李炳學(xué), 牛 菲, 張 寧
(1.沈陽農(nóng)業(yè)大學(xué) 土地與環(huán)境學(xué)院 土肥資源高效利用國家工程實驗室,遼寧 沈陽 110866;2.沈陽農(nóng)業(yè)大學(xué) 生物科學(xué)技術(shù)學(xué)院,遼寧 沈陽 110866)
·大家專版·
酶法合成功能性低聚糖
李炳學(xué)1, 牛 菲1, 張 寧2
(1.沈陽農(nóng)業(yè)大學(xué) 土地與環(huán)境學(xué)院 土肥資源高效利用國家工程實驗室,遼寧 沈陽 110866;2.沈陽農(nóng)業(yè)大學(xué) 生物科學(xué)技術(shù)學(xué)院,遼寧 沈陽 110866)
功能性低聚糖具有無毒、無殘留、穩(wěn)定性強等特點,作為新型綠色添加劑被廣泛應(yīng)用在食品、飼料、醫(yī)藥行業(yè)。國際市場上10余種低聚糖產(chǎn)品中除大豆低聚糖、棉籽糖外,主要采用酶法制備。用于合成功能性低聚糖的酶包括糖苷酶、糖基轉(zhuǎn)移酶和磷酸化酶。本文綜述了功能性低聚糖種類、性質(zhì)和制備方法,分析了酶法合成低聚糖的優(yōu)缺點,闡述了磷酸化酶種類、催化特性和低聚糖產(chǎn)物。多酶法合成策略和目標酶的分子改造將是酶法合成功能性低聚糖的發(fā)展方向。
功能性低聚糖;酶法;磷酸化酶;合成
國家輕工業(yè)局頒布的QB/T 2492-2000《功能性低聚糖通用技術(shù)規(guī)則》定義了功能性低聚糖的主要特征:由2~10 個相同或不同的單糖聚合而成;其具有糖類某些共同特性,可直接代替蔗糖,作為甜食配料,但不被人體胃酸、胃酶降解,不在小腸吸收,可到達大腸;具有促進人體雙歧桿菌增殖等生理特性[1]。由于功能性低聚糖不被口腔、胃和小腸細菌降解和吸收,因而具有防治齲齒的作用,以及作為水溶性膳食纖維防止便秘的功能[2-3]。功能性低聚糖還具有降低血清膽固醇、增強機體免疫能力、抗腫瘤等功能[4]。功能性低聚糖具有無毒、無殘留、穩(wěn)定性強等特點,作為新型綠色添加劑被廣泛應(yīng)用于食品、飼料、醫(yī)藥行業(yè)[3-4]。
常見的功能性低聚糖有18種,其成分、自然界分布、制備方法和特性見表1。從成分上看,主要是2~6個單糖聚合而成。在自然界中功能性低聚糖主要分布在植物體內(nèi)(蔬菜和農(nóng)作物),動物源(甲殼類)和微生物源(海藻和真菌)比較少。天然提取適用于從甜菜甜蜜中提取棉籽糖、從大豆乳清中提取大豆低聚糖、從菌體中抽提黑曲霉低聚糖(例如黑曲霉二糖)等天然原料中含量多的低聚糖。然而,對于在天然原料中含量較低,且不帶電荷、無色的低聚糖的提取卻十分困難。因此,國際市場上10余種低聚糖產(chǎn)品中除大豆低聚糖、棉籽糖外,主要采用酶法制備。
表1 功能性低聚糖種類及性質(zhì)
續(xù)表1
參與生成低聚糖的酶類主要有糖苷酶、糖基轉(zhuǎn)移酶以及糖苷磷酸化酶。糖苷酶又稱為糖基水解酶,以水解活性為主。水解糖苷鍵時不需要任何輔酶或輔因子[22]。表1中,纖維二糖、黑曲霉二糖、低聚異麥芽糖、龍膽低聚糖、菊粉低聚糖、低聚氨基葡萄糖、低聚半乳糖都是利用糖苷酶水解活性分解適宜的多糖底物產(chǎn)生低聚糖的。產(chǎn)物往往都是混合物,后續(xù)分離純化比較困難,影響后續(xù)深入應(yīng)用。
糖基轉(zhuǎn)移酶能特異性地催化糖基從活性中間體(如UDP衍生物)轉(zhuǎn)移到目標產(chǎn)物分子上[23-24],具有高度的選擇性和催化效率,并且不會引起底物或產(chǎn)物的水解。在低聚糖合成中,糖基轉(zhuǎn)移酶催化轉(zhuǎn)移的糖分子與受體底物之間形成糖苷鍵,轉(zhuǎn)移的糖分子中尤以單糖分子最為典型[25];核苷糖、糖分子均可作為糖基供體;作為受體的一般為糖分子,可以是單糖、二糖或三糖等。因轉(zhuǎn)移的糖分子數(shù)量和受體的結(jié)構(gòu)組成不同,致使形成的低聚糖為多種不同的低聚糖混合物[26]。果糖基轉(zhuǎn)移酶、葡萄糖基轉(zhuǎn)移酶、巖藻糖基轉(zhuǎn)移酶均是利用轉(zhuǎn)糖苷來合成低聚糖的。例如表1中的低聚果糖、異麥芽酮糖等。糖基轉(zhuǎn)移酶多為膜結(jié)合蛋白,穩(wěn)定性差,而且糖基供體(如UDPG)價格昂貴,這些特征也限制了糖基轉(zhuǎn)移酶大規(guī)模合成低聚糖。
相比于糖苷酶和糖基轉(zhuǎn)移酶,磷酸化酶可催化糖苷-1-磷酸和相應(yīng)受體合成目的低聚糖。磷酸化酶的糖基供體(如Glc-1-P)比糖基轉(zhuǎn)移酶的糖基供體(如UDPG)價格低,而且糖苷磷酸化酶不是膜結(jié)合蛋白,穩(wěn)定性好。因此,糖苷磷酸化酶更適于規(guī)?;铣晒δ苄缘途厶荹27]。
磷酸化酶催化反應(yīng)是雙向可逆的,即可在非還原末端磷酸解低聚糖形成糖苷-1-磷酸和單糖[28],也能以糖苷-1-磷酸為供體,以糖為受體合成低聚糖[29]?;诎被嵝蛄械南嗨菩?,磷酸化酶被歸類于糖苷水解酶家族中的GH13、GH65、GH94、GH112和GH130家族,以及糖基轉(zhuǎn)移酶中的GT4、GT35家族[30]。
多數(shù)磷酸化酶反應(yīng)可逆、底物專一性強、產(chǎn)物單一[30]?;诳赡嫘赃@個特點,可用蔗糖磷酸化酶來磷酸解蔗糖產(chǎn)生葡萄糖-1-磷酸,后者作為供體經(jīng)另一種磷酸化酶催化大量合成目標低聚糖,即雙酶法催化普通低聚糖得到另一種低聚糖[31-36]。隨著人們對細菌基因組研究的不斷深入,越來越多的磷酸化酶序列被發(fā)現(xiàn)。在CAZy數(shù)據(jù)庫中,目前已發(fā)現(xiàn)37種磷酸化酶。其中細菌25種(如nigerose phosphorylase、maltose phosphorylase等),真菌1種(trehalose phosphorylase),植物7種(如西葫蘆中的α-1,4-glucan phosphorylase H等),動物4種(glycogen phosphorylase、liver glycogen phosphorylase、muscle glycogen phosphorylase和brain glycogen phosphorylase)(www.cazy.com)。
利用磷酸化酶合成低聚糖已經(jīng)成為研究熱點,目前已有13種低聚糖通過磷酸化酶大量合成(表2)。來自于GH13、GH65、GH94、GH112、GH130以及GT4家族的磷酸化酶,以β-D-Glc-1P、α-D-Man-1P、α-D-Glc-1P以及α-D-Gal-1P為糖基供體。另外,還有一些酶類已被證明是磷酸化酶,如GT35家族的Glycogen phosphorylase[46]、GH65家族的Trehalose-6-phosphate phosphorylase[47]、GH94家族的N,N′-Diacetylchitobiose phosphorylase[48]、GH130家族的β-1,4-Mannooligosaccharide phosphorylase[49]、GH94家族的Chitobiose phosphorylase[50-51]以及未知家族的β-1,3-Glucan phosphorylase[52]等。表2中,蔗糖[53]、麥芽糖、纖維糊精屬于普通性低聚糖,海藻糖、纖維二糖、GNB/LNB、黑曲霉二糖屬于功能性低聚糖,昆布二糖、D-Galactosyl-β-1,4-L-rhamnose、D-Mannosyl-β-1,4-D-glucosehe 3-O-α-D-Glucosyl-L-rhamnose的功能有待驗證。
表2 磷酸化酶合成低聚糖
GNB(Galacto-N-biose I)也稱T-抗原二糖,是腸道細胞黏液糖蛋白糖鏈上的一個重要結(jié)構(gòu)。LNB(Lacto-N-biose I)是I型核心糖鏈,也是人體腸道細胞糖鏈的組成部分。GNB 和LNB 被認為是雙歧桿菌天然的營養(yǎng)來源。外源添加GNB 和LNB可以促進雙歧桿菌增殖,調(diào)節(jié)腸道微生態(tài)[54]。因此,廣闊的市場需要大規(guī)模合成GNB 和LNB。GNB一直以來是利用β-半乳糖苷酶和β-(1→3)-半乳糖苷轉(zhuǎn)移酶進行合成的,然而這些合成方法卻不能大規(guī)模生產(chǎn)GNB[45]。Mamoru Nishimoto等利用多酶法實現(xiàn)了GNB/LNB大尺度合成,底物是廉價的蔗糖和無機磷酸,5種酶通過大腸埃希菌異源表達獲得[19]。合成步驟如下:蔗糖與無機磷酸在蔗糖磷酸化酶(Sp)的作用下[54],生成α-D-Glc-1P和D-fructose,接著α-D-Glc-1P和UDP-Gal在半乳糖苷轉(zhuǎn)移酶的作用下生成Gal-1P和UDP-Glc[55],UDP-Glc在UDP葡糖己糖-1-磷酸尿苷?;D(zhuǎn)移酶催化下完成了UDP-Gal再生[56],最后Gal-1P和GalNAc/GlcNAc在GLNBP(Galacto-N-biose/lacto-N-biose I 磷酸化酶)的作用下,生成GNB/LNB和Pi[19](圖1)。由LNB合成范例可知,利用多酶體系和不同的磷酸化酶來催化廉價的底物從而大量合成目標低聚糖是可行的。多酶體系為酶法體外合成目標寡糖提供了思路,將體系中的GLNBP置換成其他的以Gal-1P為供體的磷酸化酶,配以相應(yīng)的受體就能夠合成目標寡糖。
圖1 多酶法合成LNB和GNBFig.1 Multi-enzymatic synthesis of LNB and GNB
現(xiàn)有磷酸化酶催化反應(yīng)類型少、催化效率低是限制其發(fā)展的瓶頸。利用易錯PCR等分子進化技術(shù)改造酶分子結(jié)構(gòu),改變底物親和力和催化效率,將是發(fā)展磷酸化酶法合成功能性低聚糖的有效途徑[57-58]。利用糖基轉(zhuǎn)移酶催化合成具有重要生理功能的糖蛋白和糖脂藥物,將是糖工程領(lǐng)域發(fā)展的重要方向和新熱點。組合利用磷酸化酶和糖基轉(zhuǎn)移酶的多酶合成體系是提供糖基供體的有效途徑。另外,從基因組和蛋白質(zhì)組數(shù)據(jù)庫中發(fā)掘新型糖基轉(zhuǎn)移酶和磷酸化酶資源,也將為合成功能性低聚糖等糖工程產(chǎn)品奠定基礎(chǔ),支撐功能性低聚糖相關(guān)食品、醫(yī)藥產(chǎn)業(yè)發(fā)展。
[1] 謝海華,丁盛金,戴軍,等.QB/T 2492-2000,中華人民共和國輕工行業(yè)標準功能性低聚糖通用技術(shù)規(guī)則, 2000.
[2] 張曉萍, 段鋼. 功能性低聚糖酶法制備研究進展[J]. 食品與發(fā)酵工業(yè),2011,37(4):159-165.
[3] Vera C, Cordova A,Aburto C,et al.Synthesis and purification of galacto-oligosaccharides:state of the art[J].World Journal of Microbiology & Biotechnology,2016,32(12):197.
[4] Krasnova L, Wong CH.Exploring human glycosylation for better therapies[J].Molecular Aspects of Medicine, 2016, 51(SI): 125-143.
[5] 畢金峰,劉長江. 低聚異麥芽糖的特性及其應(yīng)用[J]. 糧油食品科技,2002,10(5):42-44.
[6] 張雪云. 功能性低聚糖的研究開發(fā)[J]. 飲料工業(yè),2013,16(1):5-8,12.
[7] 周日尤,向春燕.低聚果糖的功能、應(yīng)用、生產(chǎn)及發(fā)展前景[C].第十一屆中國國際食品添加劑和配料展覽會學(xué)術(shù)論文集,2007.
[8] 楊繼遠.大豆低聚糖保健功能及其在食品工業(yè)中的應(yīng)用[J]. 食品工業(yè)科技,2008,(10):291-294.
[9] 唐淑芬,李偉,胡冰.乳酮糖研究進展[J].現(xiàn)代農(nóng)業(yè)科學(xué),2009,3(16): 49-50,65.
[10]李道義,江正強,韋赟,等. 低聚甘露糖的酶法制備、分離與結(jié)晶[J]. 食品科學(xué),2005,26(S1):58-60.
[11]邵健,楊宇民. 低聚氨基葡萄糖的研制[J]. 中國醫(yī)藥工業(yè)雜志,1999,(11):481-483.
[12]侯東軍,曾凡坤. 菊粉低聚糖生產(chǎn)的研究進展[J]. 中國食品添加劑,2003,(5):88-90.
[13]陳昱,王麗娜,昌盛,等. 菊粉低聚糖的工藝優(yōu)化研究[J]. 食品科技,2012,(4):238-240.
[14]王媛媛,郭文斌,王淑芳,等. 褐藻寡糖的生物活性與應(yīng)用研究進展[J]. 食品與發(fā)酵工業(yè),2010,(10):122-126.
[15]朱婧,覃擁靈,陳桂光.β-葡萄糖苷酶高產(chǎn)菌株的選育及酶法轉(zhuǎn)化葡萄糖生產(chǎn)龍膽低聚糖[J].食品與發(fā)酵工業(yè),2010,36(4):21-24,27.
[16]梁麗心.功能性低聚糖——水蘇糖[J].中國食品添加劑,2004,(4):51-54.
[17]周冬麗,宋偉光,郭文峰,等. 棉籽低聚糖——棉籽糖研究概況[J]. 糧食與油脂,2010,(12):39-41.
[18]蘇雪梅.帕拉金糖的生產(chǎn)工藝及市場分析[J]. 輕工科技,2012,(4):1-2.
[19]Mamoru Nishimoto, Motomitsu Kitaoka.One-pot enzymatic production of β-D-galactopyranosyl-(1→3)-2-acetamido -2-deoxy-D-galactose (galacto-N-biose) from sucrose and 2-acetamido-2-deoxy-Dgalactose (N-acetylgalactosamine)[J].Carbohydrate Research,2009,(344):2573-2576.
[20]彭亞鋒,周耀斌,李勤,等. 海藻糖的特性及其應(yīng)用[J]. 中國食品添加劑,2009,(1):65-69.
[21]Kyung-MoSong,Jae-Hoon Shim,Jong-Tae Park.Transglycosylation properties of maltodextrin glucosidase (MalZ) fromEscherichiacoliand its application for synthesis of a nigerose-containing Oligosaccharide[J]. Biochemical and Biophysical Research Communications,2010,(397):87-92.
[22]Danby PM, Withers SG. Advances in Enzymatic Glycoside Synthesis[J].Acs Chemical Biology, 2016, 11(7): 1784-1794.
[23]Petschacher B, Nidetzky B.Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems[J].Journal of Biotechnology, 2016, 235 (SI): 61-83.
[24]Monica M Palcic.Glycosyltransferases as biocatalysts[J].Current Opinion in Chemical Biology, 2011, 15:226-233.
[25] Lairson L L,Henrissat B,Davies G J,et al.Glycosyltransferases: structures, functions and mechanisms[J]. Annu Rev Biochem, 2008, 77: 521-555.
[26]Hill A,Tian F,Karboune S.Synthesis of Levan and Fructooligosaccharides by Levansucrase: Catalytic, Structural and Substrate-Specificity Properties[J].Current Organic Chemistry,2017,21(2): 149-161.
[27] Luley-Goedl C,Nidetzky B.Carbohydrate synthesis by disaccharide phosphorylases: reactions, catalytic mechanisms and application in the glycosciences[J]. Biotechnol.J, 2010,5:1324-1338.
[28]Masahiro Nakajima, Mamoru Nishimoto, Motomitsu Kitaoka. Characterization of D-galactosyl-β1→4-L-rhamnose phosphorylase fromOpitutusterrae[J]. Enzyme and Microbial Technology, 2010,(46):315-319.
[29]Hiroyuki Nakai, Motomitsu Kitaoka, Birte Svensson, et al.Recent development of phosphorylases possessing large potential for oligosaccharide synthesis[J].Current Opinion in Chemical Biology, 2013,(17):301-309.
[30]Cantarel BL, Coutinho PM, Rancurel C,et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics[J]. Nucleic Acids Res, 2009,(37):D233-D238.
[31]Nakai H, Hachem M A,Petersen B O, et al. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase fromClostridiumthermocellum[J].Biochimie,2010,(92):1818-1826.
[32]Sawangwan T, Goedl C, Nidetzky B. Single-step enzymatic synthesis of (R)-2-O-α-D-glucopyranosyl glycerate,a compatible solute from micro-organisms that functions as a protein stabiliser[J]. Org Biomol Chem,2009,7:4267-4270.
[33]Nakai H, Dilokpimol A, Abou Hachem M, et al.Efficient one-pot enzymatic synthesis of a-(1→4)-glucosidic disaccharides through a coupled reaction catalysed byLactobacillusacidophilusNCFM maltose phosphorylase[J]. Carbohydr Res, 2010,345:1061-1064.
[34]Hidaka M, Nishimoto M, Kitaoka M,et al. The crystal structure of galacto-N-biose/lacto-N-biose I phosphorylase: a large deformation of a TIM barrel scaffold[J]. J Biol Chem, 2009, 284:7273-7283.
[35]Ohdan K, Fujii K, Yanase M, et al. Enzymatic synthesis of amylose[J].Biocatal Biotransform, 2006, 24:77-81.
[36]Suzuki M, Kaneda K, Nakai Y,et al. Synthesis of cellobiose from starch by the successive actions of two phosphorylases[J]. New Biotechnol, 2009, 26:137-142.
[37]Min Hye Shin a, Min Woo Jung a, Jong-Hoon Lee, et al. Strategies for producing recombinant sucrose phosphorylase originating from Bifidobacterium longum inEscherichiacoliJM109[J]. Process Biochemistry, 2008,(43): 822-828.
[38]秦文信,賓力. 蔗糖的功能與人體健康[J]. 中國食物與營養(yǎng),2005,(12):48-50.
[39]Kazuo Aisaka,Tomomi Masuda,Tadashi Chikamune. Properties of Maltose Phosphorylase fromPropionibacteriumfreudenreichii[J].Journl of Fermentation and Bioengineering,1996,82(2):121-173.
[40]Takanori Nihira, Yuka Saito, Motomitsu Kitaoka, et al.Characterization of a laminaribiose phosphorylase fromAcholeplasmalaidlawiiPG-8A and production of 1,3-β-D-glucosyl disaccharides[J].Carbohydrate Research, 2012,361:49-54.
[41]Kazuhiko Maruta, Hikaru Watanabe, Tomoyuki Nishimoto. Acceptor Specificity of Trehalose Phosphorylase fromThermoanaerobacterbrockii: Production of Novel Nonreducing Trisaccharide,6-O-α-D-Galactopyranosyl Trehalose[J]. Journal of bioscience and bioebgineering,2006,101(5):385-390.
[42]Takumi Satoh, Toshitaka Odamaki, Mariko Namura,et al. In vitro comparative evaluation of the impact of lacto-N-biose I,a major building block of human milk oligosaccharides, on the fecal microbiota of infants[J]. Anaerobe,2013,19:50-57.
[43]Hiroto Chaen,Tomoyuki Nishimoto,Tetsuya Nakada.Enzymatic Synthesis of Kojioligosaccharides Using Kojibiose Phosphorylase[J].Journal of bioscience and bioengineering,2001,92(2):177-182.
[44]Takanori Nihira, Hiroyuki Nakai, Motomitsu Kitaoka.3-O-a-D-Glucopyranosyl-L-rhamnose phosphorylase fromClostridiumphytofermentans[J].Carbohydrate Research, 2012,350:94-97.
[45]Senoura T, Ito S, Taguchi H,et al. New microbial mannan catabolic pathway that involves a novel mannosylglucose phosphorylase[J]. Biochem Biophys Res Commun, 2011, 408:701-706.
[46]Watson KA, McCleverty C, Geremia S, et al. Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question[J]. EMBO J, 1999, 18:4619-4632.
[47]Andersson U, Levander F, Radstrom P. Trehalose-6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization inLactococcuslactis[J]. JBiol Chem, 2001,276:42707-42713.
[48]Park JK, Keyhani NO, Roseman S. Chitin catabolism in the marine bacterium Vibrio furnissii. Identification, molecular cloning, and characterization of an N,N-diacetylchitobiose phosphorylase[J]. J Biol Chem, 2000, 275:33077-33083
[49]Kawahara R, Saburi W, Odaka R, et al. Metabolic mechanism of mannan in a ruminal bacterium,Ruminococcusalbus, involving two mannoside phosphorylases and Cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase[J]. J Biol Chem, 2012, 287:42389-42399.
[50]Hidaka M, Honda Y, Kitaoka M,et al. Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (a/a)6 barrel fold[J]. Structure,2004, 12:937-947.
[51]Syson K, Stevenson CE, Rejzek M, et al. Structure of Streptomyces maltosyltransferase GlgE, a homologue of a genetically validated anti-tuberculosis target[J]. J Biol Chem, 2011, 286:38298-38310.
[52]Hiroyuki Nakai, Motomitsu Kitaoka, Birte Svensson.Recent development of phosphorylases possessing large potential for oligosaccharide synthesis[J].Current Opinion in Chemical Biology, 2013, 17:301-309.
[53]鄒麗娟. 功能性寡糖在畜牧獸醫(yī)上的應(yīng)用[J]. 肉類研究,2009,(2):48-52.
[54]Jin-Ha Lee,Seung-Heon Yoon, Seung-Hee Nam. Molecular cloning of a gene encoding the sucrose phosphorylase fromLeuconostocmesenteroidesB-1149 and the expression inEscherichiacoli[J].Enzyme and Microbial Technology, 2006,39(4): 612-620.
[55]Ramandeep Singh, Babu R. Thapa, Gurjit Kaur. Biochemical and molecular characterization of GALT gene from Indian galactosemia patients: Identification of 10 novel mutations and their structural and functional implications[J]. Clinica Chimica Acta, 2012,(414):191-196.
[56]Marc R. Lake, Cynthia L. Williamson, Robert D. Slocum.Molecular cloning and characterization of a UDP-glucose-4-epimerase gene (galE) and its expression in pea tissues[J]. Plant Physiology and Biochemistry, 1998,36(8):555-562.
[57]Muller M,Nidetzky B.The role of Asp-295 in the catalytic mechanism ofLeuconostocmesenteroidessucrose phosphorylase probedwith site-directed mutagenesis[J]. Febs Letters, 2007, 581(7): 1403-1408.
[58]Schwarz A,Nidetzky B. Asp-196→Ala mutant of Leuconostoc mesenteroides sucrose phosphorylase exhibits altered stereochemical course and kinetic mechanism of glucosyl transfer to and from phosphate[J]. Febs Letters, 2006, 580(16): 3905-3910.
Enzymatic Synthesis of Functional Oligosaccharides
LI Bing-Xue1, NIU Fei1, ZHANG Ning2
(1.CollegeofLandandEnvironment,ShenyangAgriculturalUniversity,Liaoning,Shenyang, 110866;2.CollegeofBiologicalScienceandTechnology,ShenyangAgriculturalUniversity,Liaoning,Shenyang, 110866)
Functional oligosaccharide is endowed with the features of non-toxic, no residue and strong stability, as a new pollution-free additive widely used in food, feed, pesticide and fertilizer industries. More than ten kinds of oligosaccharide produced by enzymatic preparing methods in the international market with exception for soy oligosaccharides, cottonseed sugar. Glycosidase, glycosyltransferase and phosphorylase are usually used for the preparation of functional oligosaccharides. Here, we review the types of functional oligosaccharides, properties and preparation methods, and analyze the advantages and disadvantages of enzymatic synthesis of oligosaccharides, elaborated the phosphorylase categories, catalytic properties and oligosaccharides product systematically. Enzymatic synthesis strategy and target enzyme molecule modification will be the development direction of enzymatic synthesis of functional oligosaccharides in the future.
Functional oligosaccharides; Enzymatic; Phosphorylase; Synthesis
國家自然科學(xué)基金項目(31271818);中國博士后科學(xué)基金項目(2012M510836,2013T60299)
李炳學(xué) 男,博士,教授,碩士生導(dǎo)師。主要從事微生物生理與分子遺傳方面研究。
Tel:024-88487155,E-mail: libingxue1027@163.com
2017-02-01
李炳學(xué),男,博士,教授,碩士生導(dǎo)師,沈陽農(nóng)業(yè)大學(xué)土地與環(huán)境學(xué)院微生物學(xué)科負責(zé)人、副院長,遼寧省法庫縣科技顧問。1995年畢業(yè)于遼寧師范大學(xué)生物技術(shù)專業(yè),2009年獲得中國農(nóng)業(yè)大學(xué)微生物學(xué)博士學(xué)位。2006年晉升為副教授,2015年晉升為教授。聯(lián)合國大學(xué)—麒麟學(xué)者(UNU-KIRIN Fellow,2010.3~2011.3),在日本國立食品綜合研究所酶學(xué)實驗室合作研究?,F(xiàn)任遼寧省微生物學(xué)會常務(wù)理事、遼寧省土壤學(xué)會理事、國際人和動物真菌學(xué)會(ISHAM)黑酵母工作組會員、《微生物學(xué)雜志》編委。為遼寧省科技特派員,2012年起學(xué)校派駐法庫縣科技顧問,籌建院士工作站和新農(nóng)村發(fā)展研究院法庫綜合服務(wù)站,實現(xiàn)校地深入合作共贏。榮獲校新農(nóng)村發(fā)展研究院2012年先進個人。主持獲得沈陽農(nóng)業(yè)大學(xué)教學(xué)成果一等獎1項;遼寧省教學(xué)成果三等獎1項;主持遼寧省教育廳教學(xué)改革課題2項;副主編教材2部,參編教材3部。獲得碩士研究生校級優(yōu)秀畢業(yè)論文指導(dǎo)教師3次。沈陽農(nóng)業(yè)大學(xué)十佳青年教職工,沈陽農(nóng)業(yè)大學(xué)三育人標兵。主持科研課題12項:國家自然科學(xué)基金面上項目1項,中國博士后科學(xué)基金特別資助1項,中國博士后科學(xué)基金面上項目1項,聯(lián)合國大學(xué)訪問學(xué)者基金1項,沈陽市科技創(chuàng)新專項資金1項,糖化學(xué)與生物技術(shù)教育部重點實驗室開放課題1項,沈陽市農(nóng)業(yè)科技共建項目1項,沈陽市農(nóng)業(yè)綜合開發(fā)項目3項,遼寧省轉(zhuǎn)基因?qū)m椬诱n題1項,沈陽農(nóng)業(yè)大學(xué)博士后科學(xué)基金1項。在Gene、Applied Microbiology and Biotechnology、Journal of Pure and Applied Microbiology、Journal of Applied Glycoscience、Microbial Cell Factories、Journal of microbiology and biotechnology、環(huán)境科學(xué)、食品科學(xué)、微生物學(xué)報、微生物學(xué)通報和微生物學(xué)雜志等中英文期刊發(fā)表研究論文20余篇。
Q936
A
1005-7021(2017)01-0001-06
10.3969/j.issn.1005-7021.2017.01.001