:

    wherekis defined in Eq.(6).Hence,for a vanishing potentialV,Eq.(3)can be replaced by Eq.(28),which appears as a “generating second-order differential equation”for Eq.(3).

    An algebraic manipulation with the same resulting Eq.(28)is possible by assumingVbeing constant in Eq.(3)and treating the operator?p2as ac-number or a local function.The operator status of?p2is subsequently retained after the completed algebra,and the solution is exact.

    The main approximation of such algebraic manipulations is that the potential has no derivatives in connected intervals of thex-axis.The solutions are linear and can be rigorously fitted at each discontinuity of thex-axis.

    To generalize this situation one can instead of a discontinuity think of a smooth transition between two(almost)constant values ofV.The rectangular-shaped Woods–Saxon barrier is the potential model chosen for this purpose.Here it is proposed that a discontinuity can be replaced by a small(surface thickness)region with possibly large derivatives of the potential.

    By heuristically assuming the potentialVbeing piecewise constant with sufficiently small transition regions,one obtains an equation(13)withK2(x)replaced by

    or equivalently

    Contributions from derivatives of the potentialVare ignored in this study.

    It is interesting to approximate the coefficient(x)in different limiting directions.Five particular cases are:

    ?The equal-mass situation:

    ?The extreme light-heavy situation:

    ?The weak,relativistic situation:

    ?The non-relativistic situation:

    ?The weak potential situation:

    with expansion parameters

    Note that the second case(32)does not imply“a single particle scattering in a potentialV”.Instead,one actually has a two-body scattering case here,where one of the particles is massless like a photon.Note also that the third case(33)is similar to the Schr?dinger-type coefficient function of Ikhdair&Sever-approximation.[1]In this approximation the two-body mass index satisfies

    近期,南海航海保障中心發(fā)布了《南海海域水上安全通信業(yè)務布局規(guī)劃(2019年-2025年)》。《規(guī)劃》按照深化航海保障體制改革要求,結(jié)合南海海域水上安全通信工作實際,提出了加大海區(qū)水上通信資源整合力度,加快海區(qū)水上通信現(xiàn)代化建設(shè),爭取在2025年前水上安全通信國際履約能力達到發(fā)達國家水平,全面滿足海上用戶對安全通信服務的需求的目標。其中,建立海區(qū)水上通信融合發(fā)展模式,實現(xiàn)“遇險安全通信統(tǒng)一值守、海上安全信息統(tǒng)一播發(fā)、主要通信設(shè)備統(tǒng)一管控、通信信息資源實時共享”是未來幾年南海海區(qū)水上通信業(yè)務的總體發(fā)展思路。

    Two of the above coefficient approximations,Eqs.(33)and(34),are applied numerically and included for comparisons with Eq.(30)in Tables 1–4.

    5 Results for the(1+1)DRectangular and Woods–Saxon Barriers

    The rectangular barrier case has analytic solutions of the transmission and reflection coefficients and allows exact semi-relativistic results.[5]The LM approximation becomes exact and the GS approximation turns out to be surprisingly accurate,although the GS-wave numbers are not particularly accurate in general.[5]The LM-and GS approximations suite the amplitude-phase method well.[11]

    Both approximations result in differential equations of the Schr?dinger type.Numerical values of the transmission coefficient reveals possible oscillatory behaviors at very low scattering energies and strongly repulsive barriers(see below).These are spectacular two-body effects that at the moment should be seen as hypothetical,but inherent to the “semi-relativistic” approach.For such parameter values(strong,repulsive barriers)the fundaments of the semi-relativistic approach are questionable.

    Table 1 (Color online)Two-body transmission coefficients T for the rectangular barrier with parameters V0=2μ,a=3,m1=100μ,d=0,and varying scattering energies ?.Symbols in the table of the calculated transmission coefficient:T(exact analytic),TLM(numerical LM-calculations),TGS(Ikhdair&Sever),and TNR(non-relativistic).

    For rectangular barriers the predictive power of two body effects of the GS approximation can be rigorously estimated;see Table 1. When the rectangular barrier becomes a smooth function ofx,both LM-and GS-approaches are approximate.For the Woods–Saxon barrier one can still study how the LM-and GS-approximations relate to each other as the surface thicknessdof the Woods–Saxon barrier increases.One can also study the relation to Dirac theory for a single fermion in a potential field.

    5.1 Rectangular Barrier

    In Ref.[5]it was shown that transmission properties for the light-heavy mass systems differ the most compared to non-relativistic calculations.Therefore the mass parameters in Table 1(rectangular potential)are chosen asm1=100μandμ=1.The potential strength isV0=2μc2in Table 1(rectangular potential),which is close to a critical value for which the waves become oscillatory in an extreme sub-barrier energy region(see Figs.2 and 3).Furthermore,the barrier range is chosen asa=3 in Table 1.

    Fig.1 (Color online)Transmission coefficients for sharp (upper subplot)and smooth (lower subplot)Woods–Saxon barrier as function of ?/V0.Specific potential parameters are:V0=2μ,μ =1,m1=100μ,a=3,with d=0.01(upper subplot)and d=0.2(lower subplot).The LM-and GS-approximations are represented by the same continuous curves and the non-relativistic(NR)approximation by dashed-dotted curves.

    Fig.2 (Color online)Dirac(upper subplot)and LM(lower subplot)computations of T for a Woods–Saxon barrier as function of ?/V0,where d=0.01,V0=3μc2,μ=1,a=1.Upper plot corresponds to results from Dirac computations with the single-particle massμ.The lower subplot corresponds to three cases of two-body SRQ computations.Black continuous curve represents m1=3.7μ,while blue dashed-dotted curve corresponds to m1=100μand blue dashed curve corresponds to m1=3μ.

    Table 1 shows that the numerical local momentum approach agrees with the analytic exact results for the transmission coefficient,as expected.In Ref.[5]the generalized Schr?dinger(GS)equation by Ikhdair&Sever[1]turned out to be accurate for moderate potential strengths.This accuracy is valid also in the present cases,in particular for the sub-barrier energy regions(not shown).However,the relative accuracy is gradually lost to between≈0.2%and≈2%in the super-barrier energy region(Table 1),where the transmission coefficient is oscillatory;see also Fig.1 for the Woods–Saxon potential.The non-relativistic approximation(TNR)is reasonably accurate only in the subbarrier energy region,and behaves similar to the dasheddotted lines in Fig.1.

    5.2 Woods–Saxon Barrier

    Hence,the numerical results show that the GS approximation is accurate even at the strong potential barrier withV0=2μc2,whereμ=1.This is twice the barrier height considered in Ref.[5].The only remarkable deviation between LM and GS results is at very low scattering energies.This difference is indicated also in the upper subplot(smalld)of Fig.1 for the Woods–Saxon barrier.It corresponds to the strange two-body effect of the SRQ equation mentioned earlier,but apparently exists for smooth(but sharp)barriers.An increase of the potential strength toV0>2μc2results in effects similar to single-mass phenomena discussed recently within the Dirac framework[14](see Fig.2).

    Tables 2–4 show the transmission coefficient for the same potential strengthV0and sizeaas in Table 1,but with variable surface thicknessd=0.01,0.2,and 1.

    Table 2 Two-body transmission coefficients T for the Wood–Saxon barrier with parameters V0=2μ,a=3,d=0.01,m1=100μ,and varying scattering energies ?.Symbols in the table of the calculated transmission coefficient:TLM(numerical LM-calculations),TGS(Ikhdair&Sever),and TNR(non-relativistic).

    Table 2 studies the transmission coefficient of a Woods–Saxon barrier with a sharp surface(d=0.01).The results are approximately the same as in Table 1 for the rectangular barrier.In the upper subplot of Fig.1(d=0.01),corresponding to Table 2,the continuous curve represents LM-and GS computations.In contrast,the non-relativistic(dashed-dotted)curve in Fig.1(upper subplot)deviates more and more from the others with increasing scattering energy.

    Table 3 Two-body transmission coefficients T for the inverted Wood–Saxon barrier with parameters V0=2μ,a=3,d=0.2,m1=100μ,and varying scattering energies ?.Symbols in the table of the calculated transmission coefficient:TLM,TGS(Ikhdair&Sever),and TNR(non-relativistic).

    Table 3 and the lower subplot of Fig.1 show the transmission coefficient of a Woods–Saxon barrier with a less sharp surface(d=0.2).The agreement between GS-and LM results is even better.The oscillation amplitudes of the transmission coefficient have become smaller.Table 4 shows results from a non-rectangular barrier with surface thicknessd=1.The table shows a complete agreement between GS-and LM results.Non-relativistic results are also approximately the same.The approximations used here tend to be more similar as the surface thickness increases.

    Table 4 Two-body transmission coefficients T for the inverted Wood–Saxon barrier with parameters V0=2μ,a=3,d=1,m1=100μ,and varying scattering energies ?.Symbols in the table of the calculated transmission coefficient:TLM(numerical LM-calculations),TGS(Ikhdair&Sever),and TNR(non-relativistic).

    As a final study,the Woods–Saxon potential is used to compare SRQ results with the results of the(singlemass)Dirac theory as the surface thickness isd=0.01(see Refs.[14–15]).For such potentials there are speculative investigations about zero-momentum resonances and low-energy(?≈ 0)total transmissions for very large barriers.

    The upper(Dirac)and lower(LM)subplots in Fig.2 show the transmission coefficient corresponding to the same reduced masses and potential parameters,but the methods are different.The Woods–Saxon parameters ared=0.01,V0=3μc2,μ=1,a=1.Note that the potential strength is much stronger than that in Fig.1.The Dirac mass in the upper subplot isμ.The individual masses in the lower subplot are defined byμand the large massm1=3μ,3.7μ,andm1=100μ.The upper subplot is the result from the Dirac equation in(1+1)relativistic dimensions.[14?16]In the LM approximationm1=100μ(dashed-dotted curve),m1=3.7μ(solid curve),andm1=3μ(dashed curve).The best lowenergy similarity of the transmission coefficients of the upper and lower subplots in Fig.2 is form1=3.7μ(solid curve)in this case.The other mass combinations show completely different low-energy dependences.For equal masses(m1=2μ,not shown)large transmissions have not been found in the present investigation.

    Fig.3 GS(upper subplot)and LM(lower subplot)computations of T as function of ?/V0for three mass combinations each,where d=0.01,V0=3μc2,μ =1,a=1.The continuous(black)curves are nice fits to the Dirac results from Fig.2.The “nice- fit” GS curve corresponds to m1=11μ,and the “nice- fit” LM curve corresponds to m1=3.7μ.

    Figure 3 compares GS-and LM-calculations for the Woods–Saxon parametersd=0.01,V0=3μc2,μ=1,a=1.Of three mass combinations each,nice fits to Dirac results are obtained form1=11μ(upper subplot,solid curve)from the GS equation,andm1=3.7μ(lower subplot,solid curve also in Fig.2)from the LM equation.Form1=100μ(dashed-dotted curves)both GS-and LM-results show double peaks at low-energies.Form1=3μ(dashed curves)the GS-method(upper subplot)predicts no transmission peak at threshold energies,while the LM-method predicts some enhanced transmission.

    Note that the Dirac results agree approximately with a light-heavy mass(almost single-mass)combination(GS and LM)only at higher energies,above the potential top energy.

    6 Conclusion

    The local momentum (LM)and the generalized Schr?dinger(GS)approximations are numerically compared.Both approximations assume negligible variations in the potential.A Woods–Saxon barrier with parameters close to a rectangular shape is studied in some detail.The LM-approximation provides exact results within the semirelativistic two-body framework for rectangular barrier interactions in(1+1)dimensions,but the GS-approximation provides almost the same results.

    This study suggests that GS/LM-approximations are numerically similar for weak potential strengths and a wide range of scattering energies. For very strong interactions,the study shows similarities between LM/GS and Dirac results at energies above the barrier maximum.However,the Dirac-“best- fit” (LM/GS)mass combinations are not the same.

    The surface thickness parameterdseems to make LM,GS and non-relativistic results numerically closer to each other asdincreases.This is observed in Table 4 for the over-barrier energy region(?>V0),whereT~ 1(with very small oscillations).

    For barrier widths comparable with the Compton length(a≈1)the Dirac results do not agree with results from SRQ “l(fā)ight-heavy” mass combinations.The strongest difference between the Dirac and SRQ results is for equal masses,in which case SRQ results do not indicate any tunneling at low scattering energies,and therefore no large low-energy transmissions.

    “Super-strong” interactions forV0??>2μc2seem speculative and not fully understood.The more important to compare these results with quantum field theory.Single-particle Dirac results,pointed out by Alhaidari et al.,[14]Thomson[15]and others,indicate total transmission at low(non-relativistic)scattering energies.For equal masses the present study indicates non-existence of large low-energy transmissions.

    References

    [1]S.M.Ikhdair and R.Sever,IC/92/186(INTERNAL REPORT)(1994);S.M.Ikhdair and R.Sever,Int.J.Mod.Phys.E 17(2008)1107;S.M.Ikhdair and R.Sever,Int.J.Mod.Phys.A 20(2005)16509.

    [2]W.Lucha and F.F.Sch?berl,Int.J.Mod.Phys.A 17(2002)2233;W.Lucha and F.F.Sch?berl,Int.J.Mod.Phys.A 15(2000)3221;W.Lucha and F.F.Sch?berl,Int.J.Mod.Phys.A 14(1999)2309;W.Lucha and F.F.Sch?berl,Fizika B 8(1999)193;W.Lucha and F.F.Sch?berl,Phys.Rev.A 60(1999)5091;W.Lucha and F.F.Sch?berl,Phys.Rev.A 54(1996)3790;W.Lucha and F.F.Sch?berl,Phys.Rev.D 50(1994)5443;W.Lucha and F.F.Sch?berl,Phys.Rev.D 50(1994)5443.

    [3]S.Hassanabadia,M.Ghominejada,S.Zarrinkamarb,and H.Hassanabadi,Chin.Phys.B 22(2013)060303;S.Hassanabadi and A.A.Rajabi,Mod.Phys.Lett.A 27(2012)1250057;S.Zarrinkamar,A.A.Rajabi,H.Hassanabadi,and H.Rahimov,Phys.Scr.84(2011)065008;S.Zarrinkamar,A.A.Rajabi,and H.Hassanabadi,Few-Body Sys.52(2011)165.

    [4]S.Hassanabadia,M.Ghominejada,and K.E.Thylwe,Commun.Theor.Phys.63(2015)423.

    [5]K.E.Thylwe,O.J.Oluwadare,and K.J.Oyewumi,Commun.Theor.Phys.66(2016)389.

    [6]I.J.Nickisch,B.Durand,and L.Durand,Phys.Rev.D 25(1982)2312;I.J.Nickisch,B.Durand,and L.Durand,Phys.Rev.D 30(1984)1904.

    [7]S.J.Wallace,Phys.Rev.Lett.87(2001)180401.

    [8]J.Bijtebier and J.Broekaert,Nuovo Cimento A 105(1992)351.

    [9]R.Arshansky and L.P.Horwitz,J.Math.Phys.30(1989)213.

    [10]N.F.Mott and H.S.W.Massey,The Theory of Atomic Collisions,Oxford University Press,Cambridge,Ch.2(1965).

    [11]K.E.Thylwe,J.Phys.A:Math.Gen.38(2005)235.

    [12]W.E.Milne,Phys.Rev.35(1930)863;H.A.Wilson,Phys.Rev.35(1930)948;H.A.Young,Phys.Rev.38(1931)1612;H.A.Young,Phys.Rev.39(1932)455;J.A.Wheeler,Phys.Rev.52(1937)1123.

    [13]H.J.Korsch and H.Laurent J.Phys.B 14(1981)4213.

    [14]A.D.Alhaidari,H.Bahlouli,Y.Benabderahmane,and A.Jellal,Phys.Rev.A 86(2012)052113.

    [15]M.J.Thomson and B.H.J.McKellar,Am.J.Phys.59(1991)340.

    猜你喜歡
    海區(qū)航海海域
    不正規(guī)半日潮海區(qū)高(低)潮選取的探討
    遺落海域
    中國寶玉石(2021年5期)2021-11-18 07:42:32
    埕島海域海上獨立樁拆除方案探討
    大航海爭霸
    古代航海有多牛
    地鐵長大過海區(qū)間隧道人員疏散模擬分析
    航海博物館
    廣東省海域使用統(tǒng)計分析
    3個不同海區(qū)鳶烏賊漁業(yè)生物學的初步比較
    靜海區(qū)林業(yè)結(jié)構(gòu)調(diào)整與經(jīng)濟效益研究
    黄色片一级片一级黄色片| 五月开心婷婷网| 99国产精品99久久久久| av有码第一页| 亚洲,欧美精品.| 国产99久久九九免费精品| 精品国产乱码久久久久久小说| 日本黄色日本黄色录像| 国产精品久久久av美女十八| 男女国产视频网站| 大码成人一级视频| 满18在线观看网站| 成年动漫av网址| 国产亚洲av片在线观看秒播厂| 9191精品国产免费久久| 国产一区二区在线观看av| 交换朋友夫妻互换小说| 国产成人精品在线电影| 岛国毛片在线播放| 日本黄色日本黄色录像| 深夜精品福利| 国产精品二区激情视频| 少妇被粗大的猛进出69影院| 国产老妇伦熟女老妇高清| 人人澡人人妻人| 久久久久久久精品精品| 美女扒开内裤让男人捅视频| 大香蕉久久成人网| 香蕉国产在线看| 最新的欧美精品一区二区| 亚洲一码二码三码区别大吗| 中文字幕另类日韩欧美亚洲嫩草| 99国产综合亚洲精品| 成年人免费黄色播放视频| 欧美激情极品国产一区二区三区| 高清视频免费观看一区二区| 国产xxxxx性猛交| 国产xxxxx性猛交| 亚洲欧美一区二区三区国产| 欧美另类一区| 国产高清videossex| 国产精品欧美亚洲77777| 婷婷丁香在线五月| 国产精品欧美亚洲77777| 免费av中文字幕在线| xxx大片免费视频| 日韩av免费高清视频| 男女边吃奶边做爰视频| 午夜久久久在线观看| www.精华液| 两个人看的免费小视频| 9色porny在线观看| 欧美大码av| 亚洲 欧美一区二区三区| 黄色怎么调成土黄色| 黑人欧美特级aaaaaa片| 9色porny在线观看| netflix在线观看网站| 国产在视频线精品| 在线 av 中文字幕| 2021少妇久久久久久久久久久| 免费日韩欧美在线观看| 欧美 亚洲 国产 日韩一| 亚洲中文日韩欧美视频| 天天躁日日躁夜夜躁夜夜| 欧美乱码精品一区二区三区| 天天躁日日躁夜夜躁夜夜| av电影中文网址| 亚洲精品日本国产第一区| 欧美精品啪啪一区二区三区 | 美女主播在线视频| 国产精品秋霞免费鲁丝片| 精品国产一区二区久久| 黄色片一级片一级黄色片| 亚洲av成人精品一二三区| 亚洲国产av影院在线观看| 亚洲av成人精品一二三区| 日本一区二区免费在线视频| 国产精品一国产av| 国产熟女午夜一区二区三区| 十八禁人妻一区二区| 中文字幕人妻熟女乱码| 国产精品成人在线| 亚洲欧洲国产日韩| 久久九九热精品免费| 一级黄片播放器| 十八禁高潮呻吟视频| 91成人精品电影| 国产免费现黄频在线看| 大码成人一级视频| 99热网站在线观看| 少妇的丰满在线观看| 国产激情久久老熟女| 亚洲精品国产一区二区精华液| 日本猛色少妇xxxxx猛交久久| 中文字幕最新亚洲高清| 亚洲精品av麻豆狂野| 日韩免费高清中文字幕av| 丝袜脚勾引网站| 在线 av 中文字幕| 国产精品国产三级国产专区5o| 亚洲精品第二区| 亚洲成人免费av在线播放| 搡老岳熟女国产| 80岁老熟妇乱子伦牲交| 国产精品二区激情视频| 久久女婷五月综合色啪小说| 亚洲av日韩精品久久久久久密 | 麻豆国产av国片精品| 精品熟女少妇八av免费久了| 精品一区二区三区四区五区乱码 | 久久久久国产精品人妻一区二区| 欧美成人午夜精品| 丝瓜视频免费看黄片| 国产精品久久久av美女十八| 国产又色又爽无遮挡免| 久久鲁丝午夜福利片| 色网站视频免费| 久久性视频一级片| 国产成人91sexporn| 各种免费的搞黄视频| 免费久久久久久久精品成人欧美视频| 一级毛片女人18水好多 | 国产熟女欧美一区二区| 人成视频在线观看免费观看| 成人手机av| 可以免费在线观看a视频的电影网站| 一边亲一边摸免费视频| 欧美精品av麻豆av| 人妻人人澡人人爽人人| 欧美日韩av久久| 亚洲 国产 在线| 80岁老熟妇乱子伦牲交| 久久久久精品人妻al黑| 国产有黄有色有爽视频| 99国产综合亚洲精品| 亚洲成色77777| 1024视频免费在线观看| 观看av在线不卡| 国产成人欧美在线观看 | 狂野欧美激情性bbbbbb| 丝袜在线中文字幕| 精品一品国产午夜福利视频| 亚洲,欧美,日韩| 亚洲av欧美aⅴ国产| 中文字幕人妻熟女乱码| 婷婷丁香在线五月| 国产成人免费无遮挡视频| 久久精品亚洲熟妇少妇任你| 欧美成人午夜精品| 日本91视频免费播放| 青春草视频在线免费观看| 久久毛片免费看一区二区三区| 久久久国产精品麻豆| 国产成人精品无人区| av网站免费在线观看视频| 亚洲美女黄色视频免费看| 精品一区二区三区四区五区乱码 | 亚洲午夜精品一区,二区,三区| 国产精品久久久久久精品电影小说| 99热全是精品| 国产深夜福利视频在线观看| 美女午夜性视频免费| 久久久久精品人妻al黑| 久久99一区二区三区| 国产熟女午夜一区二区三区| 精品国产一区二区久久| 国产亚洲午夜精品一区二区久久| 国产人伦9x9x在线观看| 亚洲情色 制服丝袜| 大片免费播放器 马上看| 久久久久网色| 久久久精品区二区三区| 亚洲专区中文字幕在线| 精品视频人人做人人爽| 久久精品国产亚洲av涩爱| 亚洲欧美精品自产自拍| 大香蕉久久成人网| 可以免费在线观看a视频的电影网站| av天堂久久9| 成年人午夜在线观看视频| 亚洲三区欧美一区| 国产成人系列免费观看| 18禁国产床啪视频网站| 国产av精品麻豆| 天天操日日干夜夜撸| 在线观看免费午夜福利视频| 熟女少妇亚洲综合色aaa.| 久久热在线av| 日本欧美国产在线视频| 天堂俺去俺来也www色官网| 精品亚洲乱码少妇综合久久| avwww免费| 叶爱在线成人免费视频播放| 麻豆av在线久日| 精品久久蜜臀av无| 中文字幕av电影在线播放| 欧美性长视频在线观看| 热re99久久精品国产66热6| 新久久久久国产一级毛片| 久久亚洲国产成人精品v| 久久人妻熟女aⅴ| 国产一区二区在线观看av| 久久国产精品人妻蜜桃| 亚洲国产精品成人久久小说| 咕卡用的链子| 亚洲精品中文字幕在线视频| 精品国产一区二区三区四区第35| 亚洲av美国av| 欧美精品一区二区大全| 婷婷色综合大香蕉| 久久久国产一区二区| 我的亚洲天堂| 亚洲五月色婷婷综合| 国产在线观看jvid| 19禁男女啪啪无遮挡网站| 亚洲精品日韩在线中文字幕| 一级毛片 在线播放| 亚洲精品久久午夜乱码| 中文乱码字字幕精品一区二区三区| 悠悠久久av| 91精品三级在线观看| 国产精品国产三级专区第一集| 日韩制服骚丝袜av| 色视频在线一区二区三区| 国产精品99久久99久久久不卡| 999精品在线视频| 考比视频在线观看| 电影成人av| svipshipincom国产片| 亚洲国产欧美网| 欧美日韩亚洲高清精品| 80岁老熟妇乱子伦牲交| 久久人妻熟女aⅴ| 成人国产av品久久久| 日韩电影二区| 精品国产乱码久久久久久男人| 又大又黄又爽视频免费| 成人三级做爰电影| 好男人视频免费观看在线| 国产亚洲一区二区精品| 成人午夜精彩视频在线观看| 国产精品av久久久久免费| 又大又爽又粗| 多毛熟女@视频| 精品少妇一区二区三区视频日本电影| 国产亚洲av高清不卡| 国产一区有黄有色的免费视频| 久久久国产精品麻豆| 免费高清在线观看视频在线观看| 亚洲国产中文字幕在线视频| 欧美日韩国产mv在线观看视频| 亚洲精品国产av蜜桃| 中文字幕人妻丝袜一区二区| 久久免费观看电影| 久久久精品94久久精品| 日本欧美国产在线视频| 精品人妻1区二区| 香蕉丝袜av| 桃花免费在线播放| 日韩免费高清中文字幕av| 男女午夜视频在线观看| 午夜福利在线免费观看网站| 国产精品成人在线| 久久久久久久久免费视频了| 国产黄色视频一区二区在线观看| av在线老鸭窝| 免费观看av网站的网址| 色婷婷av一区二区三区视频| 人人澡人人妻人| 久久精品久久久久久久性| 久热这里只有精品99| 高清黄色对白视频在线免费看| 十分钟在线观看高清视频www| 久久国产亚洲av麻豆专区| 久久久久久久国产电影| 亚洲国产看品久久| 免费观看av网站的网址| 色婷婷av一区二区三区视频| 亚洲中文日韩欧美视频| 建设人人有责人人尽责人人享有的| 国产主播在线观看一区二区 | 国产成人精品久久二区二区免费| 99热全是精品| 亚洲,欧美,日韩| 99精品久久久久人妻精品| 丰满迷人的少妇在线观看| 久久久久网色| 国产免费又黄又爽又色| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产av新网站| av电影中文网址| 免费少妇av软件| 亚洲人成电影观看| 黄色a级毛片大全视频| 超碰97精品在线观看| 亚洲国产精品999| 亚洲熟女精品中文字幕| xxxhd国产人妻xxx| 久久久久久久国产电影| 国产精品九九99| 中文字幕色久视频| 手机成人av网站| 久久天堂一区二区三区四区| 老鸭窝网址在线观看| www.精华液| 热re99久久精品国产66热6| 黄色视频不卡| 日本vs欧美在线观看视频| 国产成人精品久久二区二区免费| 黑人巨大精品欧美一区二区蜜桃| 岛国毛片在线播放| 性少妇av在线| 久久久久网色| av视频免费观看在线观看| 亚洲激情五月婷婷啪啪| av一本久久久久| 悠悠久久av| 丝袜美腿诱惑在线| 可以免费在线观看a视频的电影网站| 日韩免费高清中文字幕av| tube8黄色片| 视频在线观看一区二区三区| 亚洲精品国产色婷婷电影| 精品国产超薄肉色丝袜足j| 日本黄色日本黄色录像| 操出白浆在线播放| 国语对白做爰xxxⅹ性视频网站| 亚洲精品国产av蜜桃| 夫妻性生交免费视频一级片| 亚洲一卡2卡3卡4卡5卡精品中文| 男女边吃奶边做爰视频| 欧美人与性动交α欧美软件| 午夜影院在线不卡| 国产精品九九99| 国产成人欧美在线观看 | 纯流量卡能插随身wifi吗| 欧美黑人欧美精品刺激| 欧美精品一区二区免费开放| 欧美日韩视频高清一区二区三区二| 一区二区三区激情视频| 宅男免费午夜| av福利片在线| 在现免费观看毛片| 熟女av电影| 亚洲欧洲国产日韩| 777久久人妻少妇嫩草av网站| 欧美激情 高清一区二区三区| 在线观看免费午夜福利视频| 亚洲国产欧美网| 精品一区二区三卡| 国产一区二区三区av在线| 欧美久久黑人一区二区| 亚洲专区中文字幕在线| 你懂的网址亚洲精品在线观看| 成人国语在线视频| 色婷婷久久久亚洲欧美| a级片在线免费高清观看视频| 十八禁人妻一区二区| 免费在线观看日本一区| 狠狠精品人妻久久久久久综合| 天天添夜夜摸| 国产亚洲午夜精品一区二区久久| 国产亚洲av高清不卡| 成人免费观看视频高清| e午夜精品久久久久久久| 一区二区三区乱码不卡18| 国产精品久久久av美女十八| 欧美在线一区亚洲| 黑人欧美特级aaaaaa片| 欧美日韩亚洲高清精品| 看十八女毛片水多多多| 一本色道久久久久久精品综合| 在现免费观看毛片| www.999成人在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲午夜精品一区,二区,三区| 亚洲国产精品999| 国产成人a∨麻豆精品| 国产亚洲一区二区精品| 日本黄色日本黄色录像| 极品人妻少妇av视频| 777久久人妻少妇嫩草av网站| 欧美老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 亚洲,一卡二卡三卡| 久久精品国产a三级三级三级| 在线看a的网站| 黄色毛片三级朝国网站| 国产成人系列免费观看| 欧美在线一区亚洲| 国产成人a∨麻豆精品| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av欧美aⅴ国产| 亚洲欧美日韩高清在线视频 | 性少妇av在线| 日韩一区二区三区影片| 91精品三级在线观看| 在线av久久热| 欧美成人精品欧美一级黄| 欧美xxⅹ黑人| 啦啦啦中文免费视频观看日本| 国产日韩欧美亚洲二区| 久久久久久久久久久久大奶| 黄色怎么调成土黄色| 国产亚洲av片在线观看秒播厂| 亚洲一区二区三区欧美精品| 日日爽夜夜爽网站| 亚洲国产看品久久| 亚洲国产av新网站| 99热全是精品| 欧美日韩亚洲综合一区二区三区_| 国产高清国产精品国产三级| 伊人久久大香线蕉亚洲五| 亚洲国产欧美一区二区综合| 校园人妻丝袜中文字幕| 天天影视国产精品| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲自偷自拍图片 自拍| 亚洲成av片中文字幕在线观看| 十分钟在线观看高清视频www| 久久国产精品影院| 中文字幕人妻丝袜制服| 青春草亚洲视频在线观看| 乱人伦中国视频| 青草久久国产| 午夜激情av网站| 中文字幕另类日韩欧美亚洲嫩草| 青春草亚洲视频在线观看| 狠狠精品人妻久久久久久综合| 天天操日日干夜夜撸| 日日夜夜操网爽| 亚洲人成网站在线观看播放| 国产国语露脸激情在线看| 国产片特级美女逼逼视频| 久久鲁丝午夜福利片| 熟女少妇亚洲综合色aaa.| 亚洲 国产 在线| 欧美日韩成人在线一区二区| 中文字幕高清在线视频| 成人午夜精彩视频在线观看| 亚洲国产av新网站| 在线观看www视频免费| 黄频高清免费视频| 精品少妇久久久久久888优播| 国产一区有黄有色的免费视频| 后天国语完整版免费观看| 9191精品国产免费久久| 18禁国产床啪视频网站| 亚洲av男天堂| 91字幕亚洲| 中文欧美无线码| 免费日韩欧美在线观看| 国产亚洲欧美在线一区二区| 国产视频首页在线观看| 精品人妻一区二区三区麻豆| 91国产中文字幕| 美女国产高潮福利片在线看| 19禁男女啪啪无遮挡网站| 国产激情久久老熟女| 亚洲 国产 在线| 一区在线观看完整版| 九色亚洲精品在线播放| 人体艺术视频欧美日本| 看免费av毛片| 欧美激情 高清一区二区三区| 国产一区二区在线观看av| 婷婷色av中文字幕| av欧美777| 人人妻人人爽人人添夜夜欢视频| 女警被强在线播放| 国产视频一区二区在线看| 成人亚洲欧美一区二区av| 国产人伦9x9x在线观看| 国产在线观看jvid| 日韩一卡2卡3卡4卡2021年| 性色av一级| 这个男人来自地球电影免费观看| 欧美日韩国产mv在线观看视频| 国产欧美日韩一区二区三 | www.av在线官网国产| 国产精品欧美亚洲77777| 亚洲 国产 在线| 欧美日韩一级在线毛片| 亚洲国产精品成人久久小说| 性高湖久久久久久久久免费观看| 精品一区在线观看国产| 自线自在国产av| 精品国产乱码久久久久久小说| 亚洲五月色婷婷综合| 大话2 男鬼变身卡| 最近手机中文字幕大全| 深夜精品福利| 欧美精品av麻豆av| h视频一区二区三区| 一本色道久久久久久精品综合| 国产爽快片一区二区三区| 这个男人来自地球电影免费观看| 国产在视频线精品| 色94色欧美一区二区| 欧美大码av| 男人添女人高潮全过程视频| 在线观看免费午夜福利视频| 国产精品免费视频内射| 性色av乱码一区二区三区2| 亚洲成人手机| 国产一区二区三区综合在线观看| 2018国产大陆天天弄谢| 男女午夜视频在线观看| 观看av在线不卡| 老司机靠b影院| 香蕉国产在线看| 久久久精品区二区三区| 老鸭窝网址在线观看| 欧美国产精品va在线观看不卡| 成人亚洲精品一区在线观看| 欧美久久黑人一区二区| 国产av一区二区精品久久| 爱豆传媒免费全集在线观看| 女人被躁到高潮嗷嗷叫费观| cao死你这个sao货| 免费日韩欧美在线观看| 国产亚洲av片在线观看秒播厂| 国产精品成人在线| 在线观看www视频免费| 亚洲一码二码三码区别大吗| 天天躁日日躁夜夜躁夜夜| 亚洲精品美女久久久久99蜜臀 | 亚洲欧美色中文字幕在线| 中文字幕人妻熟女乱码| 另类精品久久| 久久九九热精品免费| 秋霞在线观看毛片| 一级,二级,三级黄色视频| 女性被躁到高潮视频| 成人免费观看视频高清| 精品一区二区三区av网在线观看 | 欧美黄色片欧美黄色片| 女警被强在线播放| 亚洲成人免费电影在线观看 | 丰满少妇做爰视频| 波野结衣二区三区在线| 99国产精品99久久久久| 男女床上黄色一级片免费看| 丰满人妻熟妇乱又伦精品不卡| 巨乳人妻的诱惑在线观看| 七月丁香在线播放| 少妇精品久久久久久久| 精品一区二区三区四区五区乱码 | 人人妻人人爽人人添夜夜欢视频| 男女边吃奶边做爰视频| 少妇精品久久久久久久| 七月丁香在线播放| 国产在线观看jvid| 高清av免费在线| 成人午夜精彩视频在线观看| 国产男女内射视频| 国产精品国产av在线观看| 男女国产视频网站| 国产不卡av网站在线观看| 国产精品欧美亚洲77777| 久久狼人影院| 久久久精品94久久精品| 国产精品香港三级国产av潘金莲 | 丝袜在线中文字幕| 国产极品粉嫩免费观看在线| 国产成人欧美| 精品国产一区二区久久| 亚洲图色成人| 国产成人免费观看mmmm| 91成人精品电影| 又粗又硬又长又爽又黄的视频| 午夜影院在线不卡| 熟女少妇亚洲综合色aaa.| 日韩 欧美 亚洲 中文字幕| 色综合欧美亚洲国产小说| 亚洲第一av免费看| 激情五月婷婷亚洲| 深夜精品福利| 国产成人精品久久二区二区免费| 大香蕉久久网| 亚洲欧美清纯卡通| 欧美在线一区亚洲| 午夜两性在线视频| 99香蕉大伊视频| 女人高潮潮喷娇喘18禁视频| 亚洲免费av在线视频| 国产精品麻豆人妻色哟哟久久| 成人国产av品久久久| 亚洲天堂av无毛| 成人国产一区最新在线观看 | 国产在线一区二区三区精| 国产精品秋霞免费鲁丝片| 亚洲少妇的诱惑av| 午夜激情久久久久久久| 自线自在国产av| 亚洲精品乱久久久久久| 国产成人系列免费观看| 777米奇影视久久| 国产精品国产av在线观看| 精品一区在线观看国产| 亚洲成人国产一区在线观看 | 久久亚洲国产成人精品v| 91老司机精品| 国产男女超爽视频在线观看| 欧美日韩国产mv在线观看视频| 你懂的网址亚洲精品在线观看| 在现免费观看毛片| 中国美女看黄片| 国产欧美日韩一区二区三区在线| 国产欧美日韩综合在线一区二区| 欧美+亚洲+日韩+国产| 99热网站在线观看| 国产主播在线观看一区二区 | 亚洲av美国av|