• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    自由基誘導的水溶液中氟西汀的降解:脈沖輻解及穩(wěn)態(tài)輻照研究

    2017-05-12 06:58:02吉天翼劉艷成趙劍鋒王文鋒吳明紅
    物理化學學報 2017年4期
    關鍵詞:羥基自由基脈沖

    吉天翼 劉艷成 趙劍鋒,3 徐 剛 王文鋒,* 吳明紅,*

    自由基誘導的水溶液中氟西汀的降解:脈沖輻解及穩(wěn)態(tài)輻照研究

    吉天翼1,2劉艷成2趙劍鋒2,3徐 剛1王文鋒2,*吳明紅1,*

    (1上海大學環(huán)境與化學工程學院,上海200444;2中國科學院上海應用物理研究所,上海201800;3中國科學院大學,北京100049)

    本文運用脈沖輻解探究了不同自由基與藥物氟西汀(FLX)之間的反應。羥基自由基(·OH)與FLX反應生成苯環(huán)上的羥基加成物,而硫酸根陰離子自由基則通過單電子氧化FLX生成苯陽離子自由基,該中間產(chǎn)物再進一步與水反應生成苯環(huán)上的羥基加成物。本研究測定了三種自由基·OH,水合電子以及與 FLX反應的反應速率常數(shù)分別為:7.8×109,2.3×109和1.1×109mol·L-1·s-1。本文還運用電子束輻照技術探究了不同輻照條件下的FLX降解效果,結合HPLC和紫外可見光譜儀進行分析。在N2O和空氣飽和的兩種條件下,F(xiàn)LX溶液經(jīng)1.5 kGy輻照后降解效率均達到90%以上,而N2飽和條件下,加入0.1 mol·L-1的叔丁醇的FLX溶液經(jīng)1.5 kGy輻照后僅有43%分解。此外,酸性和中性條件下FLX的降解效率均大于堿性條件下的。結果闡明了飽和空氣的FLX溶液在中性條件下的降解效果最佳,且·OH誘導的反應比更有利于FLX的分解。本研究期望對于進一步探究FLX的降解反應提供有益的幫助。

    氟西??;脈沖輻解;羥基自由基;硫酸根陰離子自由基;降解

    Key Words: Fluoxetine;Pulse radiolysis;Hydroxyl radical;Sulfate radical anion;Degradation

    1 Introduction

    Recently,social and scientific concerns about the occurrence of pharmaceutical and personal care products(PPCPs)in the environmental water have increased1,2.Many drugs have been detected in environmental water due to the widespread use of pharmaceuticals and the insufficient removal processes in ordinary water and wastewater treatment3,4.Furthermore,concerns have also been raised about the potential impacts of their parent compounds and biologically active metabolites on environmental and human health5.Therefore,PPCPs have been recognized as environmental pollutants6.

    Fluoxetine(FLX)(N-methyl-3-(p-trifluoromethylphenoxy)-3-phenylpropylamine,shown in Fig.1),also named Prozac,is widely used for treating depression and other neurological or mental diseases.As a selective serotonin reuptake inhibitor(SSRI), fluoxetine(FLX)and its demethylated active metabolite norfluoxetine(NFLX)were proposed as being potentially dangerous to the environment in a list of 10 pharmaceuticals7.Since they undergo incomplete decomposition in the wastewater treatment process,FLX and NFLX have been detected with the concentration level of ng·L-1in surface waters of most of countries8-11. Hence,it implied that wastewater effluents are an important source of FLX and NFLX residue in the surface water12,13.Furthermore, it was reported that some freshwater fishes were toxic and the copulation and maturity of microorganisms were distributed after exposure to FLX14,15.Therefore,although FLX and its metabolites are present in the environment in very low concentrations,they may present a potential hazard to the environmental water as well as to human health.

    FLX shows the most absorbance in the range of UV spectrum, but its photodegradation is limited in environmental water,even under appropriate conditions of pH and temperature.Kwon and Armbrust16illustrated the low biological degradability of FLX in wastewater treatment plants,as it was not only stable during hydrolysis and photolysis but also resistant to micro-biodegradation.Nowadays,advanced oxidation processes(AOPs)are a rapid and high-efficiency technology that have been used successfully to remove multiple pollutants by forming strong oxidants such as hydroxyl radicals(·OH)to eliminate contaminants and mineralization.To improve this degradation efficiency,a study reported that using sonochemical treatment as a mean of pretreatment combined with biological treatment to remove FLX17. FLX was eliminated in an Ar-saturated solution after 60 min of sonication,and 15%was mineralized after 360 min of ultrasonic irradiation.Radiation technology is considered to be an advanced oxidation processes(AOP)technique,and the radicals formed by radiolysis of water can degrade pollutants18,19.Silva et al.20reported FLX eliminated completely by electron beam irradiation at a dose of more than 2.5 kGy,while TOC was removed only 22%even at a dose of 20 kGy.Garrido et al.21discovered that FLX was oxidized mainly through the oxidations of the secondary amine group and aromatic ring,which yielded a transient cation-radical and then conducted further reactions.

    Fig.1 Molecular structure of FLX

    In this paper,we studied that different intermediates of water radiolysis reacted with FLX by monitoring the growth/decay of transient intermediates by using pulse radiolysis.The rate constants of radical reactions with FLX were determined,and the yield of FLX decomposition was investigated in different conditions by electron beam irradiation.Finally,we compared the rate constants of different radical reactions with FLX and the degradation rates of FLX under different conditions to discern the optimal conditions for eliminating FLX.

    2 Materials and methods

    2.1 Materials

    Fluoxetine hydrochloride(FLX·HCl)was purchased from Tokyo Chemical Industry(>98%purity).Tert-butanol and K2S2O8were obtained from Sigma-Aldrich.NaOH and phosphate(used for preparation of buffers,pH=7.1)were purchased form J&K Chemical Ltd.All chemicals were analytical reagents and employed without further purification.Sample solutions were prepared using ultra-pure water,and experiments were carried out at ambient temperature.Solutions were bubbled with N2O or N2(high purity,99.999%)for at least 20 min.

    2.2 Pulse radiolysis and steady state radiolysis

    The nanosecond pulse radiolysis experiments were conducted using a 10 MeV linear electron accelerator with high-energy electron pulse duration of 8 ns,and the details were described elsewhere22,23.As a thiocyanate dosimeter,0.1 mol·L-1KSCN solution bubbled with N2O was used to measure the pulse dosimetry using G[(CNS)2·-]=5.8 and by taking ε480nm=7600 dm3· m-1·cm-122.The dose of each electron pulse was 10 Gy.A500 W xenon lamp was used as the source of analyzing light,and the electron pulse and the detecting beam passed vertically through a quartz cell with an optical path length of 10 mm.

    Main radicals generated by water radiolysis were shown in Eq. (1),in which the G-values(μmol·J-1)shown in brackets are the radiation chemical yields of radicals24-26.To study the hydroxyl radical(·OH)reaction,sample solutions were pre-saturated with N2O to convert the hydrated electron(e-aq)and hydrogen atom(·H) to·OH under pulse radiolysis,as shown in Eqs.(2)and(3)24,27,28. To research the reducing reactions oftert-butanol was used to scavenge·OH in the N2saturated solutions as shown in Eq.(4)27,29.

    H2O?·OH(0.28),·H(0.06),H3O+(0.27),H2(0.05),

    Electron beam irradiation was accomplished utilizing a GJ-2-II electron accelerator with a 1.8 MeV beam energy during the steady state radiolysis study.The experiments were irradiated with a dose range of 0.5-20 kGy and a dose rate of 0.045 kGy·s-1.

    2.3 Analytical procedures

    The UV-visible experiments were performed using a Hitachi U-3900 spectrophotometer with the detection wavelength in the range of 190-500 nm.The concentrations of FLX before and after irradiation were measured using an HPLC system(Agilent 1200 series)equipped with a reversed C18column(250 mm×4.6 mm); the detection wavelength of the VW monitor was set as 226 nm. The mobile phase was a mixture of acetonitrile(ACN)and 10 mmol·L-1potassium monophosphate(50:50)at an isocratic mode(1 mL·min-1)30.The injection volume of the auto-sampler was set to 10 μL.

    3 Results and discussion

    3.1 Pulse radiolysis

    3.1.1 Hydroxyl radical reactions

    The concentration of 0.5 mmol·L-1FLX in the N2O-saturated solution at pH=7.1 was studied by pulse radiolysis.As shown in Fig.2,the transient absorption spectrum for the reaction of·OH with FLX depicts a characteristic absorption at 340 nm.After 1 μs, it was quenched rapidly with time increased.Merga et al.31reported that the absorption peak in the range of 300-350 nm corresponded to the·OH adduct,which was generated by the·OH attack on the aromatic ring.According to a previous report,FLX degraded to produce the hydroxylated and O-dealkylated intermediates under indirect photodegradation32.It is possible that·OH reacted with FLX as shown in the following equation:

    Fig.2 Transient absorption spectra obtained from hydroxyl radical oxidation with 5×10-4mol·L-1FLX in N2O-saturated aqueous solutions(pH=7.1)

    The inset of Fig.2 shows the buildup rate constant(kobs)monitored at 340 nm,with various concentrations of FLX ranging from 0.02 to 1 mmol·L-1.Therefore,the rate constant was determined to be 7.8×109mol·L-1·s-1based on the linear trend of the pseudo-first-order transient rate constant.The value of the rate constant of·OH reaction with FLX is similar to those reported about·OH reaction with benzene32,demonstrating that the formation of the hydroxylcyclohexadienyl radical is the first step in the reaction of·OH with FLX24,33.This result also suggests that the majority of·OH added to the benzene ring,rather than reacting with alkylbenzene in the abstraction of the hydrogen atom.

    3.1.2 Hydrated electron reactions

    To investigate the reaction of FLX with hydrated electrons,the experiment was performed in an N2-saturated sample solution with the addition of 0.1 mol·L-1tert-butanol to scavenge·OH,where e-aqis main reactor partner.Astrong broad band at the peak of 690 nm was observed after electron pulse irradiation(as shown in Fig.3a).And the spectrum exhibits the decay ofat 690 nm with different time in the presence and absence of FLX solution.Thedecay ofwas faster with 0.5 mmol·L-1FLX solution than without the addition of FLX solution.After 1 μs,the characteristic absorption ofdecayed completely in the 0.5 mmol·L-1FLX solution.Hence,the hydrated electron decay appears to be accelerated in the presence of FLX.

    Fig.3 (a)Time-resolved absorption spectra obtained from thereaction with 5×10-4mol·L-1FLX in N-saturated solutions2containing 0.1 mol·L-1tert-butanol(pH=7.1);(b)plot of the observed decay rate constant(kobs)as monitored by the reaction ofwith different concentrations of FLX at 690 nm

    Fig.3b shows that the plot of decay rate constant for the reaction ofwith different concentrations of FLX was observed in the decay signal ofat 690 nm.The curve was fitted to a linear trend of the pseudo-first-order rate constant,the value of the reaction ofwith FLX was determined to be 2.3×109mol·L-1·s-1.The

    3.1.3 Sulfate radical anion

    aq,with a yield of G(SO4·-)=2.7 μmol·J-1(Eq.(6))35.Fig.4 depicts the time-resolved absorption spectra of the SO4·-reaction with FLX recorded at different time,which shows strong absorption peaks at 350 and 460 nm.The characteristic absorption ofwas reported to be at 460 nm in previous studies36.Compared to the absorption spectrum of transient intermediate in the absence of FLX at 1 μs, it has a new absorption peak at 350 nm in the 0.5 mmol·L-1FLX solution.The characteristic absorption ofdecayed rapidly with increasing time,while the absorbance of transient intermediate increased at 350 nm(shown in Eq.(7)).Theradicalinduced degradation of some benzene compounds formed the intermediates of hydroxylated adducts of the benzene ring18.In this study,we conjectured that the SO4·-attacked to the aromatic ring by single electron oxidation,forming benzene radical cation and then further reacted with H2O,forming·OH adduct37.The bimolecular rate constant of the SO4·-radical reaction with FLX was estimated with the range concentration from 0.06-0.22 mmol·L-1, based on the pseudo-first-order decay rate constant(inset of Fig.4).And the value is 1.1×109mol·L-1·s-1,as determined from the decay of SO4·-at 460 nm.

    Fig.4 Time-resolved absorption spectra obtained in the reaction of SO·4-with 5×10-4mol·L-1FLX in N2-saturated solutions containing 0.1 mol·L-1K2S2O8and 0.1 mol·L-1tert-butanol(pH=7.1)

    3.2 Steady state radiolysis

    The initial concentration of 0.29 mmol·L-1FLX in air,N2O or N2bubbled solutions were irradiated with different doses by the electron beam irradiation.In the N2O-saturated solution,·OH is the dominant oxidant to oxidizes pollutants.While e-aqis an important reducing agent in the N2-saturated solution containing 0.1 mol·L-1tert-butanol as the selected radical scavenger.In the presence of dissolved O2,and H·were both converted into O2·-/ HO2·(Eqs.(8,9)),therefore,·OH+O2·-/HO2·reactions occur in the aerated solution19.

    Fig.5 displays the·OH-induced degradation efficiency of FLX in the N2O-saturated solution at pH=7.At a dose of 1.5 kGy,the decomposition yield of FLX was approximately 90%;at an absorbed dose of 5 kGy,more than 99%FLX was consumed.With the increasing dose,the characteristic absorption of FLX decreased at 226 nm,indicating the decomposition of FLX in the aqueous solution(inset of Fig.5).Meanwhile,when the absorbed dose was increased,the absorption peak at 265 nm also increased. It was also observed that the peak at approximately 265 nm was slightly redshifted after irradiation,and this same phenomenon also was observed in the spectrum of the air-saturated solution (data not shown).The peak at 265 nm was denoted the formation of changed aromatic rings38.It was also illustrated the hydroxylated product formed by·OH attacked to the aromatic ring.

    To study reactions of individual radical with FLX,the atmo-

    Fig.5 Effect of various doses on the yield of decomposition of the initial concentration of 0.29 mmol·L-1FLX in the

    N2O-saturated solution as determined by the HPLC system and integrating the area under the chromatographic peaksphere condition was changed to produce reactive radical intermediates.And the above experiments suggested that SO4·-can oxide with FLX,so we also further explored the efficiency ofoxidation with FLX.From the Fig.6,the efficiency of the·OH-induced reaction was slightly higher than the·OH+O2·-/HO2· reaction in the N2O and air atmospheres,but both reactions were much higher than theandreactions in the N2atmosphere. After being irradiated with a dose of 1.5 kGy,the initial FLX molecules deceased by 95%and 93%in N2O and air bubbled

    solutions,respectively,in contrast with 43%reaction)and 73%reaction)reductions in the N2-saturated solution.FLX were decomposed completely with·OH and·OH+reactions at a dose of 5 kGy,and more than 90%FLX were decomposed withandreactions.It was reported that the mineralization of ibuprofen by

    radical is better than·OH at pH=7 since the yield of oxidizing radicals increased about 2.2 times in the presence of K2S2O818.However,as proved by our transient study,·OH reaction with FLX was observed to be faster than SO4·-.Meanwhile,as shown by the steady state results,·OH-induced degradation of FLX is more efficient thanradicalinduced degradation.This is probably due to two reasons listed

    adical could not fully or mostly react with FLX because of the competitive reaction between the selfdecay of radical andradical reaction with FLX.The other reason is that the addition reaction of·OH radical is more efficient than the single electron oxidation ofradical in the ring opening reaction of FLX.

    The effect of degradation efficiency of FLX at different pH values was also examined.Fig.7 displays the decomposition yield of FLX in air-saturated solutions at pH 4,7 and 11.At a dose of 2 kGy,FLX had decomposed by more than 95%at pH 4 and 7. The decompositions of FLX both under acidic condition and the neutral condition were better than alkaline condition at a low absorbed dose.Additionally,it has been reported that the degradation of FLX increased at a condition of acidic pH by sonochemical treatment,which has been interpreted to reflect the

    Fig.6 Dependence of the yield of FLX radiolytic decomposition on the·OH reaction(■)in the N2O-saturated solution,the

    ·OH+O2·-/HO2·reaction(▲)in the air-saturated solution,and the(●)and? Fig.7 Dose dependence of the decomposition yield of the initial concentration of 0.29 mmol·L-1FLX in the

    air-saturated solution(·OH+O2·-/HO2·reaction) dominance of the hydrophilic form of FLX17.The pKavalue of FLX is 10.0530.Therefore,the substance exists mainly in its neutral form at pH=11,which is more stable at the time of radical attacking. 4 Conclusions

    This study has shown the transient reactions of FLX with different radicals in pulse radiolysis,and the degradation efficiencies of FLX by electron beam irradiation under different conditions. The·OH radical,solvated electrons,and sulfate radical anions quickly reacted with FLX with the rate constants of 7.8×109, 2.3×109,and 1.1×109mol·L-1·s-1,respectively.The experiments illustrated that the degradation of FLX was occurred both by oxidative and reducing radicals,and the oxidative radicals tend to be more efficient for the decomposition of FLX.Based on the results obtained in this study,we thought that hydroxylated adduct was formed by hydroxyl radical attacking the aromatic ring directly.While it was found that SO4·-reaction preferentially formed a benzene radial cation by single electron oxidation,the intermediates were further transformed into the·OH adduct by reacting with H2O.

    For the steady study,over 90%FLX degraded with an absorbed dose of 1.5 kGy both in the presence of oxygen(·OH+O2·-/HO2· reaction)and in its absence(·OH reaction).In comparing different oxidants,it was observed that the degradation rates of FLX with·OH were higher than that with SO4·-radical.It is possible that the yield of SO4·-radical reacted with FLX was not as much as the yield of·OH,and·OH adduct was more efficient for the ring opening reaction of FLX.Therefore,radiolytic degradation is likely an effective way of eliminating FLX in aqueous solution. And it is also recommended that the radiolytic degradation of FLX molecule was performed by·OH-induced reaction at a neutral condition.

    Acknowledgment: The authors gratefully thank the Shanghai Institute of Applied Physics,Chinese Academy of Sciences and the University of Shanghai.References

    (1)Sui,Q.;Huang,J.;Deng,S.B.;Chen,W.W.;Yu,G.Environ.

    (2) Subedi,B.;Kannan,K.Environ.Sci.Technol.2014,48,6661.

    (20) Silva,V.H.O.;Batista,A.P.D.S.;Borrely,S.I.Environ.Sci. Pollut.R 2016,23,11927.doi:10.1007/s11356-016-6410-1

    (21) Garrido,E.M.;Garrido,J.;Calheiros,R.;Marques,M.P.M.; Borges,F.J.Phys.Chem.A 2009,113,9934.doi:10.1021/ jp904306b

    (22)Yao,S.D.;Sheng,S.G.;Cai,J.H.;Zhang,J.S.;Lin,N.Y. Radiat.Phys.Chem.1995,46,105.doi:10.1016/0969-806X(94) 00120-9

    (23) Liu,Y.C.;Zhang,P.;Li,H.X.;Tang,R.Z.;Cui,R.R.;Wang, W.F.J.Photochem.Photobiol.B 2013,118,58.doi:10.1016/j. jphotobiol.2012.11.002

    (24) Buxton,G.V.J.Phys.Chem.Ref.Data 1988,17,513.

    Radical-Induced Degradation of Fluoxetine in Aqueous Solution by Pulse and Steady-State Radiolysis Studies

    JI Tian-Yi1,2LIU Yan-Cheng2ZHAO Jian-Feng2,3XU Gang1WANG Wen-Feng2,*WU Ming-Hong1,*
    (1School of Environment and Chemical Engineering,Shanghai University,Shanghai 200444,P.R.China;2Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,P.R.China;3University of Chinese Academy of Sciences,Beijing 100049,P.R.China)

    The reactions of the pharmaceutical fluoxetine(FLX)with different radicals were investigated by pulse radiolysis.The reaction of hydroxyl radical(·OH)with FLX formed hydroxylated adduct of the aromatic ring,while oxidation of FLX by sulfate radical anion(SO4·-)formed benzene radical cation that further reacted with H2O to yield the·OH adduct.The determined rate constants of·OH,hydrated electrons(e-aq),and SO4·-with FLX were 7.8×109,2.3×109,and 1.1×109mol·L-1·s-1,respectively.In the steady-state radiolysis study, the degradation of FLX in different radiolytic conditions by electron beam irradiation was detected by HPLC and UV-Vis spectra techniques.It was found that FLX concentration decreased by more than 90%in both N2O and air-saturated solutions after 1.5 kGy irradiation.In contrast,only 43%of FLX was decomposed in N2-saturated solution containing 0.1 mol·L-1tert-butanol.The degradation rates of FLX in acidic and neutral solutions were higher than those in alkaline solutions.Our results showed that the degradation of FLX is optimal in air-saturated neutral solution,and·OH-induced degradation is more efficient than SO4·-oxidation of FLX.The obtained kinetic data and optimal conditions give some hints to understand the degradation of FLX.

    O644

    Technol.2011,45,3341.

    10.1021/es200248d

    doi:10.3866/PKU.WHXB201701092

    Received:November 8,2016;Revised:January 9,2017;Published online:January 9,2017.

    *Corresponding authors.WANG Wen-Feng,Email:wangwenfeng@sinap.ac.cn.WU Ming-Hong,Email:mhwu@shu.edu.cn.國家自然科學基金(21173252,41430644,11675098)資助項目

    doi:10.1021/es501709a

    (3) Wawryniuk,M.;Pietrzak,A.;Nalecz-Jawecki,G.Ecotox.

    Environ.Safe 2015,115,144.doi:10.1016/j.ecoenv.2015.02.014 (4) Subedi,B.;Kannan,K.Sci.Total Environ.2015,514,273.

    doi:10.1016/j.scitotenv.2015.01.098

    (5) Kümmerer,K.J.Environ.Manage.2009,90,2354.

    doi:10.1016/j.jenvman.2009.01.023

    (6)Boxall,A.B.;Rudd,M.A.;Brooks,B.W.;Caldwell,D.J.;

    Choi,K.;Hickmann,S.;Innes,E.;Ostapyk,K.;Staveley,J.P.;

    Verslycke,T.Environ.Health Perspect.2012,120,1221.

    doi:10.1289/ehp.1104477

    (7)Santos,L.H.M.L.M.;Gros,M.;Rodriguez-Mozaz,S.;

    Delerue-Matos,C.;Pena,A.;Barcelo,D.;Montenegro,M.C.B.

    S.M.Sci.Total Environ.2013,461,302.doi:10.1016/j.

    scitotenv.2013.04.077

    (8)Kolpin,D.W.;Furlong,E.T.;Meyer,M.T.;Thurman,E.M.; Zaugg,S.D.;Barber,L.B.;Buxton,H.T.Environ.Sci.Technol. 2003,36,1202.doi:10.1021/es0202356

    (9) Metcalfe,C.D.;Miao,X.S.;Koenig,B.G.;Struger,J.Environ.

    Toxicol.Chem.2003,22,2881.doi:10.1897/02-627

    (10) Wu,M.H.;Xiang,J.J.;Que,C.J.;Chen,F.F.;Xu,G.

    Chemosphere 2015,138,486.doi:10.1016/j. chemosphere.2015.07.002

    (11)Ma,R.X.;Wang,B.;Lu,S.Y.;Zhang,Y.Z.;Yin,L.;Huang,J.; Deng,S.B.;Wang,Y.J.;Yu,G.Sci.Total Environ.2016,557, 268.doi:10.1016/j.scitotenv.2016.03.053

    (12) Ottmar,K.J.;Colosi,L.M.;Smith,J.A.B Environ.Contam.

    Tox.2010,84,507.doi:10.1007/s00128-010-9990-3

    (13) Cardoso,O.;Porcher,J.M.;Sanchez,W.Chemosphere 2014,

    115,20.doi:10.1016/j.chemosphere.2014.02.004

    (14) Schultz,M.M.;Painter,M.M.;Bartell,S.E.;Logue,A.;

    Furlong,E.T.;Werner,S.L.;Schoenfuss,H.L.Aquat.Toxicol. 2011,104,38.doi:10.1016/j.aquatox.2011.03.011

    (15) Mendez,N.;Barata,C.Ecotoxicology 2015,24,106.

    doi:10.1007/s10646-014-1362-z

    (16)Kwon,J.W.;Armbrust,K.L.Environ.Toxicol.Chem.2006,25, 2561.doi:10.1897/05-613r.1

    (17) Serna-Galvis,E.A.;Silva-Agredo,J.;Giraldo-Aguirre,A.L.; Torres-Palma,R.A.Sci.Total Environ.2015,524,354. doi:10.1016/j.scitotenv.2015.04.053

    (18) Paul,J.;Naik,D.B.;Bhardwaj,Y.K.;Varshney,L.Radiat. Phys.Chem.2014,100,38.doi:10.1016/j. radphyschem.2014.03.016

    (19) Kovacs,K.;Mile,V.;Csay,T.;Takacs,E.;Wojnarovits,L. Environ.Sci.Pollut.R 2014,21,12693.doi:10.1007/s11356-014-3197-9doi:10.1063/1.555805

    (25) Song,W.H.;Cooper,W.J.;Mezyk,S.P.;Greaves,J.;Peake,B. M.Environ.Sci.Technol.2008,42,1256.doi:10.1021/ es702245n

    (26)Wu,M.H.;Liu,N.;Xu,G.;Ma,J.;Tang,L.;Wang,L.;Fu,H. Y.Radiat.Phys.Chem.2011,80,420.doi:10.1016/j. radphyschem.2010.10.008

    (27) Czapski,G.;Peled,E.Isr.J.Chem.1968,6,421.doi:10.1002/ ijch.196800054

    (28) Spinks,J.W.T.;Woods,R.J.Introduction to Radiation Chemistry;Wiley:New York,1990.

    (29) Wolfenden,B.S.;Willson,R.L.J.Chem.Soc.Perkin Trans. 1982,2,805.doi:10.1039/P29820000805

    (30) Mendez-Arriaga,F.;Otsu,T.;Oyama,T.;Gimenez,J.;Esplugas, S.;Hidaka,H.;Serpone,N.Water.Res.2011,45,2782. doi:10.1016/j.watres.2011.02.030

    (31) Merga,G.;Rao,B.S.M.;Mohan,H.;Mittal,J.P.J.Phys. Chem.2002,98,9158.doi:10.1021/j100088a012

    (32)Lam,M.W.;Young,C.J.;Mabury,S.A.Environ.Sci.Tech. 2005,39,513.doi:10.1021/es0494757

    (33) Sehested,K.;Christensen,H.C.;Hart,E.J.;Corfitzen,H.J. Phys.Chem.-Us 1975,79,310.doi:10.1021/J100571a005

    (34)Neta,P.;Madhavan,V.;Zemel,H.;Fessenden,R.W. Chemischer Informationsdienst 1977,8,163.doi:10.1002/ chin.197714152

    (35) Hentz,R.R.;Farhataziz;Hansen,E.M.J.Chem.Phys.1972, 57,2959.doi:10.1063/1.1678690

    (36)Choure,S.C.;Bamatraf,M.M.M.;Rao,B.S.M.;Das,R.; Mohan,H.;Mittal,J.P.J.Phys.Chem.A 1997,101,9837. doi:10.1021/jp971986a

    (37)Shibin,N.B.;Sreekanth,R.;Aravind,U.K.;Mohammed,K.M. A.;Chandrashekhar,N.V.;Joseph,J.;Sarkar,S.K.;Naik,D.B.; Aravindakumar,C.T.J.Phys.Org.Chem.2014,27,478. doi:10.1002/poc.3285

    (38) Illes,E.;Takacs,E.;Dombi,A.;Gajda-Schrantz,K.;Racz,G.; Gonter,K.;Wojnarovits,L.Sci.Total Environ.2013,447,286. doi:10.1016/j.scitotenv.2013.01.007

    猜你喜歡
    羥基自由基脈沖
    他們使阿秒光脈沖成為可能
    脈沖離散Ginzburg-Landau方程組的統(tǒng)計解及其極限行為
    自由基損傷與魚類普發(fā)性肝病
    自由基損傷與巴沙魚黃肉癥
    陸克定:掌控污染物壽命的自由基
    科學中國人(2018年8期)2018-07-23 02:26:46
    羥基喜樹堿PEG-PHDCA納米粒的制備及表征
    中成藥(2018年2期)2018-05-09 07:20:05
    黃芩苷脈沖片的制備
    中成藥(2017年12期)2018-01-19 02:06:54
    N,N’-二(2-羥基苯)-2-羥基苯二胺的鐵(Ⅲ)配合物的合成和晶體結構
    TEMPO催化合成3α-羥基-7-酮-5β-膽烷酸的研究
    檞皮苷及其苷元清除自由基作用的研究
    黄色怎么调成土黄色| 中文字幕色久视频| 国产精品偷伦视频观看了| 欧美黄色片欧美黄色片| 男人添女人高潮全过程视频| 如何舔出高潮| 亚洲精品在线美女| 婷婷色综合www| 综合色丁香网| 亚洲一级一片aⅴ在线观看| 少妇的丰满在线观看| 多毛熟女@视频| 国产精品 欧美亚洲| √禁漫天堂资源中文www| 菩萨蛮人人尽说江南好唐韦庄| 99精国产麻豆久久婷婷| 国产一区二区三区综合在线观看| 看免费成人av毛片| 国产在线免费精品| 一本一本久久a久久精品综合妖精| 欧美激情 高清一区二区三区| 在线观看免费日韩欧美大片| 精品国产一区二区三区久久久樱花| 99国产综合亚洲精品| 在线天堂最新版资源| 国产男女超爽视频在线观看| 午夜福利免费观看在线| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产精品国产精品| 妹子高潮喷水视频| 久久久久久久国产电影| 亚洲国产精品999| 国产女主播在线喷水免费视频网站| 色婷婷av一区二区三区视频| 热re99久久国产66热| 国产亚洲一区二区精品| 深夜精品福利| 黄片无遮挡物在线观看| 国产激情久久老熟女| 咕卡用的链子| 久久精品国产a三级三级三级| 欧美黑人欧美精品刺激| 午夜日本视频在线| av一本久久久久| 在线 av 中文字幕| 97在线人人人人妻| 欧美日韩综合久久久久久| 一区在线观看完整版| 美女扒开内裤让男人捅视频| 五月天丁香电影| 在线观看免费高清a一片| 在线观看www视频免费| 80岁老熟妇乱子伦牲交| 国产成人精品久久二区二区91 | 中国国产av一级| 五月天丁香电影| 亚洲伊人色综图| 久久久久精品人妻al黑| 69精品国产乱码久久久| 国产亚洲午夜精品一区二区久久| 亚洲欧美中文字幕日韩二区| 国产精品香港三级国产av潘金莲 | 日韩一卡2卡3卡4卡2021年| 最近中文字幕高清免费大全6| 99热全是精品| 欧美激情 高清一区二区三区| 亚洲激情五月婷婷啪啪| 国产日韩一区二区三区精品不卡| 国产精品免费视频内射| 巨乳人妻的诱惑在线观看| 久久精品国产a三级三级三级| 看免费成人av毛片| 亚洲美女视频黄频| 午夜91福利影院| 18禁观看日本| 成人免费观看视频高清| 亚洲国产av影院在线观看| 亚洲,一卡二卡三卡| 少妇 在线观看| 日韩一区二区视频免费看| 亚洲一码二码三码区别大吗| 色吧在线观看| 色婷婷久久久亚洲欧美| 国产日韩欧美在线精品| 久久免费观看电影| 观看美女的网站| 亚洲精品第二区| 另类亚洲欧美激情| 亚洲av国产av综合av卡| 亚洲精品久久午夜乱码| 狠狠精品人妻久久久久久综合| 男女无遮挡免费网站观看| 亚洲国产精品一区二区三区在线| 日韩av免费高清视频| a级毛片黄视频| 亚洲第一av免费看| 亚洲激情五月婷婷啪啪| 日本av手机在线免费观看| 亚洲成人一二三区av| 在线精品无人区一区二区三| 国产国语露脸激情在线看| 91精品国产国语对白视频| 欧美亚洲日本最大视频资源| 久久国产精品大桥未久av| 色婷婷av一区二区三区视频| 在线 av 中文字幕| 午夜福利乱码中文字幕| 在线观看免费日韩欧美大片| 日日摸夜夜添夜夜爱| 国产爽快片一区二区三区| 在线天堂中文资源库| 欧美日韩一级在线毛片| 我要看黄色一级片免费的| 丁香六月天网| 丝袜美腿诱惑在线| 亚洲成国产人片在线观看| 色播在线永久视频| 精品人妻一区二区三区麻豆| 欧美xxⅹ黑人| 天堂8中文在线网| 老司机靠b影院| 大香蕉久久网| 极品人妻少妇av视频| 精品久久久精品久久久| 亚洲欧美色中文字幕在线| 亚洲七黄色美女视频| 日韩大片免费观看网站| 在现免费观看毛片| 自线自在国产av| 国产一区二区三区综合在线观看| 成人手机av| 国产精品亚洲av一区麻豆 | 国产黄色免费在线视频| 亚洲av电影在线观看一区二区三区| 亚洲精品成人av观看孕妇| 在线精品无人区一区二区三| 久久精品久久久久久噜噜老黄| 9191精品国产免费久久| 考比视频在线观看| av免费观看日本| 热re99久久国产66热| 日韩制服丝袜自拍偷拍| 夫妻性生交免费视频一级片| 中国三级夫妇交换| 亚洲四区av| 精品视频人人做人人爽| 中文欧美无线码| 中文字幕人妻熟女乱码| 亚洲精品日本国产第一区| 人妻 亚洲 视频| 亚洲精品日韩在线中文字幕| 9色porny在线观看| 亚洲av在线观看美女高潮| 久久女婷五月综合色啪小说| 欧美日韩亚洲国产一区二区在线观看 | 别揉我奶头~嗯~啊~动态视频 | 亚洲国产精品一区三区| 亚洲图色成人| 丝袜美腿诱惑在线| 丰满乱子伦码专区| 三上悠亚av全集在线观看| 岛国毛片在线播放| 色婷婷av一区二区三区视频| 下体分泌物呈黄色| 亚洲成人国产一区在线观看 | 久久久久人妻精品一区果冻| 啦啦啦啦在线视频资源| 老司机影院毛片| xxx大片免费视频| a级毛片黄视频| 国产成人午夜福利电影在线观看| 久久久久精品久久久久真实原创| 一边摸一边抽搐一进一出视频| 亚洲精品久久成人aⅴ小说| 欧美亚洲 丝袜 人妻 在线| 日本爱情动作片www.在线观看| 纯流量卡能插随身wifi吗| 黑丝袜美女国产一区| 中文字幕色久视频| 国产精品久久久久久久久免| 国产伦人伦偷精品视频| 成人漫画全彩无遮挡| 欧美 日韩 精品 国产| 美女高潮到喷水免费观看| 精品一区二区免费观看| 最近的中文字幕免费完整| 久久久久精品人妻al黑| 精品久久久久久电影网| 激情视频va一区二区三区| 亚洲国产日韩一区二区| 色综合欧美亚洲国产小说| 在线免费观看不下载黄p国产| 免费在线观看完整版高清| 精品国产乱码久久久久久小说| 少妇猛男粗大的猛烈进出视频| 老熟女久久久| 母亲3免费完整高清在线观看| 91老司机精品| 精品人妻一区二区三区麻豆| 黄片无遮挡物在线观看| 2021少妇久久久久久久久久久| 久久毛片免费看一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 不卡av一区二区三区| 亚洲男人天堂网一区| 性少妇av在线| 老汉色∧v一级毛片| 国产熟女欧美一区二区| 我的亚洲天堂| 日韩精品免费视频一区二区三区| 波多野结衣一区麻豆| 又黄又粗又硬又大视频| 国产不卡av网站在线观看| 亚洲美女黄色视频免费看| 久久久久久久久免费视频了| av国产久精品久网站免费入址| 成人毛片60女人毛片免费| 亚洲综合色网址| 又黄又粗又硬又大视频| 亚洲欧美色中文字幕在线| 久久精品国产亚洲av高清一级| 日韩大片免费观看网站| 又黄又粗又硬又大视频| 涩涩av久久男人的天堂| 国产av码专区亚洲av| 日韩制服骚丝袜av| 久久 成人 亚洲| 丰满饥渴人妻一区二区三| 18禁国产床啪视频网站| 日韩av不卡免费在线播放| 国产男人的电影天堂91| 高清欧美精品videossex| 日本91视频免费播放| 精品国产一区二区三区久久久樱花| 精品一区二区三区四区五区乱码 | 国产精品一国产av| 久久久久久久精品精品| 亚洲专区中文字幕在线 | 亚洲精品国产区一区二| 精品福利永久在线观看| 亚洲综合精品二区| 亚洲精品美女久久av网站| 色综合欧美亚洲国产小说| 丝袜在线中文字幕| 国产精品国产三级专区第一集| 国语对白做爰xxxⅹ性视频网站| 国产毛片在线视频| 国产亚洲午夜精品一区二区久久| 天天影视国产精品| 日日撸夜夜添| 亚洲美女搞黄在线观看| 久久精品亚洲av国产电影网| 欧美日韩精品网址| 国产高清不卡午夜福利| 啦啦啦中文免费视频观看日本| 精品一品国产午夜福利视频| 成人国语在线视频| 高清在线视频一区二区三区| 日本午夜av视频| 欧美日韩精品网址| 国产福利在线免费观看视频| 色播在线永久视频| 捣出白浆h1v1| av一本久久久久| 少妇精品久久久久久久| 操美女的视频在线观看| 99热全是精品| 日韩av在线免费看完整版不卡| 亚洲综合精品二区| 黑丝袜美女国产一区| 日韩成人av中文字幕在线观看| 日韩一区二区视频免费看| 日本vs欧美在线观看视频| 另类精品久久| 丝袜人妻中文字幕| 国产 精品1| 肉色欧美久久久久久久蜜桃| av国产久精品久网站免费入址| 国产探花极品一区二区| 天堂8中文在线网| 欧美变态另类bdsm刘玥| 国产男人的电影天堂91| 一级爰片在线观看| 成人国产av品久久久| 日本午夜av视频| 成人三级做爰电影| 亚洲精品国产一区二区精华液| 老司机在亚洲福利影院| 黄色一级大片看看| 一级片'在线观看视频| 悠悠久久av| 最近中文字幕2019免费版| 亚洲国产中文字幕在线视频| 黄色视频在线播放观看不卡| 精品人妻熟女毛片av久久网站| 又大又黄又爽视频免费| 最近的中文字幕免费完整| 日韩,欧美,国产一区二区三区| 国产男人的电影天堂91| 婷婷成人精品国产| 亚洲欧美一区二区三区黑人| 日日爽夜夜爽网站| 免费少妇av软件| 免费女性裸体啪啪无遮挡网站| 色视频在线一区二区三区| 亚洲少妇的诱惑av| 天天操日日干夜夜撸| 欧美日韩一级在线毛片| 少妇猛男粗大的猛烈进出视频| 午夜影院在线不卡| 69精品国产乱码久久久| 欧美亚洲日本最大视频资源| 久久人妻熟女aⅴ| 大片电影免费在线观看免费| 极品少妇高潮喷水抽搐| 电影成人av| 黄片播放在线免费| 蜜桃在线观看..| 国产黄频视频在线观看| 一级毛片我不卡| 免费少妇av软件| 免费不卡黄色视频| 欧美精品亚洲一区二区| 捣出白浆h1v1| 操出白浆在线播放| 婷婷成人精品国产| 人体艺术视频欧美日本| 日韩中文字幕视频在线看片| 乱人伦中国视频| 黄频高清免费视频| 欧美日韩视频高清一区二区三区二| 国产精品国产av在线观看| 国产福利在线免费观看视频| 国产1区2区3区精品| 久久精品国产a三级三级三级| 亚洲av欧美aⅴ国产| 亚洲国产精品一区三区| 久久精品国产a三级三级三级| 久久精品久久久久久噜噜老黄| av不卡在线播放| 亚洲精华国产精华液的使用体验| 精品第一国产精品| 久久久国产欧美日韩av| 黄片无遮挡物在线观看| 欧美成人精品欧美一级黄| 国产高清不卡午夜福利| 久久午夜综合久久蜜桃| 麻豆精品久久久久久蜜桃| 亚洲国产精品一区二区三区在线| 久久 成人 亚洲| 搡老岳熟女国产| 桃花免费在线播放| 国产精品一二三区在线看| 国产成人精品在线电影| 9191精品国产免费久久| 欧美黑人欧美精品刺激| 亚洲av福利一区| 精品人妻一区二区三区麻豆| 亚洲精品,欧美精品| 王馨瑶露胸无遮挡在线观看| 亚洲国产日韩一区二区| 久久久国产一区二区| 国产精品久久久久久久久免| 婷婷色综合大香蕉| 成年人午夜在线观看视频| 国产淫语在线视频| 国产精品免费大片| 女的被弄到高潮叫床怎么办| 久久久久精品久久久久真实原创| 国产精品国产三级国产专区5o| 日韩精品免费视频一区二区三区| 免费久久久久久久精品成人欧美视频| 男人舔女人的私密视频| 中文天堂在线官网| 下体分泌物呈黄色| 午夜福利在线免费观看网站| 午夜久久久在线观看| 男女无遮挡免费网站观看| 99热国产这里只有精品6| 国产片特级美女逼逼视频| 亚洲国产精品一区二区三区在线| 中文字幕av电影在线播放| 亚洲第一av免费看| 大片电影免费在线观看免费| 丝瓜视频免费看黄片| 久久天躁狠狠躁夜夜2o2o | 一区二区三区乱码不卡18| 久久久国产精品麻豆| 免费久久久久久久精品成人欧美视频| 女人高潮潮喷娇喘18禁视频| 亚洲伊人久久精品综合| 另类精品久久| 性高湖久久久久久久久免费观看| 在线观看免费高清a一片| 秋霞伦理黄片| 少妇的丰满在线观看| 国产精品久久久av美女十八| 免费在线观看黄色视频的| 少妇人妻精品综合一区二区| 久久99精品国语久久久| 女性被躁到高潮视频| 日韩 欧美 亚洲 中文字幕| www.精华液| 国产在线一区二区三区精| 99精国产麻豆久久婷婷| 免费在线观看视频国产中文字幕亚洲 | 精品久久蜜臀av无| 欧美在线黄色| 极品人妻少妇av视频| 免费黄色在线免费观看| 18在线观看网站| 国产在视频线精品| 亚洲精品美女久久av网站| 91精品伊人久久大香线蕉| 国产成人午夜福利电影在线观看| 爱豆传媒免费全集在线观看| 午夜福利乱码中文字幕| 最新在线观看一区二区三区 | 久久综合国产亚洲精品| 十八禁网站网址无遮挡| 国产激情久久老熟女| av在线app专区| 各种免费的搞黄视频| 亚洲精品在线美女| 久久精品人人爽人人爽视色| 午夜福利影视在线免费观看| 五月开心婷婷网| 王馨瑶露胸无遮挡在线观看| 女性生殖器流出的白浆| 亚洲情色 制服丝袜| 亚洲精品美女久久久久99蜜臀 | 亚洲国产成人一精品久久久| 男女下面插进去视频免费观看| 亚洲精品第二区| 超碰97精品在线观看| 国产熟女午夜一区二区三区| 一级黄片播放器| 青草久久国产| 一级a爱视频在线免费观看| 丝袜美腿诱惑在线| 久久久久精品性色| 亚洲成人av在线免费| 在线观看国产h片| 免费在线观看完整版高清| 一级片'在线观看视频| 韩国精品一区二区三区| 高清av免费在线| 男女午夜视频在线观看| 777米奇影视久久| 亚洲av成人不卡在线观看播放网 | 久久婷婷青草| 免费不卡黄色视频| 午夜福利乱码中文字幕| 国产97色在线日韩免费| 天天躁夜夜躁狠狠躁躁| 啦啦啦在线观看免费高清www| 国产一级毛片在线| 日韩一卡2卡3卡4卡2021年| 宅男免费午夜| 国产男人的电影天堂91| 日本91视频免费播放| www.精华液| 巨乳人妻的诱惑在线观看| 欧美精品av麻豆av| 美女午夜性视频免费| 亚洲美女黄色视频免费看| 亚洲av成人不卡在线观看播放网 | 黄色一级大片看看| 中国国产av一级| 80岁老熟妇乱子伦牲交| 亚洲精品av麻豆狂野| 国产成人午夜福利电影在线观看| 国产成人欧美在线观看 | 日韩伦理黄色片| 涩涩av久久男人的天堂| 在线观看免费午夜福利视频| 亚洲欧美一区二区三区国产| 看非洲黑人一级黄片| 天堂俺去俺来也www色官网| 免费在线观看黄色视频的| 老汉色∧v一级毛片| 亚洲精品视频女| 久久久久久久国产电影| 免费观看a级毛片全部| 亚洲成人免费av在线播放| 成人国产av品久久久| 飞空精品影院首页| 成人国语在线视频| 日日啪夜夜爽| 中文字幕人妻熟女乱码| 国产日韩欧美在线精品| 色吧在线观看| 久久精品久久久久久久性| 亚洲伊人久久精品综合| 成年av动漫网址| 又粗又硬又长又爽又黄的视频| 丁香六月天网| 成人漫画全彩无遮挡| 国产不卡av网站在线观看| 午夜福利视频精品| 国产精品.久久久| 亚洲精品国产av成人精品| a级毛片在线看网站| 老司机在亚洲福利影院| av网站免费在线观看视频| 精品第一国产精品| tube8黄色片| 99热网站在线观看| 精品人妻在线不人妻| 精品一区在线观看国产| 精品国产一区二区三区四区第35| 91老司机精品| 亚洲在久久综合| 欧美 亚洲 国产 日韩一| 叶爱在线成人免费视频播放| a级毛片黄视频| 天天躁夜夜躁狠狠久久av| 女人爽到高潮嗷嗷叫在线视频| 午夜日本视频在线| 亚洲欧美日韩另类电影网站| 国产成人精品在线电影| 在线免费观看不下载黄p国产| 亚洲一区二区三区欧美精品| 久久精品国产a三级三级三级| 99热国产这里只有精品6| 亚洲国产欧美日韩在线播放| 中文字幕色久视频| 国产xxxxx性猛交| 国产成人av激情在线播放| 国产伦理片在线播放av一区| 婷婷色综合www| 精品国产露脸久久av麻豆| 亚洲情色 制服丝袜| 欧美激情高清一区二区三区 | 国产免费又黄又爽又色| 欧美日韩亚洲国产一区二区在线观看 | 另类亚洲欧美激情| 中文字幕最新亚洲高清| 亚洲精品一二三| 亚洲婷婷狠狠爱综合网| 欧美日韩亚洲综合一区二区三区_| 亚洲三区欧美一区| 大香蕉久久成人网| 丁香六月天网| 爱豆传媒免费全集在线观看| tube8黄色片| 校园人妻丝袜中文字幕| 欧美黄色片欧美黄色片| av不卡在线播放| 永久免费av网站大全| 18禁观看日本| 少妇人妻久久综合中文| 欧美黄色片欧美黄色片| 我的亚洲天堂| 午夜福利网站1000一区二区三区| 一边摸一边抽搐一进一出视频| 99热国产这里只有精品6| 18禁观看日本| 日韩不卡一区二区三区视频在线| 热99久久久久精品小说推荐| 国产精品女同一区二区软件| 国产成人精品久久久久久| 又黄又粗又硬又大视频| 国产熟女午夜一区二区三区| 免费黄网站久久成人精品| 最近最新中文字幕免费大全7| videos熟女内射| 99热网站在线观看| 亚洲,欧美精品.| 国产视频首页在线观看| 午夜影院在线不卡| 亚洲精品日韩在线中文字幕| 丝袜喷水一区| 国产激情久久老熟女| 欧美最新免费一区二区三区| 丰满少妇做爰视频| 香蕉国产在线看| 天天躁夜夜躁狠狠躁躁| 搡老乐熟女国产| a级片在线免费高清观看视频| 国产片内射在线| 欧美日韩一区二区视频在线观看视频在线| 欧美人与性动交α欧美软件| 亚洲精品久久久久久婷婷小说| 亚洲精品国产区一区二| av免费观看日本| 久热这里只有精品99| 两个人看的免费小视频| 精品免费久久久久久久清纯 | 丝袜在线中文字幕| 2018国产大陆天天弄谢| 亚洲在久久综合| 午夜91福利影院| 黑丝袜美女国产一区| 婷婷成人精品国产| 少妇被粗大猛烈的视频| 亚洲精华国产精华液的使用体验| 午夜激情久久久久久久| 欧美老熟妇乱子伦牲交| 日韩成人av中文字幕在线观看| 伊人亚洲综合成人网| 一边摸一边做爽爽视频免费| 国产精品秋霞免费鲁丝片| 欧美97在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 在线天堂中文资源库| 一级毛片我不卡| 99精品久久久久人妻精品| 另类精品久久| 免费av中文字幕在线| 国产又色又爽无遮挡免| 国产精品嫩草影院av在线观看| 国产成人精品久久二区二区91 | 久久人妻熟女aⅴ| 欧美日韩精品网址|