• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    兩種疏水型膦類離子液體的密度、動力粘度及電導(dǎo)率

    2017-05-12 06:58:02鄭其格劉青山
    物理化學(xué)學(xué)報 2017年4期
    關(guān)鍵詞:劉青山物理化學(xué)電導(dǎo)率

    鄭其格 劉 惠 夏 泉 劉青山,4,* 牟 林,*

    兩種疏水型膦類離子液體的密度、動力粘度及電導(dǎo)率

    鄭其格1劉 惠2,3夏 泉1劉青山1,4,*牟 林1,*

    (1沈陽農(nóng)業(yè)大學(xué)理學(xué)院,沈陽110866;2上海環(huán)境衛(wèi)生工程設(shè)計院,上海200232;
    3上海污染場地修復(fù)工程技術(shù)研究中心,上海200232;4沈陽農(nóng)業(yè)大學(xué)土地與環(huán)境學(xué)院,沈陽110866)

    通過傳統(tǒng)的方法,制備了兩種對水和空氣穩(wěn)定的四烷基膦類離子液體。離子液體是:己基三丁基膦四氟化硼和己基三丁基膦雙三氟甲基磺酸亞胺。在T=283.15-353.15 K溫度范圍內(nèi),測定了兩個離子液體的密度、動力粘度及電導(dǎo)率。討論了溫度、陰離子結(jié)構(gòu)對離子液體的性質(zhì)的影響。結(jié)合文獻報道的其它離子液體,討論了該類離子液體性質(zhì)隨陽離子結(jié)構(gòu)的變化規(guī)律,并與咪唑類離子液體的性質(zhì)進行了比較。通過經(jīng)驗方程,利用密度數(shù)據(jù)計算了兩個離子液體的重要熱力學(xué)性質(zhì)參數(shù),例如:分子體積、標準摩爾熵及晶格能等。并將估算性質(zhì)與傳統(tǒng)的咪唑、吡啶類離子液體進行了對比。通過密度和電導(dǎo)率確定了離子液體的摩爾電導(dǎo)率。討論了Vogel-Fulcher-Tamman(VFT)方程和Arrhenius方程對于粘度和電導(dǎo)率擬合的可行性,并估算了電導(dǎo)活化能及流動活化能。通過Walden規(guī)則,描述了密度、粘度及電導(dǎo)率之間的聯(lián)系。有關(guān)研究對新型離子液體的合成及其工業(yè)化的應(yīng)用具有十分重要意義。

    離子液體;密度;動力粘度;電導(dǎo)率;Walden規(guī)則

    1 Introduction

    The use of ionic liquids(ILs)as green solvents has received much attention because of their physico-chemical properties1-4.ILs commonly exhibit low melting temperatures,good solvation, negligible vapor pressure,high electrical conductivity,good thermal stability,and good designability,among other factors.

    As a recent example,tetra(alkyl)phosphonium ionic liquids (TAPILs),with a stable cation,have been synthesized and systematically applied to different areas.These TAPILs commonly exhibit low density,low electrical conductivity,high dynamic viscosity,high thermal stability,and high electrochemical stability5,6.TAPILs with strong nucleophilic anions are significantly more stable than the analogous tetra-alkyl ammonium type ILs7. Because of the high dynamic viscosity,TAPILs are also used as the stationary phases for gas chromatography8,9.Many TAPILs exhibite a unique phase behavior with water by increasing or decreasing the temperature,and the mixing of water and TAPILs shows the lowers critical solution temperature(LCST)10-12.In addition to temperature,CO2and N2can also be used to reversibly change the phase from homogeneous to separated liquid-liquid13. TAPILs have also been used for the absorption of CO2and SO2, where CO2can be captured by tuning the basicity of the TAPIL14, and multiple-site absorption can be used for SO2capture in the anion of several azole-based TAPILs15.Although such TAPILs have exhibited outstanding properties,the basis for these properties is relatively unknown,which has prohibited the synthesis and application of new TAPILs.The properties of trihexyl (tetradecyl)phosphonium type ILs have also been studied as examples of common TAPILs16-18.However,such cation TAPILs exhibit greater molecular volumes and higher dynamic viscosities than do more common ILs19-29.

    Recently,Tsunashima et al.6studied the physical and electrochemical properties of some quaternary phosphonium cation ILs with tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions included in this type of IL.These two types of anion IL include tributyl(octyl)phosphonium tetrafluoroborate ([P4448][BF4]),tributyl(dodecyl)phosphonium tetrafluoroborate ([P444(12)][BF4]),tributyl(octyl)phosphonium bis(trifluoromethylsulfonyl)imide([P4448][NTf2]),and tributyl(dodecyl)phosphonium bis(trifluoromethylsulfonyl)imide ([P444(12)][NTf2]). According to common experience,the influence of the alkyl chain length on the IL properties is clear.In this work,two TAPILs, [P4446][BF4]and[P4446][NTf2],were prepared for study by an ion exchange method to further understand this type of TAPIL. The two TAPILs have lower molecular volumes and lower dynamic viscosities relative to trihexyl(tetradecyl)phosphonium type ILs.The density,dynamic viscosity,and electrical conductivity were probed over the temperature range from(283.15±0.05)to (353.15±0.05)K.The influences of the anion and of methylene introduction on the properties are discussed.Other IL properties are also predicted based on empirical values from previous experiment.These predicted values include density,standard molar entropy,and lattice energy.The values are also compared with literature values6.The work provides information on the influence of the anion to the properties after probing of the basic properties of these systems.

    2 Experimental

    2.1 Materials

    Ethyl acetate(Beijing Yili Chemical Reagent Co.,China), acetonitrile(Tianjin Tianhe Chemical Reagent Co.,China),sodium tetrafluoroborate(NaBF4)(Shanghai Zhuorui Chemical Co., China),bis(trifluoromethylsulfonyl)imide lithium salt(LiNTf2) (Rhodia Co.,China),1-bromohexane(Beijing Yili Chemical Reagent Co.,China),and tri-n-butylphosphine(Shandong Weitian Chemical Reagent Co.,China)were used in the synthesis process. All provenance and mass fraction purities of the used materials are listed in Table 1.

    2.2 Preparation of TAPILs[P4446][BF4]and [P4446][NTf2]

    TAPILs[P4446][BF4]and[P4446][NTf2]were synthesized by methods described elsewhere30,31.Tributyl(hexyl)phosphonium bromide([P4446][Br])was first synthesized.Aslight excess of 1-bromohexane was added dropwise into tributylphosphine with stirring at 353 K for 24 h.The white product,[P4446][Br],was recrystallized from an ethyl acetate and acetonitrile solution(the ratio of the volume being 1:1)several times.The white product was dried in high vacuum for 48 h at 353 K before the final product synthesis was carried out.

    The hydrophobic TAPILs[P4446][BF4]and[P4446][NTf2] were synthesized by ion exchange in a distilled water/dichloromethane system.The white product[P4446][Br]was placed in aflask and dissolved with the distilled water/dichloromethane system.An equivalent amount of NaBF4or LiNTf2salt,for [P4446][BF4]or[P4446][NTf2],respectively,was added into the system with stirring.The TAPIL and dichloromethane phase was washed with distilled water until no Brwas present,where the presence was checked using an AgNO3/HNO3solution.The colorless liquid was obtained and dried(353 K for 48 h)under vacuum after washing.The final product TAPILs were characterized by1H NMR spectroscopy.The final mass fraction purities of the TAPILs were estimated from1H NMR spectra to be better than 99%(see Figs.S1 and S2 in the Supporting Information).The structures of TAPILs[P4446][BF4]and[P4446][NTf2]are presented in Scheme 1.

    Table 1 Provenance and mass fraction purity of the used materials

    2.3 Water content

    Thewatercontentofthe TAPILs[P4446][BF4]and [P4446][NTf2]was determined by a Cou-Lo Aquamax Karl Fischer Moisture Meter(v.10.06).The water contents of the samples is less than 300×10-6(mass fraction)before and after determination of the system properties.

    2.4 Density and dynamic viscosity

    An Anton Paar SVM3000(Anton Paar Shanghai Trading Co. Ltd.)was used for determining the density and dynamic viscosity of the TAPILs[P4446][BF4]and[P4446][NTf2].The temperature range of the measurement is from(283.15±0.05)to(353.15± 0.05)K per 5 K,and thermal equilibrium was obtained in 30 min. The experimental error was estimated as±0.0002 g·cm-3for the density and the uncertainty was estimated to be±1%for the dynamic viscosity.

    2.5 Electrical conductivity

    The electrical conductivities of the TAPILs[P4446][BF4]and [P4446][NTf2]were recorded using a MP522 conductivity meter (San Xin Electronic Co.)with a 1 cm-1cell constant.The cell was calibrated using a standard aqueous KCl solution.The data were recorded every 5 K once thermal equilibrium was attained after 30 min from the temperature increase of(283.15±0.05)to (353.15±0.05)K.The uncertainty is estimated to be±1%.

    The values of density,dynamic viscosity,and electrical conductivity are listed in Tables 2 and 3.

    3 Results and discussion

    From Tables 2 and 3,the density and dynamic viscosity can be seen to decrease with an increase temperature,and the electrical conductivity contrasts with the above two properties,where the data significantly increases in value with an increase temperature.

    Scheme 1 Structures of TAPILs[P4446][BF4]and[P4446][NTf2]

    Table 2 Experimental values of density,ρ,dynamic viscosity,η, and electrical conductivity,σ,of[P4446][BF4]from 283.15 to 353.15 K at pressure p=0.1 MPa

    Table 3 Experimental values of density,ρ,dynamic viscosity,η, and electrical conductivity,σ,of[P4446][NTf2]from 283.15 to 353.15 K at p=0.1 MPa

    At 293.15 K,the densities of[P4446][BF4]and[P4446][NTf2] are 1.0067 and 1.1943 g·cm-3,respectively.Although the value for[P4446][NTf2]is higher than[P4446][BF4],it is much lower than the common IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[C4mim][NTf2](1.4378 g·cm-3)32.

    At 298.15 K,the dynamic viscosity of the[P4446][BF4]and [P4446][NTf2]are 1415.2 and 207.71 mPa·s,respectively.These values are much higher than for the ILs[C4mim][BF4](75 mPa· s)and[C4mim][NTf2](40 mPa·s)33.The electrical conductivitiesof[P4446][BF4]and[P4446][NTf2]are 0.0904 and 0.419 mS· cm-1,respectively,and these values are much lower than those for ILs[C4mim][BF4](4.5 mS·cm-1)and[C4mim][NTf2](4.6 mS· cm-1)33.

    Table 4 Density,dynamic viscosity,and electrical conductivity of the some tetra-alkyl phosphonium type ionic liquids with literature at 298.15 K

    To compare the density,dynamic viscosity,and electrical conductivity of the tetra(alkyl)phosphonium type ionic liquids with reported literature values6,7,19,22,the above property values of the TAPILs determined at 298.15 K are listed in Table 4.The TAPIL anions are[BF4-]and[NTf2-

    ].

    From Table 3,the values at 298.15 K of density,dynamic viscosity,and electrical conductivity of[P4446][NTf2]are 1.1903 g·cm-3,207.71 mPa·s,and 0.419 mS·cm-1,respectively. At the same temperature,the values of the reference are 1.18 g· cm-3,261 mPa·s,and 0.43 mS·cm-1,respectively7.From the literature7,the density,dynamic viscosity,and electrical conductivity values were measured by a precalibrated pycnometer, slow-flow viscometer,and ThermoOrion conductivity meter, respectively.The primary reasons for discrepancies with the literature values are the water content,instrumentation used,and purity of the[P4446][NTf2].

    3.1 Density

    The temperature dependence on the density can be plotted(see Fig.1)and fitted over the temperature range from(283.15±0.05) to(353.15±0.05)K by the following equation:

    where Y is the density;andA and B are adjustable parameters.The fitting equations are obtained from Y=1.1844-6.06×10-4T for [P4446][BF4]and Y=1.4273-7.95×10-4T for[P4446][NTf2]. The correlation coefficients of the two TAPILs are 0.9999,which indicates that the linear equation represents the density very well.

    The temperature dependence on lnρ can be fitted by the following linear equation:

    where b is an empirical constant and α is the thermal expansion coefficient.The fitting equations are lnρ=0.1860-6.11×10-4T for[P4446][BF4],and lnρ=0.3760-6.77×10-4T for[P4446] [NTf2].The correlation coefficients are higher than 0.9999 for both cases,thus indicating that the empirical linear equation represents the density very well.From Equation(2),the thermal expansion coefficients are 6.11×10-4for[P4446][BF4]and 6.77×10-4for [P4446][NTf2].These values are in good agreement with the values reported by Jacquemin et al.34that ranged between 5×10-4and 7×10-4K-1(at 293.15 K,[Bmim][NTf2]are 6.51×10-4and 6.90×10-4K-1at dried and saturated,respectively;like:[Bmim] [BF4]is 5.95×10-4at dried).The thermal expansion coefficients of the two TAPILs at 298.15 K are listed in Table 5.

    At 298.15 K,the molecular volume,Vm,standard molar entropy, S0,and lattice energy,UPOT,were calculated for the TAPILs[P4446] [BF4]and[P4446][NTf2]by the traditional empirical equations from the density32:

    where M is the molar mass,ρ is the density,and N is Avogadro′s constant.The obtained data from the above equations are listed in Table 5.

    From Table 5,the lattice energy values are 379.0 kJ·mol-1for [P4446][BF4]and 357.4 kJ·mol-1for[P4446][NTf2].These values are much lower than for traditional organic melt salts.For example,the lowest lattice energy among the alkali halides is for fused CsI(613 kJ·mol-1)35.The lower lattice energy may be a reason why the two TAPILs have relatively low melting temperatures,such that[P4446][BF4]and[P4446][NTf2]can exist in the liquid state at room temperature.

    From Table 5,the molecular volumes are 0.6195 nm3for [P4446][BF4]and 0.7922 nm3for[P4446][NTf2].These values

    Table 5 Estimated values of physicochemical properties of two TAPILs[P4446][BF4]and[P4446][NTf2]at 298.15 K

    M:molar mass;Vm:molecular volume;α:thermal expansion coefficients; V:molar volume;S0:standard molar entropy;Upot:lattice energy are higher than for more common ILs,e.g.,0.5320 nm3for [C6py][NTf2]31,0.5593 nm3for[C63mpy][NTf2]36,0.5633 nm3for [C64mpy][NTf2]36,0.5406 nm3for[C6Mim][NTf2]37,and0.5608 nm3for[C6DMim][NTf2]37.

    According to previous reports,the mean contributions of the methylene group to the molecular volume are 0.0277 nm3for [Cn3mpy][NTf2]36,38,0.0289 nm3for[Cn4mpy][NTf2]38,39,0.0280 nm3for[Cnpy][NTf2]31,40,0.0282 nm3for[Cnmim][NTf2]32,0.0272 nm3for[Cnmim][BF4]32,and 0.0279 nm3for amino acid ionic liquids41-44.From the literature45,the basic properties of 1-alkyl-3-methylimizazolium tris(pentafluoroethyl)trifluorophosphate have been predicted in terms of the estimated molecular volume.In this work,we also predicted the properties of the series of TAPILs based on literature45methods.The mean value of the contribution can be calculated to be 0.0280 nm3.The density,standard entropy, and lattice energy were predicted according to Equations(3)-(5), and the values are listed in Table 6.

    From Tables 4 and 6,the predicted density values are agreement with the literature6,except for TAPIL[P4448][BF4].The comparison,between the values predicted in this work versus the literature shows that the method employed herein is suitable for the prediction of TAPIL properties.

    3.2 Electrical conductivity

    The molar electrical conductivities of TAPIL[P4446][BF4]and [P4446][NTf2]were calculated by the following equation: where Λ is the molar conductivity,σ is the electrical conductivity, M is the molar mass and ρ is the density.The values of the molar conductivity are listed in Table 7.

    The electrical conductivity of the TAPILs[P4446][BF4]and [P4446][NTf2]as a function of temperature is plotted in Fig.2. From Fig.2,it can be observed that for each TAPIL the electrical conductivity decreases significantly with an increase in temperature.

    Vogel-Fulcher-Tammann(VFT)equations are commonly used for the fitting of temperature dependence to electrical conductivity for ILs.Herein,the temperature dependence of the electrical conductivity for the two TAPILs[P4446][BF4]and[P4446][NTf2] were also fitted according to the following VFT equation: where σ is the electrical conductivity;and σ0,B,and T0are fitting parameters.The fitted parameters of σ0,B,and T0,and the corresponding correlation coefficient,R,are listed in Table 8.From Table 8,as for other types of IL,the experimental electrical conductivity fits well aginst temperature by the VFT equation.

    The Arrhenius equation is commonly used to fit the electrical conductivity against temperature.However,Vila et al.46have shown differing results for ILs,where the electrical conductivity does not always follow Arrhenius behavior with changes in temperature.

    TheArrhenius equation is:

    Table 6 Predicted values of the thermodynamic properties of the some tetra-alkyl phosphonium type ionic liquids at 298.15 K

    Table 7 Molar electrical conductivity,Λ,of two TAPILs[P4446][BF4]and[P4446][NTf2]at the temperature from 283.15 to 353.15 K

    Fig.2 Plots of electrical conductivity vs temperature of two TAPILs[P4446][BF4]and[P4446][NTf2]from 283.15 to 353.15 K

    Fig.3 Plots of lnσ vs 1/T of two TAPILs[P4446][BF4]and [P4446][NTf2]from 283.15 to 353.15 K

    where Eσis the activation energy,which indicates the energy needed for the ion to hop into a free hole,σ∞is the maximum electrical conductivity and kBis the Boltzmann constant.From Equation(9),a linear equation,the 1/T dependence on lnσ was plotted for the two TAPILs[P4446][BF4]and[P4446][NTf2](see Fig.3).

    The plots should be on straight lines but the points clearly show that the experimental points are not on the straight lines(the solid straight lines were drawn to clarify the points).Therefore,the electrical conductivities of the TAPILs also do not follow Arrhenius behavior very well.Similar results were determined by us previously36.

    Vila et al.46introduced the activation energy of the electrical conductivity into the VFT equation by establishing fitting parameters for the VFT equation via an Arrhenius equation:σ0=σ∞and B=Eσ/kB.The final version the VFT equation can therefore be expressed as follows:

    The activation energies of electrical conductivities for TAPIL [P4446][BF4]and[P4446][NTf2]were calculated in this manner and are listed in Table 8.

    3.3 Dynamic viscosity

    The dynamic viscosities of the TAPILs[P4446][BF4]and [P4446][NTf2],as a function of temperature,are shown in Fig.4. From these values,it can be observed that the dynamic viscosity for each TAPIL decreases significantly with an increase in tem-perature.

    Table 8 Fitted parameter values of σ0,B,T0,and correlation coefficient,R,by equation(8)and activation enerty,Eσ,for TAPILs[P4446][BF4]and[P4446][NTf2]by equation(10)

    VFT equation is used for fitting the temperature dependence against the dynamic viscosity for ILs.Herein,the temperature dependence of the dynamic viscosity for each of the TAPILs [P4446][BF4]and[P4446][NTf2]were also fitted according to the following VFT equation:

    where η is the dynamic viscosity;and η0,B,and T0are the fitting parameters.The best fitting parameters of η0,B,T0,and the corresponding correlation coefficient,R,are listed in Table 9.From Table 9,the obtained values of the correlation coefficient,R,are higher than 0.9999,which indicates that the VFT equation can be used for fitting the experimental dynamic viscosity.

    As with the electrical conductivity,an Arrhenius equation was also used to fit the dynamic viscosity:

    where Eais the activation energy for the dynamic viscosity,η∞is the maximum dynamic viscosity,and kBis the Boltzmann constant.The 1/T dependence of lnη was plotted for the TAPILs [P4446][BF4]and[P4446][NTf2](see Fig.5).From Fig.5,as with the electrical conductivity shown above,the points are also not following the straight lines(The solid straight lines were drawn in order to clarify the points).

    Fig.4 Plots of dynamic viscosity vs temperature of two TAPILs [P4446][BF4]and[P4446][NTf2]from 283.15 to 353.15 K

    Fig.5 Plots of lnη vs 1/T of two TAPILs[P4446][BF4]and [P4446][NTf2]from 283.15 to 353.15 K

    The activation energy of the dynamic viscosity was introduced into the VFT equation in a similar fashion as with the electrical conductivity above,and as discussed by Vila et al.46The final version of the VFT equation can be expressed as:

    The activation energies of the dynamic viscosity for the TAPILs [P4446][BF4]and[P4446][NTf2]were calculated and are listed in Table 9.

    3.4 Walden rule

    The relationship between the molar conductivity and dynamic viscosity for TAPILs[P4446][BF4]and[P4446][NTf2]can be described by Walden's rule36,47-50:

    where Λ is the molar conductivity,η is the dynamic viscosity,and k is a temperature dependent constant.The Walden product at 298.15 K(in[S·cm2·mol-1][mP·s])is 48 for[P4446][BF4]and 42 for[P4446][NTf2].

    The lgΛ dependence on lgη-1from 283.15 to 353.15 K is plotted in Fig.6 for the two TAPILs[P4446][BF4]and[P4446][NTf2]. From Fig.6,the curves are approximately straight lines,which indicates that the ILs to some extent obey Walden′s rule.The slopes of the lines for the TAPILs[P4446][BF4]and[P4446][NTf2] are 0.931 and 0.967,respectively.These results indicate that the relationship between the conductivity and f l uidity is a constant for both cases.The position of the ideal line was established by using aqueous KCl solutions at high dilution,and the lines for the two TAPILs are close to the ideal KCl line.Most of the previously reported ILs36,47-50show the same tendency.The TAPILs[P4446][BF4]and[P4446][NTf2]can be called“subionic”51.

    Table 9 Fitted parameter values of η0,B,T0,and correlation coefficient,R,by equation(11)and activation energy,Eη,for TAPILs[P4446][BF4]and[P4446][NTf2]by equation(13)

    Fig.6 Walden plots for two TAPILs[P4446][BF4]and [P4446][NTf2]from 283.15 to 353.15 K

    Fig.7 Walden plots for[P4446][NTf2]and literature values at 298.15 K

    To compare Walden plots,the values for[P4446][NTf2]and from previous literature40,52,53are plotted in Fig.7.

    4 Conclusions

    The density,dynamic viscosity,and electrical conductivity of the air and water stable hydrophobic TAPILs[P4446][BF4]and [P4446][NTf2]were determined at atmospheric pressure over the temperature range from 283.15 to 353.15 K.The experimental density and electrical conductivity values for anion[NTf2]-are higher than for anion[BF4]-.However,the dynamic viscosity shows the opposite trend,and the two TAPILs show very low densities.The thermal expansion coeff i cient,molecular volume, standard molar entropy,and lattice energy of the TAPILs were estimated by empirical equations.The two TAPILs show lower lattice energies than those of more traditional salts(e.g.,CsI).The density and dynamic viscosity decrease,and the electrical conductivity increases,with an increase in temperature.The temperature dependence of the dynamic viscosity and electrical conductivity cannot be fitted by an Arrhenius equation(see Figs.3 and 5).However,the VFT equation can be used to fit the experimental values,and the TAPILs[P4446][BF4]and[P4446][NTf2] can be considered“subionic”according to Walden′s rule.

    Supporting Information: The1H NMR spectra have been included.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Rantwijk,F.V.;Sheldon,R.A.Chem.Rev.2007,107,2757. doi:10.1021/cr050946x

    (2)Greaves,T.L.;Drummond,C.J.Chem.Rev.2008,108,206. doi:10.1021/cr068040u

    (3) Hapiot,P.;Lagrost,C.Chem.Rev.2008,108,2238. doi:10.1021/cr0680686

    (4) Jessop,P.G.;Subramaniam,B.Chem.Rev.2007,107,2666. doi:10.1021/cr040199o

    (5)Tsunashima,K.;Sugiya,M.Electrochem.Commun.2007,9, 2353.doi:10.1016/j.elecom.2007.07.003

    (6) Tsunashima,K.;Sugiya,M.Electrochemistry 2007,75,734. doi:10.5796/electrochemistry.75.734

    (7) Vega,J.A.;Zhou,J.;Kohl,P.A.J.Electrochem.Soc.2009,156, A253.doi:10.1149/1.3070657

    (8) Pomaville,R.M.;Poole,S.K.;Davis,L.J.;Poole,C.F. J.Chramatogr.1988,438,1.doi:10.1016/S0021-9673(00) 90227-9

    (9) Breitbach,Z.S.;Armstrong,D.W.Anal.Bioanal.chem.2008, 390,1605.doi:10.1007/s00216-008-1877-3

    (10)Fukumoto,K.;Ohno,H.Angew.Chem.Int.Ed.2007,46,1852. doi:10.1002/anie.200604402

    (11)Kohno,Y.;Deguchi,Y.Ohno,H.Chem.Commun.2012,48, 11883.doi:10.1039/c2cc36913c

    (12) Kohno,Y.;Arai,H.;Saita,S.;Ohno,H.Aust.J.Chem.2011,64, 1560.doi:10.1071/CH11278

    (13)Kohno,Y.;Arai,H.;Ohno,H.Chem.Commun.2011,47,4772. doi:10.1039/C1CC10613A

    (14) Wang,C.;Luo,X.;Luo,H.;Jiang,D.;Li,H.;Dai,S.Angew. Chem.Int.Ed.2011,50,4918.doi:10.1002/anie.201008151

    (15)Wang,C.;Cui,G.;Luo,X.;Xu,Y.;Li,H.;Dai,S.J.Am.Chem. Soc.2011,133,11916.doi:10.1021/ja204808h

    (16) Blundell,R.K.;Licence,P.Phys.Chem.Chem.Phys.2014,16, 15278.doi:10.1039/C4CP01901F

    (17) Chen,F.F.;Dong,Y.;Sang,X.Y.;Zhou,Y.;Tao,D.J.Acta Phys.-Chim.Sin.2016,32,605.[陳鳳鳳,董 艷,桑曉燕,周言,陶端健.物理化學(xué)學(xué)報,2016,32,605.]doi:10.3866/PKU. WHXB201512241

    (18) Ferreira,A.F.;Sim?es,P.N.;Ferreira,A.G.M.J.Chem. Thermodynamics 2012,45,16.doi:10.1016/j.jct.2011.08.019

    (19) Tariq,M.;Forte,P.A.S.;Gomes,M.F.C.;Lopes,J.N.C.; Rebelo,L.P.N.J.Chem.Thermodynamics 2009,41,790. doi:10.1016/j.jct.2009.01.012

    (20) Diogo,J.C.F.;Caetano,F.J.P.;Fareleira,J.M.N.A.; Wakeham,W.A.J.Chem.Eng.Data 2012,57,1015. doi:10.1021/je200830j

    (21) Goodrich,B.F.;Fuente,J.C.de la;Gurkan,B.E.;Lopez,Z.K.; Price,E.A.;Huang,Y.;Brennecke,J.F.J.Phys.Chem.B 2011, 115,9140.doi:10.1021/jp2015534

    (22) Baldo,M.A.;Oliveri,P.;Simonetti,R.;Daniele,S. J.Electroanal.Chem.2014,731,43.doi:10.1016/j. jelechem.2014.08.001

    (23) Li,A.;Tian,Z.;Yan,T.;Jiang,D.;Dai,S.J.Phys.Chem.B 2014,118,14880.doi:10.1021/jp5100236

    (24) Tong,J.;Zhang,Q.G.;Hong,M.;Yang,J.Z.Acta Phys.-Chim. Sin.2006,22,71.[佟 靜,張慶國,洪 梅,楊家振.物理化學(xué)學(xué)報,2006,22,71.]doi:10.3866/PKU.WHXB20060114

    (25) Tong,J.;Chen,T.F.;Zhang,D.;Wang,L.F.;Tong,J.;Yang,J. Z.Acta Phys.-Chim.Sin.2016,32,1161.[佟 靜,陳滕飛,張朵,王林富,佟 健,楊家振.物理化學(xué)學(xué)報,2016,32,1161.] doi:10.3866/PKU.WHXB201602232

    (26)Bu,X.X.;Fan,B.H.;Wei,J.;Xing,N.N.;Ma,X.X.;Guan,W. Acta Phys.-Chim.Sin.2016,32,267.[卜曉雪,樊本漢,魏 杰,邢楠楠,馬曉雪,關(guān) 偉.物理化學(xué)學(xué)報,2016,32,267.] doi:10.3866/PKU.WHXB201510303

    (27) Hoogerstraete,T.V.;Binnemans,K.Green Chem.2014,16, 1594.doi:10.1039/C3GC41577E

    (28) Ferreira,C.E.;Talavera-Pieto,N.M.C.;Fonseca,I.M.A.; Portugal,A.T.G.;Ferreira,A.G.M.J.Chem.Thermodynamics 2012,47,183.doi:10.1016/j.jct.2011.10.012

    (29)Hayyan,M.;Mjalli,F.S.;Hashim,M.A.;AlNashef,I.M.;Tan, X.M.;Chooi,K.L.J.Appl.Sci.2010,10,1176.doi:10.3923/ jas.2010.1176.1180

    (30) Tong,B.;Liu,Q.S.;Tan,Z.C.;Welz-Biermann,U.J.Phys. Chem.A 2010,114,3782.doi:10.1021/jp9047538

    (31) Liu,Q.S.;Yang,M.;Li,P.P.;Sun,S.S.;Welz-Biermann,U.; Tan,Z.C.;Zhang,Q.G.J.Chem.Eng.Data 2011,56,4094. doi:10.1021/je200534b

    (33)McEwen,A.B.;Ngo,H.L.;LeCompte,K.;Goldman,J.L. J.Electrochem.Soc.1999,146,1687.doi:10.1149/1.1391827

    (34) Jacquemin,J.;Husson,P.;Padua,A.A.H.;Majer,V.Green Chem.2006,8,172.doi:10.1039/B513231B

    (35) Lide,D.R.Handbook of Chemistry and Physics,82nd ed.;CRC Press:Boca Raton,FL,2001-2002.

    (36) Liu,Q.S.;Li,P.P.;Welz-Biermann,U.;Chen,J.;Liu,X.X. J.Chem.Thermodynamics 2013,66,88.doi:10.1016/j. jct.2013.06.008

    (37) Cheng,Z.;Lee,J.M.J.Phys.Chem.B 2014,118,2712. doi:10.1021/jp411904w

    (38)Zhang,Q.G.;Wei,Y.;Sun,S.S.;Wang,C.;Yang,M.;Liu,Q. S.;Gao,Y.A.J.Chem.Eng.Data 2012,57,2185.doi:10.1021/ je300153f

    (39) Liu,Q.S.;Li,P.P.;Welz-Biermann,U.;Liu,X.X.;Chen,J. J.Chem.Eng.Data 2012,57,2999.doi:10.1021/je3004645

    (40)Liu,Q.S.;Yang,M.;Yan,P.F.;Liu,X.M.;Tan,Z.C.;Welz-Biermann,U.J.Chem.Eng.Data 2010,55,4928.doi:10.1021/je100507n

    (41)Fang,D.W.;Tong,J.;Guan,W.;Wang,H.;Yang,J.Z.J.Phys. Chem.B 2010,114,13808.doi:10.1021/jp107452q

    (42)Fang,D.W.;Guan,W.;Tong,J.;Wang,Z.W.;Yang,J.Z. J.Phys.Chem.B 2008,112,7499.doi:10.1021/jp801269u

    (43)Tong,J.;Song,B.;Wang,C.X.;Li,L.;Guan,W.;Fang,D.W.; Yang,J.Z.Ind.Eng.Chem.Res.2011,50,2418.doi:10.1021/ ie101903t

    (44)Xu,W.G.;Ma,X.X.;Li,L.;Tong,J.;Guan,W.Ind.Eng. Chem.Res.2012,51,4105.doi:10.1021/ie201530b

    (45) Liu,Q.S.;Tong,J.;Tan,Z.C.;Welz-Biermann,U.;Yang,J.Z. J.Chem.Eng.Data 2010,55,2586.doi:10.1021/je901035d

    (46) Vila,J.;Ginés,P.;Pico,J.M.;Franjo,C.;Jiménez,E.;Varela,L. M.;Cabeza,O.Fluid Phase Equilibria 2006,242,141. doi:10.1016/j.uid.2006.01.022

    (47)Yoshizawa,M.;Xu,W.;Angell,C.A.J.Am.Chem.Soc.2003, 125,15411.doi:10.1021/ja035783d

    (48)Angell,C.A.;Byrne,N.;Belieres,J.P.Acc.Chem.Res.2007, 40,1228.doi:10.1021/ar7001842

    (49) Xu,W.;Cooper,E.I.;Angell,C.A.J.Phys.Chem.B 2003,107, 6170.doi:10.1021/jp0275894

    (50) MacFarlane,D.R.;Forsyth,M.;Izgorodina,E.I.;Abbott,A.P.; Annat,G.;Fraser,K.Phys.Chem.Chem.Phys.2009,11,4962. doi:10.1039/B900201D

    (51) Belieres,J.P.;Angell,C.A.J.Phys.Chem.B 2007,111,4926. doi:10.1021/jp067589u

    (52) Cheng,Z.;Lee,J.M.J.Phys.Chem.B 2014,118,2712. doi:10.1021/jp411904w

    (53) Liu,Q.S.;Yan,P.F.;Yang,M.;Tan,Z.C.;Li,C.P.;Welz-Biermann,U.Acta Phys.-Chim.Sin.2011,27,2762.[劉青山,顏佩芳,楊 淼,譚志誠,李長平,Welz-Biermann,Urs.物理化學(xué)學(xué)報,2011,27,2762.]doi:10.3866/PKU.WHXB20112762

    Density,Dynamic Viscosity and Electrical Conductivity of Two Hydrophobic Phosphonium Ionic Liquids

    ZHENG Qi-Ge1LIU Hui2,3XIAQuan1LIU Qing-Shan1,4,*MOU Lin1,*
    (1School of Science,Shenyang Agricultural University,Shenyang 110866,P.R.China;2Shanghai Environmental Sanitation Engineering Design Institute,Shanghai 200232,P.R.China;3Shanghai Engineering Research Center of Contaminated Sites Remediation,Shanghai 200232,P.R.China;4College of Land and Environment,Shenyang Agricultural University,Shenyang 110866,P.R.China)

    Two air and water stable hydrophobic phosphonium ionic liquids(ILs),tributyl-hexylphosphonium tetrafluoroborate([P4446][BF4])and tributyl-hexylphosphonium bis(trifluoromethylsulfonyl)imide([P4446][NTf2]), were prepared by the traditional method.Their basic physico-chemical properties of density,dynamic viscosity, and electrical conductivity were measured in the temperature range of 283.15-353.15 K.The effect of the temperature and structure of the anion on the thermodynamic properties were discussed.The properties are compared with the cation structures changing of the phosphonium type ILs.The most important thermodynamic properties for their practical application,such as molecular volume,standard molar entropy,and lattice energy, were calculated from their density using empirical equations.The calculated values were compared with those of imdazolium and pyridinium type ILs.Molar electrical conductivity was determined from density and electrical conductivity.The applicability of the Vogel-Fulcher-Tamman(VFT)andArrhenius equations to the fitting of the dynamic viscosity and electrical conductivity was validated.The activation of the electrical conductivity anddynamic viscosity were obtained from the final VFT equation.According to the Walden rule,the density,dynamic viscosity,and electrical conductivity were described by the Walden equation.The results are very important for academic studies as well as industrial applications of these ILs.

    Ionic liquids;Density;Dynamic viscosity;Electrical conductivity;Walden rule

    O642

    Glasser,L.Thermochim.Acta 2004,421,87.

    10.1021/ je200830j

    doi:10.3866/PKU.WHXB201612293

    Received:November 10,2016;Revised:December 29,2016;Published online:December 29,2016.

    *Corresponding authors.LIU Qing-Shan,Email:liuqingshan@dicp.ac.cn;Tel:+86-13478787524.MOU Lin,Email:myname-mulin@tom.com; Tel:+86-13840537205.

    The project was supported by the Program for Liaoning Excellent Talents in University,China(LJQ2015099).遼寧省高等學(xué)校優(yōu)秀人才支持計劃(LJQ2015099)資助項目

    猜你喜歡
    劉青山物理化學(xué)電導(dǎo)率
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Chemical Concepts from Density Functional Theory
    基于比較測量法的冷卻循環(huán)水系統(tǒng)電導(dǎo)率檢測儀研究
    低溫脅迫葡萄新梢電導(dǎo)率和LT50值的研究
    劉青山 張子善 兩人都吸毒
    紅土地(2017年4期)2017-06-23 12:44:04
    智解矛盾
    故事林(2015年23期)2015-05-14 15:22:19
    高電導(dǎo)率改性聚苯胺的合成新工藝
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    劉青山:“在反貪污的今天,拿我做典型,以教育全黨”
    記者觀察(2013年6期)2013-04-29 14:11:58
    这个男人来自地球电影免费观看| 成人手机av| 久9热在线精品视频| 国产成人啪精品午夜网站| 午夜福利影视在线免费观看| 嫩草影视91久久| 亚洲成av片中文字幕在线观看| 免费女性裸体啪啪无遮挡网站| 欧美日韩视频精品一区| 欧美国产精品一级二级三级| 亚洲精品一卡2卡三卡4卡5卡 | 日本欧美国产在线视频| 欧美+亚洲+日韩+国产| 国产不卡av网站在线观看| 亚洲一码二码三码区别大吗| 国产男女内射视频| 亚洲午夜精品一区,二区,三区| 国产亚洲精品第一综合不卡| 国产熟女欧美一区二区| 性少妇av在线| 欧美乱码精品一区二区三区| 丝袜喷水一区| 久久精品国产亚洲av高清一级| 在线观看免费午夜福利视频| 丝袜美足系列| 亚洲av在线观看美女高潮| 久久鲁丝午夜福利片| 国产精品偷伦视频观看了| 久久久精品94久久精品| 国产视频一区二区在线看| 在线观看免费视频网站a站| 你懂的网址亚洲精品在线观看| 国产精品秋霞免费鲁丝片| 久久青草综合色| 丰满饥渴人妻一区二区三| 亚洲视频免费观看视频| 青草久久国产| 亚洲精品久久午夜乱码| 晚上一个人看的免费电影| 深夜精品福利| 国产熟女午夜一区二区三区| 久久精品久久精品一区二区三区| 成年av动漫网址| 日韩,欧美,国产一区二区三区| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 天天躁夜夜躁狠狠躁躁| 国产精品av久久久久免费| 亚洲国产av新网站| 咕卡用的链子| 在线观看一区二区三区激情| 纵有疾风起免费观看全集完整版| 丰满人妻熟妇乱又伦精品不卡| 丝袜脚勾引网站| 精品国产一区二区三区四区第35| 最近中文字幕2019免费版| 国产一区二区在线观看av| 99国产精品99久久久久| 亚洲伊人色综图| videosex国产| 日本vs欧美在线观看视频| www.熟女人妻精品国产| 亚洲自偷自拍图片 自拍| 国语对白做爰xxxⅹ性视频网站| 在线观看免费午夜福利视频| 久久九九热精品免费| 亚洲美女黄色视频免费看| 亚洲一码二码三码区别大吗| 十八禁人妻一区二区| 最黄视频免费看| 国产成人欧美在线观看 | 亚洲中文日韩欧美视频| 欧美日韩国产mv在线观看视频| 手机成人av网站| 国产一级毛片在线| 精品人妻1区二区| 蜜桃在线观看..| 国产精品一区二区在线观看99| 国产国语露脸激情在线看| 黄色毛片三级朝国网站| 成人国产一区最新在线观看 | 我要看黄色一级片免费的| 自线自在国产av| 日韩电影二区| 80岁老熟妇乱子伦牲交| 精品一品国产午夜福利视频| 深夜精品福利| 最近最新中文字幕大全免费视频 | 啦啦啦在线观看免费高清www| 最近中文字幕2019免费版| 两性夫妻黄色片| 欧美黄色淫秽网站| 亚洲精品久久午夜乱码| 亚洲国产精品成人久久小说| 国产深夜福利视频在线观看| 久久狼人影院| 中文字幕人妻丝袜制服| 久久久精品94久久精品| 中文字幕亚洲精品专区| 大香蕉久久网| 成年女人毛片免费观看观看9 | 精品福利观看| 亚洲图色成人| 人成视频在线观看免费观看| 多毛熟女@视频| 欧美日韩精品网址| 十八禁网站网址无遮挡| 爱豆传媒免费全集在线观看| 一级黄片播放器| 在线精品无人区一区二区三| 国产成人av教育| 好男人视频免费观看在线| 久久久国产欧美日韩av| 婷婷色麻豆天堂久久| 9色porny在线观看| 婷婷色av中文字幕| 一区二区日韩欧美中文字幕| 久久久久久久久免费视频了| 人人妻人人澡人人看| 男女免费视频国产| 欧美精品一区二区大全| 国产女主播在线喷水免费视频网站| 色精品久久人妻99蜜桃| 欧美精品人与动牲交sv欧美| 少妇人妻久久综合中文| 中国国产av一级| 夜夜骑夜夜射夜夜干| 免费在线观看影片大全网站 | 国产一区二区激情短视频 | 久久精品亚洲av国产电影网| 色综合欧美亚洲国产小说| 精品少妇内射三级| 热re99久久精品国产66热6| 波多野结衣av一区二区av| 国产在线免费精品| 日韩av在线免费看完整版不卡| 9色porny在线观看| av在线老鸭窝| 亚洲精品久久久久久婷婷小说| 午夜免费鲁丝| 成人国产一区最新在线观看 | 久久久精品区二区三区| 老司机影院毛片| 可以免费在线观看a视频的电影网站| 美女国产高潮福利片在线看| 黄色视频不卡| 少妇的丰满在线观看| 男人爽女人下面视频在线观看| 国产不卡av网站在线观看| 久9热在线精品视频| 91九色精品人成在线观看| 亚洲国产看品久久| 18禁黄网站禁片午夜丰满| 午夜福利影视在线免费观看| 赤兔流量卡办理| 日本色播在线视频| 五月天丁香电影| 亚洲视频免费观看视频| 日韩制服骚丝袜av| 亚洲欧美中文字幕日韩二区| 日韩,欧美,国产一区二区三区| 操美女的视频在线观看| 亚洲欧美激情在线| 一级毛片黄色毛片免费观看视频| 欧美久久黑人一区二区| 亚洲国产毛片av蜜桃av| 欧美亚洲 丝袜 人妻 在线| 91精品国产国语对白视频| av在线老鸭窝| 99香蕉大伊视频| 午夜福利影视在线免费观看| 老汉色av国产亚洲站长工具| 亚洲免费av在线视频| 亚洲欧美一区二区三区国产| 精品人妻熟女毛片av久久网站| 亚洲伊人久久精品综合| 亚洲精品一卡2卡三卡4卡5卡 | 免费观看av网站的网址| 久久人人爽av亚洲精品天堂| 在线观看一区二区三区激情| 欧美日韩一级在线毛片| 国产精品99久久99久久久不卡| 精品少妇黑人巨大在线播放| 91麻豆av在线| 午夜视频精品福利| 男女免费视频国产| 精品少妇内射三级| 人人妻人人爽人人添夜夜欢视频| 最新在线观看一区二区三区 | 看免费成人av毛片| 夫妻午夜视频| 欧美 日韩 精品 国产| 久久国产精品大桥未久av| 亚洲精品国产一区二区精华液| 亚洲成人免费电影在线观看 | 午夜福利影视在线免费观看| 久久鲁丝午夜福利片| 精品欧美一区二区三区在线| 亚洲欧美激情在线| 黄色一级大片看看| 国产高清videossex| 自线自在国产av| 伊人亚洲综合成人网| 黄片播放在线免费| av欧美777| 久久精品久久久久久噜噜老黄| 欧美精品啪啪一区二区三区 | videosex国产| 黄片播放在线免费| 免费黄频网站在线观看国产| 久久久国产精品麻豆| av网站免费在线观看视频| 美女中出高潮动态图| 欧美激情极品国产一区二区三区| 欧美在线一区亚洲| 久久久久久亚洲精品国产蜜桃av| 校园人妻丝袜中文字幕| 日韩 亚洲 欧美在线| 午夜影院在线不卡| 久久国产精品大桥未久av| 国产麻豆69| 亚洲 欧美一区二区三区| 秋霞在线观看毛片| 午夜福利一区二区在线看| 亚洲黑人精品在线| 王馨瑶露胸无遮挡在线观看| 亚洲av美国av| 99热网站在线观看| 婷婷色av中文字幕| 亚洲七黄色美女视频| 日日夜夜操网爽| 亚洲第一av免费看| 观看av在线不卡| 日韩免费高清中文字幕av| 国产男人的电影天堂91| 亚洲中文字幕日韩| 天天躁夜夜躁狠狠久久av| 黄色怎么调成土黄色| 日本91视频免费播放| 亚洲激情五月婷婷啪啪| 欧美乱码精品一区二区三区| 亚洲国产日韩一区二区| 亚洲国产中文字幕在线视频| 亚洲av在线观看美女高潮| 国产黄色免费在线视频| 女人爽到高潮嗷嗷叫在线视频| a级片在线免费高清观看视频| 欧美日韩视频精品一区| 啦啦啦视频在线资源免费观看| 精品人妻一区二区三区麻豆| 免费人妻精品一区二区三区视频| 无限看片的www在线观看| avwww免费| 天堂中文最新版在线下载| 久久ye,这里只有精品| 韩国高清视频一区二区三区| 中文字幕人妻丝袜一区二区| 美女扒开内裤让男人捅视频| 日本五十路高清| 51午夜福利影视在线观看| 香蕉国产在线看| 国产主播在线观看一区二区 | 日韩中文字幕视频在线看片| 两个人看的免费小视频| 又紧又爽又黄一区二区| 国产在线一区二区三区精| 亚洲精品美女久久久久99蜜臀 | 午夜91福利影院| 悠悠久久av| 中文字幕人妻丝袜一区二区| 婷婷色麻豆天堂久久| av一本久久久久| 国产片特级美女逼逼视频| 国产真人三级小视频在线观看| 免费观看av网站的网址| 久久久久视频综合| 一本久久精品| 精品人妻一区二区三区麻豆| 色网站视频免费| 久久这里只有精品19| 一区二区三区四区激情视频| 在线亚洲精品国产二区图片欧美| 国产三级黄色录像| 伦理电影免费视频| 国产真人三级小视频在线观看| 精品国产一区二区久久| 亚洲av综合色区一区| 免费女性裸体啪啪无遮挡网站| 人人妻人人添人人爽欧美一区卜| 精品一品国产午夜福利视频| 精品久久蜜臀av无| 极品少妇高潮喷水抽搐| 后天国语完整版免费观看| 婷婷色综合www| 久久av网站| 国产一区亚洲一区在线观看| 久久精品国产a三级三级三级| 国产一区二区三区av在线| 免费日韩欧美在线观看| 大陆偷拍与自拍| 黄片播放在线免费| 赤兔流量卡办理| 啦啦啦在线观看免费高清www| 成人国产一区最新在线观看 | 午夜精品国产一区二区电影| 在线观看免费日韩欧美大片| 九色亚洲精品在线播放| 久久人妻熟女aⅴ| 亚洲 欧美一区二区三区| 久久亚洲精品不卡| 欧美日韩亚洲国产一区二区在线观看 | 水蜜桃什么品种好| 亚洲一码二码三码区别大吗| 人妻人人澡人人爽人人| videosex国产| 真人做人爱边吃奶动态| 性高湖久久久久久久久免费观看| 我的亚洲天堂| 国产又色又爽无遮挡免| 日本猛色少妇xxxxx猛交久久| 在线观看人妻少妇| 久久这里只有精品19| 婷婷成人精品国产| 后天国语完整版免费观看| 97精品久久久久久久久久精品| 久久人妻福利社区极品人妻图片 | 高清黄色对白视频在线免费看| 91精品伊人久久大香线蕉| 亚洲,欧美,日韩| 免费久久久久久久精品成人欧美视频| 国产又爽黄色视频| 狂野欧美激情性xxxx| 韩国精品一区二区三区| 精品国产乱码久久久久久小说| 欧美日韩黄片免| 久久精品成人免费网站| 久久久久国产精品人妻一区二区| 日韩人妻精品一区2区三区| 日本欧美国产在线视频| 国产成人精品久久二区二区91| 欧美日韩国产mv在线观看视频| 欧美激情极品国产一区二区三区| xxxhd国产人妻xxx| 老汉色av国产亚洲站长工具| 精品少妇久久久久久888优播| av视频免费观看在线观看| 成年女人毛片免费观看观看9 | 国产精品成人在线| 亚洲欧美激情在线| 青草久久国产| 国产无遮挡羞羞视频在线观看| 男女边摸边吃奶| 一边摸一边抽搐一进一出视频| 你懂的网址亚洲精品在线观看| 午夜日韩欧美国产| 夫妻性生交免费视频一级片| 99九九在线精品视频| 看免费成人av毛片| www.熟女人妻精品国产| 久久久久久久大尺度免费视频| 成人国产一区最新在线观看 | 国产精品av久久久久免费| 亚洲免费av在线视频| 亚洲专区国产一区二区| 国产欧美亚洲国产| 99热网站在线观看| 一级黄色大片毛片| 国产免费现黄频在线看| 又粗又硬又长又爽又黄的视频| 亚洲av综合色区一区| 欧美激情高清一区二区三区| 国产日韩一区二区三区精品不卡| 国产野战对白在线观看| 嫁个100分男人电影在线观看 | 国产成人精品在线电影| 制服人妻中文乱码| 亚洲成人免费av在线播放| 国产淫语在线视频| 婷婷色麻豆天堂久久| av片东京热男人的天堂| 日本av手机在线免费观看| 黄网站色视频无遮挡免费观看| av欧美777| 99精国产麻豆久久婷婷| 成人免费观看视频高清| 久久性视频一级片| 日韩av免费高清视频| 99国产精品一区二区三区| 国产一区有黄有色的免费视频| 一级毛片黄色毛片免费观看视频| 免费人妻精品一区二区三区视频| 欧美久久黑人一区二区| 久久人人爽人人片av| 人妻一区二区av| 亚洲天堂av无毛| 黄色a级毛片大全视频| 久热爱精品视频在线9| 欧美老熟妇乱子伦牲交| 免费看十八禁软件| 我的亚洲天堂| 亚洲av成人不卡在线观看播放网 | 亚洲av日韩精品久久久久久密 | 久久久国产一区二区| 国产精品久久久久成人av| 美女中出高潮动态图| 婷婷色麻豆天堂久久| 一区二区三区四区激情视频| 老熟女久久久| 美女大奶头黄色视频| 久久午夜综合久久蜜桃| 久久精品国产a三级三级三级| 亚洲九九香蕉| 午夜久久久在线观看| 精品国产超薄肉色丝袜足j| 国产欧美亚洲国产| 日本vs欧美在线观看视频| 亚洲欧美日韩另类电影网站| 少妇被粗大的猛进出69影院| 最新的欧美精品一区二区| 午夜福利视频精品| 国产淫语在线视频| 午夜av观看不卡| 久久精品国产综合久久久| 两个人免费观看高清视频| 亚洲精品久久久久久婷婷小说| 久久精品久久精品一区二区三区| 国产亚洲精品第一综合不卡| 国产精品久久久久久人妻精品电影 | 亚洲一区二区三区欧美精品| 国产视频首页在线观看| 亚洲精品在线美女| 免费在线观看完整版高清| 后天国语完整版免费观看| 日日摸夜夜添夜夜爱| 国产xxxxx性猛交| 国产精品国产三级专区第一集| 国产av国产精品国产| 天天躁狠狠躁夜夜躁狠狠躁| 老汉色av国产亚洲站长工具| 日韩一本色道免费dvd| 高潮久久久久久久久久久不卡| 黑人巨大精品欧美一区二区蜜桃| 国产成人精品久久二区二区91| 久久人人爽av亚洲精品天堂| 久久久久久久国产电影| 成年美女黄网站色视频大全免费| 多毛熟女@视频| 涩涩av久久男人的天堂| 亚洲国产欧美一区二区综合| 黑人欧美特级aaaaaa片| 精品亚洲成a人片在线观看| 91国产中文字幕| 国产成人精品久久二区二区免费| 国产淫语在线视频| 国产成人91sexporn| 欧美成人午夜精品| 大陆偷拍与自拍| 国产精品一区二区在线不卡| 乱人伦中国视频| 精品亚洲成国产av| 91国产中文字幕| 美国免费a级毛片| 91麻豆精品激情在线观看国产 | 精品亚洲成国产av| 超色免费av| 大片免费播放器 马上看| 蜜桃国产av成人99| 丝袜美腿诱惑在线| 国产一区二区 视频在线| 精品亚洲成国产av| 一区二区三区精品91| av不卡在线播放| 国产在线免费精品| 国产男人的电影天堂91| 纯流量卡能插随身wifi吗| 黄频高清免费视频| 久久国产亚洲av麻豆专区| avwww免费| 一区二区av电影网| 天堂俺去俺来也www色官网| 国产福利在线免费观看视频| 亚洲精品久久午夜乱码| 欧美97在线视频| 一区在线观看完整版| 麻豆乱淫一区二区| 夫妻性生交免费视频一级片| www.精华液| 乱人伦中国视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品亚洲熟妇少妇任你| 国产在线免费精品| 亚洲综合色网址| 久久久精品区二区三区| 免费高清在线观看日韩| 中国国产av一级| 免费少妇av软件| 久久免费观看电影| 中文字幕高清在线视频| 极品少妇高潮喷水抽搐| 国产欧美亚洲国产| 中文字幕最新亚洲高清| 亚洲熟女毛片儿| 久久久久精品人妻al黑| 色综合欧美亚洲国产小说| 婷婷色av中文字幕| 纵有疾风起免费观看全集完整版| 欧美乱码精品一区二区三区| 99re6热这里在线精品视频| 18禁裸乳无遮挡动漫免费视频| 一边摸一边做爽爽视频免费| 国产成人精品在线电影| 国产日韩一区二区三区精品不卡| 国产三级黄色录像| 久久ye,这里只有精品| 国产野战对白在线观看| 十八禁人妻一区二区| 亚洲自偷自拍图片 自拍| 黄色视频不卡| 欧美国产精品一级二级三级| 老熟女久久久| 日本色播在线视频| 中文乱码字字幕精品一区二区三区| 国产精品九九99| 亚洲欧洲精品一区二区精品久久久| 男女午夜视频在线观看| 亚洲美女黄色视频免费看| 美国免费a级毛片| videosex国产| 欧美大码av| 日韩欧美一区视频在线观看| 国产一区亚洲一区在线观看| 亚洲精品国产av蜜桃| 免费高清在线观看视频在线观看| 99国产精品一区二区三区| 天天添夜夜摸| 啦啦啦视频在线资源免费观看| 亚洲人成网站在线观看播放| 可以免费在线观看a视频的电影网站| 久久久久久久大尺度免费视频| 亚洲精品自拍成人| 最近手机中文字幕大全| 黄色一级大片看看| 欧美另类一区| 日韩 欧美 亚洲 中文字幕| 午夜老司机福利片| 美女视频免费永久观看网站| 婷婷色麻豆天堂久久| 一边摸一边抽搐一进一出视频| 久久久久精品人妻al黑| 一级毛片电影观看| 免费黄频网站在线观看国产| 国产欧美日韩综合在线一区二区| 亚洲熟女毛片儿| 久久免费观看电影| 久久久久网色| 免费观看人在逋| 国语对白做爰xxxⅹ性视频网站| 午夜福利免费观看在线| 高潮久久久久久久久久久不卡| 亚洲人成网站在线观看播放| 高清av免费在线| 久久国产精品男人的天堂亚洲| 国产成人91sexporn| 男人舔女人的私密视频| 波多野结衣一区麻豆| 99热全是精品| 麻豆av在线久日| 一边摸一边抽搐一进一出视频| 天堂中文最新版在线下载| 99久久99久久久精品蜜桃| 啦啦啦 在线观看视频| 制服人妻中文乱码| 久久久精品免费免费高清| 国产高清videossex| 巨乳人妻的诱惑在线观看| 精品久久久久久电影网| 999久久久国产精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 韩国高清视频一区二区三区| 18在线观看网站| 亚洲精品一卡2卡三卡4卡5卡 | 欧美亚洲日本最大视频资源| 国产一区二区三区av在线| 日韩一区二区三区影片| 久久久久久久久久久久大奶| 成年人午夜在线观看视频| 少妇裸体淫交视频免费看高清 | 亚洲国产最新在线播放| 国产精品九九99| 啦啦啦在线免费观看视频4| 尾随美女入室| 欧美国产精品一级二级三级| 亚洲,欧美精品.| 国产视频首页在线观看| 国产一卡二卡三卡精品| 男女国产视频网站| 国产精品国产av在线观看| 一级毛片电影观看| a级片在线免费高清观看视频| 黑人猛操日本美女一级片| 80岁老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡| 久久av网站| 啦啦啦视频在线资源免费观看| 大香蕉久久网| 一区二区三区乱码不卡18| 性色av乱码一区二区三区2| 99国产精品一区二区三区| 亚洲七黄色美女视频| 国产片特级美女逼逼视频| 男的添女的下面高潮视频| 一级黄色大片毛片| 久久九九热精品免费| 欧美亚洲日本最大视频资源| 18禁黄网站禁片午夜丰满|