李靜麗, 張海祥, 劉 楊, 胡 軍*
(1. 青海大學(xué)醫(yī)學(xué)院 病理生理學(xué)教研組,青海 西寧 810000;2. 陜西省人民醫(yī)院 中心實(shí)驗(yàn)室,陜西 西安 710068)
禽流感病毒感染人類及其致病機(jī)制研究
李靜麗1, 張海祥2, 劉 楊2, 胡 軍2*
(1. 青海大學(xué)醫(yī)學(xué)院 病理生理學(xué)教研組,青海 西寧 810000;2. 陜西省人民醫(yī)院 中心實(shí)驗(yàn)室,陜西 西安 710068)
禽流感病毒感染禽類可引發(fā)呼吸系統(tǒng)到全身不同程度的病變,嚴(yán)重的可導(dǎo)致敗血癥、休克、多臟器功能衰竭,甚至死亡。上世紀(jì)末,禽流感病毒開始跨種向人類傳播,其感染引起急性肺損傷、多器官衰竭等,具有較高的致病率和致死率,危害極大,引起了研究者的廣泛關(guān)注。目前禽流感病毒感染人類及其致病機(jī)制尚不明確,本文就此做一綜述,為其防治提供參考。
禽流感病毒;感染;致病機(jī)制
自1878年進(jìn)入人類視野開始,禽流感病毒主要在鳥、雞、鴨、鵝等禽類中傳播,之后陸續(xù)在部分哺乳動(dòng)物如豬、馬、犬等物種出現(xiàn)[4]。1997年在香港首次發(fā)現(xiàn)了人感染禽流感病毒H5N1的病例,禽流感病毒開始向人類傳播。截止2016年1月,禽流感病毒H5N1共造成全球846人感染,449人死亡[5]。2015年我國196人感染H7N9禽流感病毒,死亡92人,死亡率高達(dá)47%[6]。目前,報(bào)道的能夠感染人類的禽流感病毒有:H5N1、H5N2、H5N6、H6N1、H7N2、H7N3、H7N7、H7N9、H9N2、H10N7、H10N8等亞型[7],其中大多數(shù)人感染禽流感后呈現(xiàn)的癥狀基本類似,輕度感染患者主要呈現(xiàn)結(jié)膜炎或者發(fā)熱、咳嗽等流感樣癥狀;重度感染患者表現(xiàn)為急性肺炎,多器官功能衰竭,機(jī)體細(xì)胞因子調(diào)節(jié)紊亂甚至死亡[8-10]。
決定禽流感病毒宿主范圍的關(guān)鍵因素是其表面糖蛋白HA與宿主細(xì)胞表面唾液酸受體(sialic acid, SA)的特異性結(jié)合,以及病毒進(jìn)入新宿主后的有效復(fù)制。SA與半乳糖的鏈接方式根據(jù)其差異分為兩種類型,即唾液酸α2, 3半乳糖(SA linked to galactose by an α-2, 3 linkage,SAα2,3Gal),主分布于禽類的消化道;唾液酸α2,6半乳糖(SAα2,6Gal),常見于部分哺乳動(dòng)物的呼吸道黏膜上皮細(xì)胞。AIV感染禽類的第一步是與宿主細(xì)胞上的SAα2,3Gal的特異性識(shí)別,但人類機(jī)體中并不存在該受體,因此,禽流感病毒一般主要局限于禽類的感染。然而,隨著病毒HA上關(guān)鍵位點(diǎn)的突變,如H5N1的HA的226號(hào)位點(diǎn)上由谷氨酰胺(Gln)突變成亮氨酸(Leu),228號(hào)位點(diǎn)上由甘氨酸(Gly)突變成絲氨酸(Ser)等,這些突變?cè)鰪?qiáng)了AIV對(duì)SAα2,6Gal的特異性結(jié)合,也保留了對(duì)SAα2,3Gal的特異性[11]。另外,病毒內(nèi)部的聚合酶和NP基因的突變,如堿性蛋白PB2上的E627K的突變等,使得其進(jìn)入新宿主時(shí)仍能有效復(fù)制并保留病毒毒力[12],這些共同導(dǎo)致了AIV既能感染禽類同時(shí)又能感染人類等哺乳動(dòng)物。
目前,能夠感染人類的禽流感病毒已達(dá)十多種,大多具有較高的發(fā)病率和病死率,給人類的生命健康造成了巨大威脅,但其致病機(jī)制尚無統(tǒng)一定論,根據(jù)目前的研究可以劃分為以下幾種。
2.1 病毒毒力和復(fù)制能力的改變
禽流感病毒神經(jīng)氨酸酶NA能使病毒顆粒從宿主細(xì)胞表面釋放,其莖區(qū)中部分氨基酸的缺失能增強(qiáng)病毒的毒力和復(fù)制力,同時(shí)也擴(kuò)大了病毒在禽類中的適應(yīng)性,如2013年H7N9的NA莖區(qū)上69~73位點(diǎn)上氨基酸的缺失[13-14]。另外PB2和/或NS1、M1的突變也有可能改變病毒毒力、復(fù)制力以及傳播能力[15-16]。其中,NS1蛋白是關(guān)鍵的毒力因子,主要對(duì)抗宿主固有免疫,Seo等[17]研究表明NS1中的92位谷氨酸的存在能使病毒逃避IFN和TNF-α的抗病毒效應(yīng),增強(qiáng)重組病毒H1N1在豬感染中的毒力。另外,當(dāng)M2的44號(hào)位點(diǎn)上有天冬酰胺(Asn)取代天冬氨酸 (Asp)時(shí)禽流感病毒在雞中的致病性更強(qiáng)[18]。
2.2 細(xì)胞因子風(fēng)暴假說
禽流感病毒主要通過感染宿主呼吸道而進(jìn)入機(jī)體內(nèi),使患者致死的主因可能是急性肺損傷(acute lung injury,ALI)或急性呼吸窘迫綜合癥(acute respiratory distress syndrome,ARDS)[19-21]。一些實(shí)驗(yàn)研究和臨床試驗(yàn)表明,患者表現(xiàn)出的組織損傷直接與介導(dǎo)炎癥的“細(xì)胞因子風(fēng)暴”有關(guān),如患者體內(nèi)IL-1、IP-10、IL-6、TNF、IFN-γ和MCP-1等顯著增高[22-23]。但是與之相反,Szretter等[24]利用細(xì)胞因子基因敲除小鼠模型的研究表明,僅僅通過抑制局部肺細(xì)胞因子反應(yīng)并不能有效抑制或減輕禽流感病毒H5N1對(duì)小鼠的病理損傷及致死率。這說明細(xì)胞因子與AIV致病具有相關(guān)性,但是否能夠?qū)е聞?dòng)物或人類病理損傷及致死尚無明確證據(jù)。
2.3 補(bǔ)體過度激活
感染高致病性禽流感病毒H5N1的患者發(fā)生急性肺損傷與宿主異常的固有免疫反應(yīng)關(guān)系密切。補(bǔ)體在固有免疫中扮演著關(guān)鍵的角色,補(bǔ)體的異常激活與一系列的自身免疫及炎癥疾病有關(guān)。有研究發(fā)現(xiàn),H5N1感染的小鼠模型中肺組織上存在C3、C5b-9和甘露結(jié)合凝集素(MBL)-C的沉積,以及MBL介導(dǎo)的絲氨酸蛋白酶-2和C3aR、C5aR的補(bǔ)體受體上調(diào)現(xiàn)象。通過C3aR拮抗劑、抗C5a抗體或消耗補(bǔ)體的眼鏡蛇蛇毒因子的治療,感染H5N1的小鼠肺部炎癥均顯著減輕,ALI得到緩解,說明補(bǔ)體的過度激活在H5N1誘發(fā)的ALI中扮演著重要的角色[25]。
2.4 分子模擬
如果病原微生物與宿主存在異嗜性抗原表位,機(jī)體內(nèi)產(chǎn)生的特異性抗體除了能中和抗原外,也可能會(huì)攻擊自身組織造成損傷,從而導(dǎo)致自身免疫性疾病,即分子模擬[26]。有研究表明,人流感病毒H1N1核蛋白上存在和人下丘腦泌素受體2細(xì)胞外區(qū)肽段結(jié)構(gòu)相似的表位,可通過分子模擬的方式誘導(dǎo)抗下丘腦泌素受體2的抗體,該抗體可干擾下丘腦泌素的信號(hào)轉(zhuǎn)導(dǎo),是導(dǎo)致患者發(fā)生嗜睡病的主要原因[27]。另外,Guo等[28]發(fā)現(xiàn)人體組織(胰腺、腦)與人流感病毒H1N1可能存在異嗜性抗原表位,這或許是其致病的可能原因。由于人流感病毒和禽流感病毒存在基因上的高度相似性,那么分子模擬是否也參與了禽流感病毒的致病過程,這值得進(jìn)一步深入研究。
禽流感病毒亞型多,變異性強(qiáng),并能跨越物種障礙由禽類傳播到哺乳動(dòng)物甚至人類,給人類生命健康造成了巨大的威脅。目前患者主要通過接觸攜帶AIV的禽類或其糞便而感染發(fā)病。由于AIV基因?yàn)閱呜?fù)鏈分段RNA,易發(fā)生抗原漂移和基因重組,致使其毒力和復(fù)制力等不斷加強(qiáng),新型AIV不斷出現(xiàn),對(duì)多種抗禽流感藥物產(chǎn)生耐藥性,如M2離子抑制劑、神經(jīng)氨酸酶抑制劑等[29],甚至還可能產(chǎn)生人與人之間直接傳播的風(fēng)險(xiǎn)[30-31]。另外,目前人感染AIV時(shí)沒有出現(xiàn)大規(guī)模的家禽死亡疫情,也沒有明顯的相關(guān)預(yù)警信息[32],這些均增加了人類對(duì)AIV預(yù)防及控制的難度。因此,深入研究AIV對(duì)于了解禽流感的未來變化趨勢,以及公共衛(wèi)生安全都具有重要意義。
[1] Perroncito E. Epizoozia tifoide nei gallinacei[J]. Annali Accad Agri Torino, 1878, 21: 87-126.
[3] Tong S, Zhu X, Li Y, et al. New world bats harbor diverse influenza A viruses [J]. PLo Spathogens, 2013, 9: e1003657.
[4] Webster RG, Bean WJ, Gorman OT, et al. Evolution and ecology of influenza A viruses [J]. Microbiol Rev, 1992, 56:152-179.
[5] Shortridge KF, Zhou NN, Guan Y, et al. Characterization of avian H5N1 influenza viruses from poultry in Hong Kong [J]. Virology, 1998, 252: 331-342.
[6] 中華人民共和國國家衛(wèi)生和計(jì)劃生育委員會(huì). 2015年全國法定傳染病疫情概況[EB/OL]. http://www.nhfpc.gov.cn/jkj/s3578/201602/b9217ba14e17452aad9e45a5bcce6b65.shtml, 2016-02-18.
[7] Zhang R, Chen T, Ou X, et al. Clinical, epidemiological and virological characteristics of the first detected human case of avian influenza A(H5N6) virus[J]. Infect,2016, 40: 236-242.
[8] Hong Kong Centre for Health Protection Avian influenza report volume 11 number 19 [EB/OL]. http://www. chp.gov.hk/files/pdf/2015_avian_influenza_report_vol11_wk19.pdf . Accessed 12 May 2015.
[9] Shi W, Shi Y, Wu Y, et al. Origin and molecular characterization of the human-infecting H6N1 influenza virus in Taiwan [J].Protein Cell, 2013, 4(11): 846-853.
[10]CDC. Centers for Disease Control and Prevention. Interim risk assessment and biosafety level recommendations for working with influenza A (H7N9) viruses [EB/OL]. http://www.cdc.gov/flu/avian flu/h7n9/risk-assessment.htm. Accessed10 January 2015.
[11]Xu L, Bao L, Lau SY, et al. Hemagglutinin amino acids related to receptor specificity could affect the protection efficacy of H5N1 and H7N9 avian influenza virus vaccines in mice[J]. Vaccine, 2016, 34(23): 2627-2633.
[12]Gabriel G, Dauber B, Wolff T, et al. The viral polymerase mediates adaptation of an avian influenza virus to amammalian host[J]. Proc Natl Acad Sci USA, 2005, 102(51): 18590-18595.
[13]Hoffmann TW, Munier S, Larcher T, et al. Length variations in the NA stalk of an H7N1 influenza virus have opposite effects on viral excretion in chickens and ducks[J]. J Virol, 2012, 86(1): 584-588.
[14]Chen FM, Li JH, Sun BC, et al. Isolation and characteristic analysis of a novel strain H7N9 of avian influenza virus A from a patient with influenza-like symptoms in China [J]. Int J Infect Dis, 2015, 33: 130-131.
[15]Sediri H, Thiele S, Schwalm F, et al. PB2 subunit of avian influenza virus subtype H9N2: a pandemic risk factor[J]. J Gen Virol, 2016, 97(1): 39-48.
[16]Klos A, Tenner AJ, Johswich KO, et al. The role of the anaphylatoxins in health and disease[J]. Mol Immunol, 2009, 46(14): 2753-2766.
[17]Seo SH, Hoffmann E, Webster RG. The NS1 gene of H5N1 influenza viruses circumvents the host anti-viral cytokine responses[J]. Virus Res, 2004, 103(1-2): 107-113.
[18]Fujimoto Y, Ito H, Tomita M, et al. Amino acid substitution at position 44 of matrix protein 2 of an avirulent H5 avian influenza virus is crucial for acquiring the highly pathogenic phenotype in chickens[J].Arch Virol, 2015, 160(8): 2063-2070.
[19]Yu L, Wang Z, Chen Y, et al. Clinical, virological, and histopathological manifestations of fatal human infections by avian influenza A (H7N9) virus[J]. Clin Infect Dis, 2013, 57:1449-1457.
[20]Tran TH, Nguyen TL, Nguyen TD,et al. Avian influenza A (H5N1) in 10 patients in Vietnam[J]. N Engl J Med, 2004, 350: 1179-1188.
[21]Szretter KJ, Gangappa S, Lu X, et al. Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses inmice[J]. J Virol, 2007, 81: 2736-2744.
[22]Tisoncik JR, Korth MJ, Simmons CP, et al. Into the eye of the cytokine storm[J]. Microbiol Mol Biol Rev, 2012, 76:16-32.
[23]Liu Q, Zhou YH, Yang ZQ, et al. The cytosine storm of severe influenza and development of immunomodulatory therapy[J]. Cell Mol Immunol, 2016, 13(1): 3-10.
[24]Szretter KJ, Gangappa S, Lu X, et al. Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice[J]. J Virol, 2007, 81(6): 2736-2744.
[25]Sun S, Zhao G, Liu C, et al. Inhibition of complement activation alleviates acute lung injury induced by highly pathogenic avian influenza H5N1 virus infection[J]. Am J Respir Cell Mol Biol, 2013, 49(2): 221-230.
[26]Ahmed SS, Schur PH, MacDonald NE,et al. Narcolepsy, 2009 A(H1N1) pandemic influenza, and pandemic influenza vaccinations: What is known and unknown about the neurological disorder, the role for autoimmunity, and vaccine adjuvants[J]. J Autoimmun, 2014, 50: 1-11.
[27]Ahmed SS, Volkmuth W, Duca J, et al. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2[J]. Sci Transl Med, 2015, 7(294): 294ra105.
[28]Guo CY, Tang YG, Qi ZL, et al. Development and characterization of a panel of cross-reactive monoclonal antibodies generated using H1N1 influenza virus[J]. Immunobiol, 2015, 220(8): 941-946.
[29]Fry AM, Gubareva LV. Understanding influenza virus resistance to antiviral agents; early warning signs for wider community circulation[J]. J Infect Dis, 2012, 206(2):145-147.
[30]WHO. Transcript of media briefing by Dr Michael O′Leary, WHO Representative in China [EB/OL]. http://www.wpro.who.int/china/topics/h7n9_infl uenza/20130419/en/index.html (accessed April 19, 2013).
[31]Wang H, Feng Z, Shu Y, et al. Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China[J]. Lancet, 2008, 371(9622):1427-1434.
[32]To KK, Chan JF, Chen H, et al. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities[J]. Lancet Infect Dis, 2013, 13(9): 809-821.
Infection and Pathogenic Mechanism of Avian Influenza Virus in Human
LI Jing-li1, ZHANG Hai-xiang2, LIU Yang2, HU Jun2
(1.Teach. &Res.Div.ofPathophysiol.,Med.Coll.,QinghaiUni.,Xining,810000; 2.Centl.Lab.,ShaanxiPeople’sHosp.,Xi’an710068)
Avian influenza virus (AIV) can cause pathological changes from respiratory system to the whole body in various degrees, induced sepsis, shock multiple organ failure, and even death in infected poultry. At the end of last century AIV started to transmit over species to human, the infection caused acute lung injury, multiple organ failure etc. which caused a high rate of pathogenicity and mortality, and jeopardized greatly and attracted widely attention among researchers. At present, however, the mechanism of infection and pathogenicity of AIV to human remains unclear. At this point it was summarized in this paper to provide reference for the prevention and treatment of the AIV.
avian influenza virus (AIV); infection; pathogenic mechanism
國家傳染病重大專項(xiàng)(2014ZX10004002);國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0500701)
李靜麗 女,碩士研究生。研究方向?yàn)槲⑸锼幚韺W(xué)與免疫學(xué)。E-mail:1520483707@qq.com
* 通訊作者。男,博士,研究員,碩士生導(dǎo)師。 Tel: 029-85251331, E-mail:hjj6562@163.com
2016-10-25;
2016-11-13
Q939.9;G353.11
A
1005-7021(2017)01-0094-04
10.3969/j.issn.1005-7021.2017.01.015