• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    應(yīng)用納米球刻蝕法在自組裝膜修飾的硅表面生成中尺度的網(wǎng)狀蛋白層

    2017-05-12 06:58:02SCHLERETHAndrewNOOMUNAPanaeGAOPei
    物理化學(xué)學(xué)報(bào) 2017年4期
    關(guān)鍵詞:原子力網(wǎng)孔中尺度

    SCHLERETHAndrew NOOMUNAPanae GAO Pei

    應(yīng)用納米球刻蝕法在自組裝膜修飾的硅表面生成中尺度的網(wǎng)狀蛋白層

    SCHLERETHAndrew NOOMUNAPanae GAO Pei*

    (Department of Chemistry,Eastern Kentucky University,521 Lancaster Ave,Richmond 40475,KY,USA)

    在自組裝膜修飾的硅表面制備有序的蛋白陣列是研發(fā)生物傳感器的先決條件之一,因此如何產(chǎn)生有序的表面蛋白陣列一直是生物醫(yī)藥研究方向的前沿。本研究通過應(yīng)用納米球刻蝕法在氧化的10-烯基十一烷基三氯硅烷自組裝膜修飾的硅表面生成了網(wǎng)狀結(jié)構(gòu)溶菌酶蛋白層。網(wǎng)孔的大小(從納米到微米級(jí)別)由表面沉積的納米球的尺寸來調(diào)控。我們利用原子力顯微鏡和熒光顯微鏡對(duì)樣品表面進(jìn)行了詳細(xì)表征。結(jié)果表明:這種新方法比傳統(tǒng)的通過掃描探針在固體表面修飾而聚集溶菌酶蛋白的方法更快捷簡(jiǎn)便,而且它能夠在相對(duì)大的硅表面形成網(wǎng)狀蛋白層。此外,網(wǎng)孔表面附著具有強(qiáng)吸附活性的羧酸基團(tuán)層,它可以通過靜電吸引或者共價(jià)結(jié)合來吸附液相中的第二種蛋白分子。

    納米球刻蝕法;溶菌酶;網(wǎng)狀陣列;自組裝膜;原子力顯微鏡;熒光顯微鏡

    1 Introduction

    Nanoscale protein patterns have the potential to be used in many fields including enzyme catalysis,biosensors,tissue engineering,diagnostic protein tips,and pharmacology1-5.However, precisely and easily immobilizing protein molecules onto a specific place on a surface while retaining their native biological functionality is difficult and challenging.Although there are lots of surface patterning techniques such as microcontact printing (μCP)6,nanoimprinting7,8,dip-pen lithography9,nanografting10-13and conducting tip AFM(atomic force microscopy)writing14,15, they either lack the surface coverage or a specialized stamp is required in the patterning of protein arrays on surfaces.To meet the nanometer precision and achieve high throughput,particle lithography has been investigated and applied for various nanoscale patterning purposes on surfaces16-19.Cai and Ocko20have demonstrated a simple nanosphere based lithography method to direct the assembly of proteins into arrays over macroscopic surface area.In this method,the self-assembly of a nanosphere monolayer on a solid surface provides a simple and effective mask to prevent the deposition and modification directly beneath the nanospheres.Therefore,in the subsequent surface processing,only the interstitial area between nanospheres is exposed,and thus a hexagonally patterned surface will be formed as nanospheres are later removed.In this study,he utilized both nanosphere lithography and silane chemistry to chemically pattern surfaces with a regular array islands over cm sample regions.These chemically patterned regions are used as a template to selectively adsorb lysozyme on carboxylic acid-terminated islands and not on the interstitial regions between the islands.In this manner,positivetoned protein nanoarrays are fabricated on the surface.Based on this method,we also developed a kind of negative-toned nanoarrays by selectively adsorbing protein molecules directly on the interstitial areas between the nanospheres on the carboxylic acid terminated(UTSox)silane monolayer coated silicon surface. Compared with Cai′s approach,this method involves fewer steps and has higher reproducibility.

    To finish the fabrication,firstly,the self-assembled undecyltrichlorosilane(UTS)monolayer was grown and chemically converted into an oxidized undecyltrichlorosilane(UTSox)layer on the silicon surface,which generated a layer that coated the substrate with carboxylic acid-terminated functional groups for the subsequent fabrication.Furthermore,polystyrene nanospheres form an ordered monolayer on the hydrophilic UTSox coated surface upon vaporization from a solution.This two dimensional crystal layer can provide a simple and effective mask to prevent the deposition and modification directly beneath the nanospheres. Therefore,in the subsequent surface processing,only the interstitial areas between nanospheres are exposed for the adsorption of lysozyme molecules from the solution.When the nanospheres were removed from the surface,negative-toned protein patterns were fabricated on the UTSox monolayer coated silicon surface. Therefore,we demonstrated a simpler nanosphere based lithography method to assemble protein patterns ranged from nanometer to sub-millimeter over macroscopic surface area.The similar negative-toned nanoarrays have been reported by Liu21and Kingshott22groups,respectively.However,extra steps of plasma polymerization and covalent grafting were needed and all these requirements limit it from being a generic patterning method for other protein patterns.

    In comparison,nanosphere lithography requires less steps and is more reliable to be applied on many biological molecules fabrication23-25and other different purposes26,27.Additionally,the method in this paper will provides an effective means to immobilize more than one protein on the same surface,which is necessary for the development of biosensors that can detect multiple analytes,especially in cancer diagnosis and monitoring,since most types of cancer involve multiple biomarkers.

    2 Materials and methods

    2.1 Materials

    10-undecenyltricholorosilane(UTS)was purchased from Gelest (United States).Toluene(99.8%),hydrogen peroxide(30%), sulfuric acid(98%),and 1-pyrenyldiazomethane(PDAM)were purchased from Sigma-Aldrich(United States).Silicon(100) wafers(Virginia Semiconductors from United States,Nitrogen doped,30 Ω·cm resistivity)were polished to ultraflat grade with a root-mean-square(rms)roughness smaller than 0.5 nm.

    2.2 Instrumentation

    The chemical pattern characterization was performed with the Agilent(United States)PicoPlus AFM in an environmental chamber.The patterns were characterized in the tapping mode with MikroMasch(United States)NSC-14 tips,which have a typical natural frequency of 150 kHz and a force constant of 5 N· m-1.The UTS film thickness and quality were examined with an Angstrom Advance PhE 101 ellipsometer(United States)and a Varian Excalibur 3100 Fourier transformed infrared spectrometer equipped with a semiconductor cooled DTGS detector(United States).The IR spectra of UTS and oxidized UTS films on silicon wafer were taken at 4 cm-1resolution with 4096 scans.The fluorescent images were acquired using Nikon Eclipse 80i microscope(United States).

    2.3 Preparation of self-assembled 10-undecenyltricholorosilane(UTS)film

    The silicon wafer was boiled in the piranha solution(1 part of 30%hydrogen peroxide solution in 3 parts of 98%sulfuric acid) at 125°C for 20 min.After rinsing in de-ionized water and drying in a stream of nitrogen,the wafer was dipped in a 5 mmol·L-1UTS toluene solution overnight.A monolayer of closely packed UTS film was formed after the overnight soaking in the UTS toluene solution.The UTS film was examined with the Agilent PicoPlus 3000 AFM,the Varian Exalibur FT-3100FT-IR spectrometer and the PhE-101 ellipsometer.Results fromAFM showed that the UTS film was an ultra-flat surface with an RMS roughness smaller than 0.2 nm.Over the AFM scanner′s range(80μm×80 μm),the height variation was smaller than 5 nm.The UTS surface is a featureless homogenous surface.The infrared spectroscopyresults demonstrated the successful conversion from the terminal double bond on the UTS silane surface into a carboxylic acidterminated C10 silane(referred to in the following as UTSox) film.The ellipsometry results indicated that the UTS film thickness was(1.5±0.3)nm,which was consistent with the published data28.

    2.4 Formation of PDAM labelled oxidized 10-undecenyltricholorosilane(UTSox)patterns between nanospheres on the surface

    Apiece of 1 cm×1 cm UTS layer coated wafer was incubated in the oxidizing solution(0.01 mol·L-1NaIO4,5×10-4mol·L-1KMnO4,in 0.05 mol·L-1Na2CO3buffer)for 10 h at 40°C29.To remove remnant permanganate or MnO2,the sample was then rinsed with deionized water and followed by 1%hydrazine for 1 min.As prepared,the wafer surface is hydrophilic,suggesting that the existence of the carboxylic acid-terminated UTSox layer on the surface.Finally,the sample was dried in a stream of nitrogen. Then,1.5 μL of 1%900 nm polystyrene nanosphere aqueous solution was spread onto the dried UTSox layer coated silicon wafer.The wafer was covered and left to dry for 24 h at room temperature.The nanospheres acted as a mask which inhibited the subsequent adsorption in the regions covered by them.Furthermore,the sample was then dipped into 3 mmol·L-11-pyrenyldiazomethane(PDAM)methanol solution to start the reaction. After 10 hours of incubation,the sample was rinsed and ultrasonicated in methanol.When the sample was dried with a steam of Nitrogen gas,it was checked with Nikon Eclipse 80i Microscope.The experimental procedure follows Scheme 1 with the use of 3 mmol·L-11-pyrenyldiazomethane methanol solution instead of fluorescein isothiocyanate(FITC)tagged lysozyme solution.

    2.5 Fabrication of Lysozyme patterns on UTSox layer coated Si(100)wafer

    In this study,the protein lysozyme was used since it is readily available and its structure and properties are well-known.Lysozyme molecules could be immobilized on the carboxylic acidterminated OTSpd and UTSox patterns through the Coulomb attraction30,31.The carboxylic acid-terminated silane surface has an estimated pKa(acid dissociation constant)of 4.932.Lysozyme is positively charged in a pH 7 buffer solution since it has an isoelectric point of 1133.Thus,during the incubation in the pH 7 buffer solution,the positively charged lysozyme molecules will selectively adsorb on the negatively charged carboxylic acid terminated areas based on the electrostatic interactions.

    A carboxylic acid terminated chemical patterned surface was generated through the usage of nanosphere monolayer mask along with silane chemistry.The experimental procedure is illustrated in Scheme 1.A layer of nanosphere mask was assembled on a carboxylic acid terminated UTSox monolayer.Then,the dried nanosphere-coated wafer was incubated in 5 μmol·L-1FITC tagged lysozyme solution in a 25 mmol·L-1pH=7,HEPES buffer for another 12 h.The sample was then dried with a burst of compressed nitrogen,and subsequently rinsed with a 25 mmol·L-1pH 7 HEPES buffer solution.The excessive solution was removed by touching a paper towel to the edge of the substrate,and the surface was investigated by using a Nikon Eclipse 80i Microscope immediately after the sample was dried.When the nanospheres were further removed through ultrasonication in water,the sample surface was imaged by atomic force microscopy(AFM).

    Scheme 1 Procedure for preparation of large-scale negative-toned protein patterns through nanosphere lithography

    3 Results and discussion

    3.1 Self-assembled UTSox monolayer on silicon surface

    In the Brewster angle IR spectra of the UTS wafer before and after oxidization,we saw that the 3080 and 1645 cm-1peaks of the vinyl group disappear and a new peak at 1710 cm-1appears,which corresponds to the carboxylic acid groups.It can be concluded that the double bonds were successfully converted into carboxylic acid groups after the above oxidation process,which is consistent with the published results29,34.The Brewster angle IR spectra of the UTS monolayer and UTSox monolayer could be found in the supporting information of my published paper30.

    In order to optimize the preparation conditions to obtain the best quality patterned surfaces,the exposed UTSox patterns areas on the mask coated surface were firstly investigated.It is known that 1-pyrenyldiazomethane(PDAM)can specifically react with the carboxylic acid group to form an ester product and generate fluorescence upon excitation35,36.The schematic equation about this reaction is illustrated in Scheme 2.Therefore,PDAM can be used as a fluorescence-labeling reagent to identify the chemical properties of UTSox surface.After 10 h of incubation in 3 mmol· L-1PDAM methanol solution and dried with a steam of Nitrogen gas,the binding of carboxylic acid-terminated UTSox layer with PDAM was directly visualized by fluorescent microscopy.The fluorescence image in Fig.1a shows the existence of orderly arranged nanospheres on the surface and the strong fluorescence signal emitted by the PDAM molecules.Since the surface was coated by a monolayer of nanospheres,the PDAM molecules did not attach to the parts of surface that are directly underneath the nanospheres.Therefore,the green color on surface indicated the binding of PDAM with carboxylic acid groups in the interstitial area between nanospheres,and dark color areas indicated where nanospheres had occupied the surface.This could also be clearly identified from Fig.1b,which showed the zoomed blue circled area in Fig.1a.Since the control experiment showed that the fluorescence signal from the un-labeled protein was insignificant for the exposure time we used,it can be concluded that the fluorescence signal generated in the fluorescence image is from the FITC-tagged protein molecules accumulated in the interstitial areas between the nanospheres.

    3.2 Fabrication of lysozyme patterns on UTSox surface

    After verifying the effectiveness of each step in the protein patterning scheme,analysis of the final protein pattern was conducted.By using a relatively slow solution evaporation rate,a reasonably uniform monolayer of the polystyrene nanospheres was obtained on the entire 1 cm×1 cm wafer.The fluorescence microscope shows nanospheres are well ordered on the surface. This uniformity is key in ensuring that the protein pattern is also uniform.When the fluorescein isothiocyanate(FITC)tagged lysozyme was deposited onto a wafer which had a nanosphere mask present,the resulting pattern showed that the nanospheres were effective in acting as a mask for the surface underneath the nanospheres.The images captured by the florescence microscope of the patterned FITC tagged lysozyme can be seen in Fig.2.

    Fig.2a demonstrated the UTSox surface contained both polystyrene nanospheres and FITC tagged lysozyme molecules under the UV light.In Fig.2a,the nanospheres appear to have a dark color and the FITC tagged lysozyme gave off a light green color. We can see that nanospheres were orderly arranged on the surface, and FITC tagged lysozyme molecules accumulated in the interstitial areas between nanosphere.Fig.2b shows the same surface after the nanospheres on the substrate were removed by the ultrasonication in water,and the image was captured under the whitelight instead.In comparison,the dark dots in Fig.2b signified where nanospheres had occupied the surface,and the lighter regions of the pattern simply correspond with higher concentrations of the lysozyme relative to the other regions.Upon analysis,the protein pattern utilizing the polystyrene nanospheres was very uniform and distinct.This uniformity encompassed large areas of space on the silicon wafer(up to 1 cm).

    Scheme 2 Schematic reaction of PDAM with carboxylic acid group on OTSpd and UTSox

    Fig.1 (a)Fluorescence microscope image of the UTSox monolayer dyed with PDAM;(b)the zoomed area of PDAM labelled UTSox patterns in the blue circle in image a

    Fig.2 (a)Image of the patterned UTSox coated silicon wafer under UV light;(b)image of the same area under white light after removing the nanospheres

    Fig.3 AFM tapping mode topographic image of lysozymepatterns on the UTSox silane surface through Scheme 1

    In Fig.3,we showed an AFM image of lysozyme patterned surface after the polystyrene nanospheres were removed by the ultrasonication in water.All the round brown colored holes on the images represent the areas where polystyrene nanospheres had occupied,and the yellow colored mesh show the accumulation of protein patterns.Each hole is roughly 900 nm in diameter,which is consistent with the size of the nanospheres we applied on the surface.

    To provide further proof that the pattern on the surface are from the lysozyme,additional control measurements were carried out. In the first experiment,a buffer solution without lysozyme was applied to the polystyrene nanosphere coated UTSox surface. AFM scans showed no patterns after the nanospheres were removed.

    4 Conclusions

    In summary,we have developed a method to fabricate negativetoned mesoscale protein patterns by incorporating nanosphere lithography and surface silane chemistry.This method has some incomparable advantages such as simplicity,mild environment and high throughout.Moreover,by using different sized polystyrene nanosphere,the area density of the protein array can be varied.These promising results indicate that this method could be easily adopted for the fabrication of wafer sized different protein patterns with mesoscale,which is the first step in the production of various biosensors.Furthermore,the negative-toned protein patterns surface with carboxylic acid group terminated surface as background can be used to assemble another type of protein molecules on the same surface.The surface with two different protein patterns is necessary for the biosensor to detect multiple analyzes in practice.

    (1) Rosi,N.L.;Mirkin,C.A.Chem.Rev.2005,105,1547. doi:10.1021/cr030067f

    (2) Ngunjiri,J.;Garno,J.C.Anal.Chem.2008,80,1361. doi:10.1021/ac086049l

    (3) Christman,K.L.;Enriquez-Rios,V.D.;Maynard,H.D.Soft Matter 2006,2,928.doi:10.1039/b611000b

    (4) Cornell,B.A.;BraachMaksvytis,V.L.B.;King,L.G.;Osman, P.D.J.;Raguse,B.;Wieczorek,L.;Pace,R.J.Nature 1997, 387,580.doi:10.1038/42432

    (5) Liu,W.;Li,Y.;Yang,B.Sci.China Chem.2013,56,1087. doi:10.1007/s11426-013-4909-6.

    (6) Kane,R.S.;Takayama,S.;Ostuni,E.;Ingber,D.E.; Whitesides,G.M.Biomaterials 1999,20,2363.doi:10.1016/ S0142-9612(99)00165-9

    (7) Chou,S.Y.;Krauss,P.R.;Renstrom,P.J.J.Vac.Sci.Technol.B 1996,14,4129.doi:10.1116/1.588605

    (8) Hoff,J.D.;Cheng,L.J.;Meyhofer,E.;Guo,L.J.;Hunt,A.J. Nano Lett.2004,4,853.doi:10.1021/nl049758x

    (9) Lee,K.B.;Park,S.J.;Mirkin,C.A.;Smith,J.C.;Mrksich,M. Science 2002,295,1702.doi:10.1126/science.1067172

    (10)Cheung,C.L.;Camarero,J.A.;Woods,B.W.;Lin,T.W.; Johnson,J.E.;De Yoreo,J.J.J.Am.Chem.Soc.2003,125, 6848.doi:10.1021/ja034479h

    (11) Liu,G.Y.;Amro,N.A.Proc.Natl.Acad.Sci.U.S.A.2002,99, 5165.doi:10.1073/pnas.072695699

    (12)Case,M.A.;McLendon,G.L.;Hu,Y.;Vanderlick,T.K.; Scoles,G.Nano Lett.2003,3,425.doi:10.1021/nl025795h

    (13) Kenseth,J.R.;Harnisch,J.A.;Jones,V.W.;Porter,M.D. Langmuir 2001,17,4105.doi:10.1021/La0100744

    (14) Pavlovic,E.;Oscarsson,S.;Quist,A.P.Nano Lett.2003,3,779. doi:10.1021/nl025795h

    (15)Gu,J.H.;Yam,C.M.;Li,S.;Cai,C.Z.J.Am.Chem.Soc. 2004,126,8098.doi:10.1021/ja048405x

    (16) Saner,C.K.;Lu,L.;Zhang,D.H.;Garno,J.C.Nanotechnol. Rev.2015,4,129.doi:10.1515/ntrev-2015-0002

    (18) Lin,W.F.;Swartz,L.A.;Li,J.R.;Liu,Y.;Liu,G.Y.J.Phys. Chem.C 2013,117,23279.doi:10.1021/jp406239d.

    (19) Taylor,Z.R.;Keay,J.C.;Sanchez,E.S.;Johnson,M.B.; Schmidtke,D.W.Langmuir 2012,28,9656.doi:10.1021/ la300806m

    (20) Cai,Y.G.;Ocko,B.M.Langmuir 2005,21,9274.doi:10.1021/ la051656e

    (21)Garno,J.C.;Amro,N.A.;Wadu-Mesthrige,K.;Liu,G.Y. Langmuir 2002,18,8186.doi:10.1021/la020518b

    (22) Singh,G.;Griesser,H.J.;Bremmell,K.;Kingshott,P.Adv. Funct.Mater.2011,21,540.doi:10.1002/adfm.201001340

    (23) Bognar,J.;Szucs,J.;Dorko,Z.;Horvath,V.;Gyurcsanyi,R.E. Adv.Funct.Mater.2013,23,4703.doi:10.1002/adfm.201300113

    (24) Park,S.J.Korean Phys.Soc.2015,67,706.doi:10.3938/ jkps.67.706

    (25) Dixit,C.K.;Kumar,A.;Kaushik,A.Biochem.Biophys.Res. Commun.2012,423,473.doi:10.1016/j.bbrc.2012.05.144

    (26) Sun,P.;Xu,L.;Zhao,W.M.Acta Phys.Sin.2008,56,1951. doi:10.7498/aps.57.1951

    (27) Zhou,Z.T.;Yang,L.;Yao,J.Acta Phys.Sin.2013,62,188104. doi:10.7498/aps.62.188104

    (28) Tillman,N.;Ulman,A.;Schildkraut,J.S.;Penner,T.L.J.Am. Chem.Soc.1988,110,6136.doi:10.1021/Ja00226a031

    (29)Wasserman,S.R.;Tao,Y.T.;Whitesides,G.M.Langmuir 1989, 5,1074.doi:10.1021/La00088a035

    (30) Gao,P.;Cai,Y.G.Langmuir 2008,24,10334.doi:10.1021/ la801020b

    (31) Gao,P.;Cai,Y.G.Ultramicroscopy 2009,109,1023. doi:10.1016/j.ultramic.2009.03.023

    (32) Gershevitz,O.;Sukenik,C.N.J.Am.Chem.Soc.2004,126, 482.doi:10.1021/Ja037610u

    (33) Koehler,J.A.;Ulbricht,M.;Belfort,G.Langmuir 1997,13, 4162.doi:10.1021/La970010m

    (34) Faucheux,N.;Schweiss,R.;Lutzow,K.;Werner,C.;Groth,T. Biomaterials 2004,25,2721.doi:10.1016/j. biomaterials.2003.09.069

    (35) Nimura,N.;Kinoshita,T.;Yoshida,T.;Uetake,A.;Nakai,C. Anal.Chem.1988,60,2067.doi:10.1021/Ac00170a017

    (36) Cai,Y.G.Langmuir 2009,25,5594.doi:10.1021/la9004483

    Mesoscale Protein Patterning on a Self-Assembled Monolayer Coated Silicon Surface through Nanosphere Lithography

    SCHLERETHAndrew NOOMUNAPanae GAO Pei*
    (Department of Chemistry,Eastern Kentucky University,521 Lancaster Ave,Richmond 40475,KY,USA)

    The patterning and immobilization of protein molecules onto functionalized silicon substrate through surface silane chemistry is of interest because protein patterning is an important prerequisite for the development of protein-based diagnostics in biological and medicinal fields.As a model system,mesoscale netty lysozyme arrays were assembled on oxidized undecyltrichlorosilane(UTSox)monolayer coated silicon surface through nanosphere lithography.The size of the arrays ranged from nanometer to micrometer can be easily adjusted by changing the size of nanospheres applied on the surface.By using nanosphere lithography,we are capable of fabricating a regular array of protein islands over centimeter sample regions.The created lysozyme protein patterns were characterized by atomic force microscopy(AFM)and fluorescence microscope,respectively.The analysis has demonstrated that this newly established approach offers a faster and more reliable process to fabricate netty protein arrays over large areas compared to conventional scanning-probe based fabrication methods.Furthermore,the carboxylic acid-terminated layer on surfaces is particularly effective for immobilizing protein molecules through either electrostatic interactions or covalent attachment via imine bonds.Therefore, the negative-toned protein structure on the surface with carboxylic acid groups coated on the bare areas makes it possible to fabricate two types of protein molecules on one surface.

    Nanosphere lithography;Lysozyme;Netty array;Self-assembled monolayer;Atomic force microscopy;Fluorescence microscope

    O647

    Ye,X.;Qi,L.Nano Today 2011,6,608.

    10.1016/j. nantod.2011.10.002

    doi:10.3866/PKU.WHXB201701032

    Received:October 31,2016;Revised:January 2,2017;Published online:January 3,2017.

    *Corresponding author.Email:pei.gao@eku.edu;Tel:+1-859-622-1982.

    The project was supported by National Institute of General Medical Sciences of the National Institutes of Health,USA(P20GM103436)and National Science Foundation,USA(3048111570-15-153).美國(guó)國(guó)立衛(wèi)生研究院(P20GM103436)和美國(guó)國(guó)家科學(xué)基金會(huì)(3048111570-15-153)資助項(xiàng)目

    猜你喜歡
    原子力網(wǎng)孔中尺度
    原子力顯微鏡(AFM)用于瀝青老化行為微觀表征研究綜述
    石油瀝青(2022年3期)2022-08-26 09:13:44
    南海中尺度渦的形轉(zhuǎn)、內(nèi)轉(zhuǎn)及平移運(yùn)動(dòng)研究
    基于深度學(xué)習(xí)的中尺度渦檢測(cè)技術(shù)及其在聲場(chǎng)中的應(yīng)用
    網(wǎng)孔電流方程的改進(jìn)和廣義網(wǎng)孔電流方程的建立
    2016年7月四川持續(xù)性強(qiáng)降水的中尺度濾波分析
    經(jīng)編網(wǎng)孔 時(shí)尚載體
    黃淮地區(qū)一次暖區(qū)大暴雨的中尺度特征分析
    原子力顯微鏡—熒光顯微鏡聯(lián)用技術(shù)在活細(xì)胞單分子檢測(cè)中的應(yīng)用
    網(wǎng)孔電流法及其應(yīng)用
    用超網(wǎng)孔分析法列、解含無伴電流源電路方程
    国产色爽女视频免费观看| 国产精品乱码一区二三区的特点| 变态另类成人亚洲欧美熟女| 日韩精品青青久久久久久| 丁香欧美五月| 哪里可以看免费的av片| 男女视频在线观看网站免费| 精品日产1卡2卡| 日日夜夜操网爽| 婷婷亚洲欧美| 午夜a级毛片| 最近中文字幕高清免费大全6 | a级毛片a级免费在线| 我的老师免费观看完整版| 搡老熟女国产l中国老女人| 别揉我奶头 嗯啊视频| 热99re8久久精品国产| 日日干狠狠操夜夜爽| 90打野战视频偷拍视频| 欧美日韩中文字幕国产精品一区二区三区| 国产三级在线视频| 精品一区二区三区人妻视频| 久久精品人妻少妇| 神马国产精品三级电影在线观看| 亚洲成人精品中文字幕电影| 在线观看一区二区三区| 天天躁日日操中文字幕| 亚洲欧美精品综合久久99| 99热精品在线国产| 国产一级毛片七仙女欲春2| 久久99热这里只有精品18| 嫩草影院新地址| bbb黄色大片| 精品久久久久久久久久免费视频| 一级黄色大片毛片| 男人舔奶头视频| 哪里可以看免费的av片| 一进一出抽搐动态| 欧美高清成人免费视频www| 1000部很黄的大片| 99热只有精品国产| 久久久色成人| 国内久久婷婷六月综合欲色啪| 午夜精品一区二区三区免费看| 97热精品久久久久久| 国产精品久久视频播放| 久9热在线精品视频| 中国美女看黄片| 日韩av在线大香蕉| 桃红色精品国产亚洲av| 国产美女午夜福利| 欧美成人免费av一区二区三区| 一本精品99久久精品77| 国产精品国产高清国产av| 日韩欧美精品v在线| 噜噜噜噜噜久久久久久91| 成人性生交大片免费视频hd| 国产av麻豆久久久久久久| 999久久久精品免费观看国产| 亚洲av免费在线观看| 久久久久九九精品影院| 久久久久久久亚洲中文字幕 | 欧美日韩中文字幕国产精品一区二区三区| 给我免费播放毛片高清在线观看| xxxwww97欧美| 午夜视频国产福利| 国产精品98久久久久久宅男小说| 午夜a级毛片| 夜夜爽天天搞| 最近最新中文字幕大全电影3| 在线a可以看的网站| 精品国产三级普通话版| 精品久久久久久久末码| 欧美高清性xxxxhd video| 少妇高潮的动态图| 国产精品,欧美在线| 日韩欧美精品免费久久 | 亚洲内射少妇av| 国产欧美日韩一区二区精品| 在线国产一区二区在线| 日韩欧美国产一区二区入口| 我要搜黄色片| 极品教师在线视频| .国产精品久久| 日本 av在线| 丝袜美腿在线中文| 久久久久精品国产欧美久久久| 精品不卡国产一区二区三区| 五月玫瑰六月丁香| 一级作爱视频免费观看| a级一级毛片免费在线观看| 国产免费一级a男人的天堂| 亚洲av成人av| 熟女人妻精品中文字幕| 好看av亚洲va欧美ⅴa在| 精品久久久久久,| 日韩欧美免费精品| 久久精品国产99精品国产亚洲性色| 老司机深夜福利视频在线观看| 亚洲欧美日韩无卡精品| 毛片一级片免费看久久久久 | 啦啦啦观看免费观看视频高清| 日本黄大片高清| 国产欧美日韩精品亚洲av| 好男人在线观看高清免费视频| 人妻丰满熟妇av一区二区三区| 三级国产精品欧美在线观看| 亚洲狠狠婷婷综合久久图片| 国产成人啪精品午夜网站| 一个人看的www免费观看视频| 日韩欧美一区二区三区在线观看| 好男人在线观看高清免费视频| 欧美潮喷喷水| 亚洲精品在线观看二区| 九九热线精品视视频播放| 观看美女的网站| 窝窝影院91人妻| 老女人水多毛片| 亚洲成av人片在线播放无| 91九色精品人成在线观看| 亚洲,欧美,日韩| 久久热精品热| 欧美日韩中文字幕国产精品一区二区三区| 亚洲黑人精品在线| 国产成人aa在线观看| 国产aⅴ精品一区二区三区波| 搞女人的毛片| 亚洲中文字幕一区二区三区有码在线看| 亚洲av美国av| 日韩欧美精品免费久久 | 免费av不卡在线播放| 国产精品久久久久久亚洲av鲁大| 午夜福利欧美成人| eeuss影院久久| 欧美一区二区国产精品久久精品| 午夜久久久久精精品| 国产精品野战在线观看| 日本成人三级电影网站| 深夜a级毛片| 女生性感内裤真人,穿戴方法视频| 性色avwww在线观看| 亚洲天堂国产精品一区在线| 伊人久久精品亚洲午夜| 日本与韩国留学比较| 97超视频在线观看视频| 免费搜索国产男女视频| 国产视频内射| 午夜日韩欧美国产| av在线蜜桃| 五月玫瑰六月丁香| 给我免费播放毛片高清在线观看| 久久精品国产亚洲av天美| 麻豆一二三区av精品| 婷婷亚洲欧美| 亚洲成人久久性| 午夜福利18| 久久久久久久午夜电影| 久久久久国内视频| 在线看三级毛片| 观看免费一级毛片| 免费看光身美女| 久久久久久九九精品二区国产| www.色视频.com| 日本a在线网址| 真人一进一出gif抽搐免费| 欧美黄色淫秽网站| 丁香六月欧美| 国产精品一区二区性色av| 国产精品av视频在线免费观看| 精品免费久久久久久久清纯| 蜜桃亚洲精品一区二区三区| 成人特级黄色片久久久久久久| 哪里可以看免费的av片| 亚洲美女搞黄在线观看 | 亚洲成av人片在线播放无| 色噜噜av男人的天堂激情| 日韩高清综合在线| 韩国av一区二区三区四区| www日本黄色视频网| 在线观看午夜福利视频| 免费av观看视频| 五月伊人婷婷丁香| 最近在线观看免费完整版| 色综合婷婷激情| 亚洲精品成人久久久久久| 在线观看午夜福利视频| 内射极品少妇av片p| 久久久成人免费电影| 1024手机看黄色片| 特级一级黄色大片| 十八禁网站免费在线| 国产亚洲欧美98| 在线a可以看的网站| 国产一区二区亚洲精品在线观看| 亚洲avbb在线观看| 国内少妇人妻偷人精品xxx网站| 偷拍熟女少妇极品色| 亚洲美女搞黄在线观看 | 日本成人三级电影网站| 黄片小视频在线播放| 高清毛片免费观看视频网站| 婷婷丁香在线五月| 日本一本二区三区精品| 国产伦在线观看视频一区| 97碰自拍视频| 久久久久久国产a免费观看| 久久久色成人| 亚洲人成网站高清观看| 少妇人妻一区二区三区视频| 久久性视频一级片| 99久久99久久久精品蜜桃| 日韩成人在线观看一区二区三区| 国产高清有码在线观看视频| 特大巨黑吊av在线直播| 国产亚洲欧美98| 午夜福利欧美成人| 日韩高清综合在线| 日韩大尺度精品在线看网址| 国产精品一区二区性色av| 国产一区二区在线观看日韩| 一边摸一边抽搐一进一小说| 一卡2卡三卡四卡精品乱码亚洲| 久久久久精品国产欧美久久久| netflix在线观看网站| 91午夜精品亚洲一区二区三区 | 日韩欧美 国产精品| АⅤ资源中文在线天堂| 午夜福利在线观看吧| 欧美国产日韩亚洲一区| 日本黄色视频三级网站网址| 一进一出好大好爽视频| 久久午夜亚洲精品久久| 啦啦啦观看免费观看视频高清| 波野结衣二区三区在线| 人人妻人人澡欧美一区二区| 国产一区二区激情短视频| 可以在线观看的亚洲视频| 中文字幕高清在线视频| 久久久久久九九精品二区国产| 精品久久国产蜜桃| 极品教师在线视频| 神马国产精品三级电影在线观看| 1024手机看黄色片| 一级黄色大片毛片| 丝袜美腿在线中文| 国产伦一二天堂av在线观看| 免费高清视频大片| 99热这里只有精品一区| 国产三级在线视频| 51国产日韩欧美| 在线a可以看的网站| 极品教师在线免费播放| 看免费av毛片| 亚洲综合色惰| 欧美黄色淫秽网站| 97碰自拍视频| 99精品久久久久人妻精品| 亚洲国产精品合色在线| 免费看美女性在线毛片视频| 看黄色毛片网站| 精品一区二区免费观看| 少妇人妻精品综合一区二区 | 一个人免费在线观看的高清视频| 少妇熟女aⅴ在线视频| 天堂动漫精品| www.熟女人妻精品国产| 精华霜和精华液先用哪个| 久9热在线精品视频| 黄色日韩在线| 亚洲aⅴ乱码一区二区在线播放| 成人欧美大片| 宅男免费午夜| 国产精品久久电影中文字幕| 国产真实伦视频高清在线观看 | 啦啦啦韩国在线观看视频| 男女做爰动态图高潮gif福利片| xxxwww97欧美| 91字幕亚洲| 日韩欧美精品免费久久 | 男插女下体视频免费在线播放| 9191精品国产免费久久| 在线免费观看的www视频| 久久草成人影院| 欧美日韩黄片免| 欧美zozozo另类| 看黄色毛片网站| 亚洲18禁久久av| 校园春色视频在线观看| 亚洲av成人不卡在线观看播放网| 最近在线观看免费完整版| 欧美最新免费一区二区三区 | 精品国内亚洲2022精品成人| 我的女老师完整版在线观看| 亚洲美女搞黄在线观看 | 国内少妇人妻偷人精品xxx网站| 中国美女看黄片| 91狼人影院| 国产av不卡久久| 日本在线视频免费播放| 精品久久久久久久久亚洲 | 看黄色毛片网站| 五月玫瑰六月丁香| 国产在线精品亚洲第一网站| 欧美午夜高清在线| 日本在线视频免费播放| 草草在线视频免费看| 成年免费大片在线观看| 此物有八面人人有两片| 亚洲人成电影免费在线| 身体一侧抽搐| 欧美乱妇无乱码| 一级黄色大片毛片| 亚洲aⅴ乱码一区二区在线播放| 在线观看舔阴道视频| 麻豆国产97在线/欧美| 九色国产91popny在线| 男人舔女人下体高潮全视频| 亚洲av电影不卡..在线观看| 亚洲精品日韩av片在线观看| 欧美中文日本在线观看视频| 亚洲专区中文字幕在线| 国产亚洲精品久久久com| 白带黄色成豆腐渣| 国产精品久久久久久人妻精品电影| 国产亚洲精品av在线| 国产一区二区激情短视频| 精品一区二区三区av网在线观看| 免费av毛片视频| 中出人妻视频一区二区| 美女免费视频网站| 亚洲欧美激情综合另类| 午夜免费成人在线视频| 亚洲人成电影免费在线| 日韩人妻高清精品专区| 成年人黄色毛片网站| .国产精品久久| 69av精品久久久久久| 中文资源天堂在线| 欧美性猛交黑人性爽| 成人美女网站在线观看视频| 十八禁网站免费在线| 国产高清三级在线| 五月玫瑰六月丁香| 亚洲欧美日韩高清在线视频| 欧美黑人欧美精品刺激| 高潮久久久久久久久久久不卡| 我的女老师完整版在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产高清激情床上av| 色av中文字幕| 亚洲国产精品sss在线观看| 99精品久久久久人妻精品| 国产精品一区二区性色av| 免费观看的影片在线观看| 国产视频一区二区在线看| 日韩av在线大香蕉| 99久久九九国产精品国产免费| 日日干狠狠操夜夜爽| 国产免费男女视频| 制服丝袜大香蕉在线| 亚洲成av人片在线播放无| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕av在线有码专区| 国产亚洲欧美在线一区二区| 99久久99久久久精品蜜桃| 综合色av麻豆| 欧美日本视频| 美女xxoo啪啪120秒动态图 | 午夜老司机福利剧场| 伦理电影大哥的女人| 欧美激情在线99| 欧美激情久久久久久爽电影| 91久久精品国产一区二区成人| 久久久久国产精品人妻aⅴ院| 69人妻影院| 搡老熟女国产l中国老女人| 亚洲性夜色夜夜综合| 韩国av一区二区三区四区| 欧美一区二区国产精品久久精品| 免费av观看视频| 噜噜噜噜噜久久久久久91| 国产精品人妻久久久久久| 天堂动漫精品| 看片在线看免费视频| 色综合站精品国产| 免费一级毛片在线播放高清视频| 久久久久久久午夜电影| 久久久久免费精品人妻一区二区| 搡老妇女老女人老熟妇| 亚洲最大成人中文| 亚洲精品影视一区二区三区av| 婷婷亚洲欧美| 99riav亚洲国产免费| 精品不卡国产一区二区三区| 男人和女人高潮做爰伦理| 我的老师免费观看完整版| 国产真实乱freesex| 日韩人妻高清精品专区| 亚洲成a人片在线一区二区| 色在线成人网| 久久99热6这里只有精品| 色在线成人网| 精品久久久久久成人av| 精品一区二区免费观看| 亚洲av成人精品一区久久| 欧美精品国产亚洲| 国产精品野战在线观看| 俄罗斯特黄特色一大片| 99国产精品一区二区三区| 搡老妇女老女人老熟妇| 黄色日韩在线| 男人的好看免费观看在线视频| 午夜两性在线视频| 日韩亚洲欧美综合| 亚洲专区中文字幕在线| 欧美黄色淫秽网站| 午夜a级毛片| 尤物成人国产欧美一区二区三区| 亚洲国产欧洲综合997久久,| 看黄色毛片网站| 久久精品综合一区二区三区| 久久久久久久久久成人| 老鸭窝网址在线观看| 久久香蕉精品热| 国产精品嫩草影院av在线观看 | 亚洲乱码一区二区免费版| 99热这里只有是精品在线观看 | 别揉我奶头 嗯啊视频| 久久精品国产清高在天天线| 老女人水多毛片| 美女高潮喷水抽搐中文字幕| 免费一级毛片在线播放高清视频| 免费大片18禁| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品影视一区二区三区av| 在线天堂最新版资源| 麻豆国产av国片精品| 我的老师免费观看完整版| 国产欧美日韩一区二区精品| 免费在线观看影片大全网站| 国内精品久久久久久久电影| 成人三级黄色视频| 日韩欧美国产在线观看| 国产精品久久久久久精品电影| 国产视频内射| 成人永久免费在线观看视频| 日韩大尺度精品在线看网址| 日韩欧美精品v在线| 老鸭窝网址在线观看| 欧美精品啪啪一区二区三区| 露出奶头的视频| 精品久久久久久久久久免费视频| 国内揄拍国产精品人妻在线| 欧美另类亚洲清纯唯美| 午夜影院日韩av| 亚洲一区高清亚洲精品| 亚洲成人精品中文字幕电影| 国产午夜福利久久久久久| www.www免费av| 91狼人影院| 91av网一区二区| 亚洲成a人片在线一区二区| ponron亚洲| 国产精华一区二区三区| 成人高潮视频无遮挡免费网站| 听说在线观看完整版免费高清| x7x7x7水蜜桃| 国产精品一区二区性色av| 午夜免费激情av| 变态另类成人亚洲欧美熟女| 免费观看人在逋| 国产精品不卡视频一区二区 | 99久久精品国产亚洲精品| 12—13女人毛片做爰片一| 亚洲五月婷婷丁香| 欧美日韩综合久久久久久 | 国产精品免费一区二区三区在线| 免费黄网站久久成人精品 | 成人鲁丝片一二三区免费| 大型黄色视频在线免费观看| 一级作爱视频免费观看| 精品一区二区三区视频在线观看免费| 色播亚洲综合网| 国产精品99久久久久久久久| 有码 亚洲区| 国产成人a区在线观看| 色综合亚洲欧美另类图片| 性欧美人与动物交配| 日韩精品青青久久久久久| 亚洲欧美日韩高清专用| 99视频精品全部免费 在线| 日本免费a在线| 熟妇人妻久久中文字幕3abv| 欧美性感艳星| 久久久久免费精品人妻一区二区| 亚洲最大成人av| 国产精品人妻久久久久久| 成人特级av手机在线观看| 午夜精品一区二区三区免费看| 黄片小视频在线播放| 中文在线观看免费www的网站| 一区福利在线观看| 欧美成人免费av一区二区三区| 亚洲精品日韩av片在线观看| 久久精品国产99精品国产亚洲性色| 2021天堂中文幕一二区在线观| x7x7x7水蜜桃| 自拍偷自拍亚洲精品老妇| 99热这里只有是精品在线观看 | 欧美xxxx性猛交bbbb| 日本免费一区二区三区高清不卡| 精品一区二区三区视频在线| 精品国产亚洲在线| 久久久久亚洲av毛片大全| 日韩欧美精品免费久久 | 97超视频在线观看视频| 久久人妻av系列| 宅男免费午夜| 久久久精品大字幕| 亚洲av成人av| 天堂影院成人在线观看| 香蕉av资源在线| 精品无人区乱码1区二区| 国产高清视频在线播放一区| 国产真实乱freesex| 欧美一区二区精品小视频在线| 中亚洲国语对白在线视频| 激情在线观看视频在线高清| 99国产综合亚洲精品| 搡老熟女国产l中国老女人| 亚洲性夜色夜夜综合| 亚洲一区二区三区不卡视频| 九色成人免费人妻av| 啦啦啦韩国在线观看视频| 亚洲熟妇中文字幕五十中出| 欧美潮喷喷水| 亚洲狠狠婷婷综合久久图片| 国产成人啪精品午夜网站| 亚洲国产精品999在线| 国产成人欧美在线观看| 午夜福利欧美成人| 欧美高清性xxxxhd video| 欧美bdsm另类| 国产精品久久电影中文字幕| 人人妻,人人澡人人爽秒播| 欧美丝袜亚洲另类 | 久久香蕉精品热| 精品一区二区三区视频在线| 91久久精品电影网| 好男人在线观看高清免费视频| 亚洲精品在线美女| 久久久国产成人免费| 精品一区二区三区视频在线观看免费| 国产亚洲精品久久久com| 99久久久亚洲精品蜜臀av| 国产欧美日韩一区二区精品| 一进一出抽搐gif免费好疼| 国产成人aa在线观看| 99久久久亚洲精品蜜臀av| 熟女人妻精品中文字幕| 男人舔奶头视频| 女人被狂操c到高潮| 少妇丰满av| 亚洲不卡免费看| 丰满人妻一区二区三区视频av| 亚洲欧美日韩高清在线视频| 少妇的逼好多水| 窝窝影院91人妻| 九九热线精品视视频播放| 午夜免费男女啪啪视频观看 | 国产亚洲欧美98| 欧美日本亚洲视频在线播放| 欧美中文日本在线观看视频| 国产三级在线视频| 极品教师在线视频| 久久精品夜夜夜夜夜久久蜜豆| 在线播放国产精品三级| 88av欧美| 国产在线男女| 国产av不卡久久| 午夜精品一区二区三区免费看| 日韩人妻高清精品专区| xxxwww97欧美| 亚洲欧美日韩无卡精品| 如何舔出高潮| 婷婷六月久久综合丁香| 黄色丝袜av网址大全| 亚州av有码| a级一级毛片免费在线观看| av在线天堂中文字幕| 国产在线男女| 亚洲精品色激情综合| 国产成人啪精品午夜网站| 99国产精品一区二区蜜桃av| 在线观看免费视频日本深夜| 成人午夜高清在线视频| 91九色精品人成在线观看| 免费观看人在逋| 国产精品1区2区在线观看.| 一本久久中文字幕| 久久久久久九九精品二区国产| 桃色一区二区三区在线观看| av欧美777| 淫妇啪啪啪对白视频| 一二三四社区在线视频社区8| 成人精品一区二区免费| 91在线精品国自产拍蜜月| 女同久久另类99精品国产91| 欧美日韩福利视频一区二区| 亚洲成人精品中文字幕电影| 别揉我奶头 嗯啊视频| АⅤ资源中文在线天堂| 亚洲一区二区三区不卡视频| 老鸭窝网址在线观看| 亚洲一区二区三区色噜噜|